
The Cuban Software Revolution: 2016–2025

David M. West
transcendence corporation

profwest@fastmail.fm

When I got this interview I was told the bartender would
know where he could be found, so I stepped up and asked

“Professor West, por favor.” A quick nod directed me to the
wooden open riser stairs leading to a loft and eventually a
second floor.

The bar was not half full.
Before the embargo was imposed, the Bodequita was a

must-see tourist mecca—one of Hemingway’s two favorite
bars, they say. My mojito in the Bodeguita del Medio and my
daiquiri in the Floridita, Hemingway’s words, in his own
hand, framed behind the bar.

Most post-embargo tourists have only a cursory knowledge
of Hemingway, few have read any of his work, and next to
none show any nostalgic interest in the master and his habits
in his adopted home.

Only one of the tables on the mezzanine balcony was oc-
cupied. An old man sporting the long flowing hair popular
in the 1960s, quite grey now, framed a face—its most distin-
guished element were the eyes.

“Professor West?”
West: Just Dave will do. Sit down. Mojito?
Writer: The bartender was already behind me with two

fresh drinks on a tray. He set one down in front of each of us.
Judging from the empty glasses at the side of the table, Dave
would have gotten both were I not there.

“Thank you for seeing me.”
West: No problem, although I confess I am not sure why

you want to talk with me. You mentioned an article, The New
Yorker or the Atlantic?

Writer: “I’m hoping so. A story about you, your ideas, your
life, an explanation for why so many in the phenomenally suc-
cessful Cuban software industry credit you with that success.”

West: People have said that, yes; but aside from a few stu-
dents who adopted my ideas, I am not sure how I am sup-
posed to have had such influence.

Several years ago I was interviewed for stories in several
business magazines, Fast Company and Bloomberg Business-
Week come to mind, and I told them that my Cuban friends
heard the exact same words and ideas as all of my American

Abstract

Presented as a work of fiction, this essay is about software de-
velopment—how it has come to be what it is and what it might
have been. The concept and metaphor of culture is used to
frame the discussion. What might have been is presented as
an approach named “Living System Design” and its practice
in a fictional Cuba of the near future.
Categories and Subject Descriptors D.2.0 Software Engi-
neering, General, D 2.2 Design Techniques, D2.10 Design
General Terms Management, Design, Economics Human
Factors
Keywords living systems, agile, software engineering, soft-
ware crisis, design

–Havana, Cuba / 2026

1. My Story

Writer: It was dark and cool inside the Bodequita.
The darkness, because not a single ray from the blinding

Caribbean sun made it past the heavy curtain separating the
bar from the entry vestibule and the street.

The coolness, ephemeral and mostly illusory—vestiges
of early morning cold emanating from the walls and floor
curled in response to the lazy twirling of the fans on the
ceiling. Faint breezes, cool only in contrast to the broiling
temperature outside caressed my face and arms.

Standing behind the curtain, I let my eyes adjust to the
light thrown by a few incandescent bulbs on faux candles
on the table and a bit of neon behind the bar.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Onward!’15, October 25–30, 2015, Pittsburgh, PA, USA
ACM. 978-1-4503-3688-8/15/10...$15.00
http://dx.doi.org/10.1145/2814228.2814247

267

students and colleagues—so any difference must be found in
the Cubans, not in me.

Those writers recapped my ideas pretty well, but there was
no outpouring of requests for my wisdom or assistance from
the US or Europe!

Writer: “Well they had different objectives. I’m looking not
only for the ideas or your life stories, but the context—where
the ideas came from, why were you the one that expressed
them, that sort of thing.”

West: OK. Where do you want to start?
Writer: “Two things: why did you bring your work to Cuba?

And then, how did you get involved in software development?”
Dave pointed to the wall beyond the end of the table.
 West: See there? You have to look closely because it is kind

of small—there wasn’t much room even way back then.
Writer: Barely visible in the jumble of signatures, graffiti-

like sayings in multiple languages, and crude caricatures was
Dave West 1994.

West: Wrote that on my first visit here. Brought a felt tip
pen especially for that purpose. Ever since Hemingway made
this place famous, people have been writing on the walls.
Papa’s signature, of course, had lots of white space around
it and was protected. All the rest of us had to make do with
whatever space we could find.

I was here with colleagues from the University of St. Thomas
in St. Paul Minnesota. I developed an object-oriented curric-
ulum for the Masters in Software Design and Development
program there and established the Object Lab in partnership
with local businesses.

I held four seminars at the Polytechnic and two at the Uni-
versity of Havana. At the University I spoke about the philo-
sophical presuppositions of computer science and software
engineering.

Writer: “What kind of subjects did you talk about?”
West: Two examples. One, was tracing ideas about decompo-

sition and composability—reuse, essentially—from Plato who,
in his work Phaedrus, talked about the art of taking things
apart not in the manner of a bad carver, and putting them
together again, to Christopher Alexander in his book Notes
on the Synthesis of Form, who spoke of clusters of forces with
dense local connections and loose distant ones, to metaphors
and the behavior-based decomposition of objects.

Another was on method and the kind of scientific manage-
ment approaches adopted in computing combined with the
ideas of Feyerabend and Gadamer and others. Gadamer es-
pecially. He wrote about the limitations of method, or, rather,
the limitations of the perspective that any method imposes
on an individual seeking knowledge.

It was clear to Gadamer that once a perspective is assumed—
say a particular style of research in the natural sciences—then
the kinds of questions that will be asked are predetermined,
as well as the form the answers will take. Biases, prejudices,
opinions—whatever one wishes to call them—come into play

whenever a certain methodological perspective is assumed
and with them, an inability to see the influences of that per-
spective—that’s the problem with methodology. Gadamer
believed that the human sciences of the nineteenth century
were limited by their attempts to ground their studies in a
method that mimicked the natural sciences. I made the same
argument vis-à-vis computer science and software engineering.

Writer: The mojitos kept arriving just as Dave finished the
previous one. The bartender knew his habits and desires. My
ability to keep up was tested, and ultimately failed. At one
point I subtly—I thought—made sure that one of my drinks
was placed in the neutral zone dividing his and my sides of
the table. Sure enough he consumed that one as well. But
there was no affect on his speech or behavior—his capacity
was next to astounding.

West: …Alcohol has never had much effect on me—other
than making me hot and sweaty as my body turns the alco-
hol into sugar…

 Writer: …he said when he noticed me staring at the empty
glasses. At one point a pretty young woman joined us at the
table and he introduced her as Estrelita, “one of my best stu-
dents and favorite people.”

West: The workshops at the Polytechnic were on object-ori-
ented programming, at least officially. As I told the students,
the unique ideas around objects had little if anything to do
with programming. Instead it was all about design—the de-
composition criteria you used to identify modules (objects),
and how you distributed functionality across those modules.

If done correctly—using behavior as your object discovery
criteria—you came up with designs “outside the realm of the
structured design culture,” as Grady Booch wrote in his 1991
book, Object Oriented Design.

The important thing was not what I said, but the circum-
stances facing the students at the Polytechnic. They were using
old x86 PCs. The entire country had a single T1 link to the
Internet. Of the fifty or so machines in any given lab, maybe
thirty were functional, the rest in a state of repair or serving
up replacement parts.

Simple, efficient, compact, reusable software was a necessity.
They believed—and demonstrated—that the ideas I shared
with them could produce software with exactly those qualities.

I was simply a conduit for ideas, ideas I believed in; but it
was they who took those ideas and made something of them.

I had brought with me about twenty copies of Digitalk’s
Smalltalk/V. It didn’t run on the machines available, but the
students took my gift, researched how to write a Smalltalk
VM, and wrote one that would operate on the hardware they
had. They did a lot of work with Smalltalk in the next couple
of years but, again because of limitations imposed by the em-
bargo, were never able to make it a foundation for their work.

Writer: Estrelita, with a touch to Dave’s arm, signaled it
was near time to leave.

268

West: One more story, and one for the road, then please
walk with us to my home. We can continue there with some
friends and former students over dinner.

In 1968 I matriculated at Macalester College in St. Paul, Min-
nesota. Only 19 but I had a wife and a daughter due to be born
in October, so I needed a job. One came my way —computer
operator / reconciliation clerk at Northwest National Bank.

Nine of us worked in the computer room. Three keypunch
operators, two computer operators, two programmers, a man-
ager, and a computer technician. In fact, the technician was
an engineer, a full-time employee of the Burroughs corpora-
tion—our computer was a Burroughs B100, with a console, a
line printer, four reel-to-reel tape drives and a reader-sorter—
and the technician was charged with keeping the hardware
running. (It says something that the bank had to pay Bur-
roughs $50–$60K a year to keep one of their electrical engi-
neers on-site forty hours a week.) One of the programmers
and I filled the role of “reconciliation clerk”—making sure
that proof tape totals matched computer captured amounts
for checks and deposits—an hour or so each evening.

I was the first person hired that was not a professional banker.
The keypunch operators had been proof operators, the man-
ager had been an operations manager, and the other operator
was an assistant operations manager. The two programmers
had been tellers. Average banking experience across the team
was 10+ years. A requirement for keeping my job was to be-
come certified in bank operations and banking principles.

Within six months, I was promoted to programmer, hav-
ing learned both assembler and COBOL programming on
my own. We also hired a third programmer, a young woman
graduate of the COBOL programming class offered by the
local vocational-technical college. We wrote two types of
program: one similar to device drivers (in assembler) and
the second, banking applications (in COBOL). COBOL, as a
language, was exactly what the name suggests, a Common
Business Oriented Language. Whatever its computer science
merits as a programming language, COBOL’s greatest value
was the ease of expressing business concepts, processes, pro-
cedures, and information constructs.

The intent of higher order languages was to free the pro-
grammer from detailed attention to the machine and the
complications of its operation. COBOL, like FORTRAN, was
created for domain experts not computing experts.

The programming staff was, to all intents and purposes,
bankers writing software. We knew banking and our particu-
lar expertise was our ability to “speak bank to the computers,”
i.e., to express banking problems and solutions in COBOL
accurately enough that the computer did the right thing.

We did a lot of programming—in three years we collec-
tively wrote close to 200 applications, mostly as individuals,
sometimes in pairs.

The average program was 2–5 inches in length, referring to
the size of the deck of Hollerith cards that was the physical
embodiment of our programs. Code was written in pencil

on paper. Keypunchers created punch cards from the paper
sheets creating a deck of cards—one line of code per card.

Job control was, quite literally, the physical placement of
various programming decks in sequence inside of three-foot
long metal trays. Data, except for the magnetic resonance
encoded (MICR) checks and deposit slips, was also on cards
and would follow the program processing the data in those
same metal trays.

Debugging occurred in three stages: 1) the correction of
typos; 2) discovery and correction of syntax or logic errors
based on compiler output—paper printouts of cryptic and of-
ten indirect error messages; and 3) core dumps. If a runtime
error occurred the contents of core memory (all 64K of it) was
printed in hexadecimal on fanfold paper 128 columns by 60
lines in a stack of paper, 300–400 centimeters tall.

The programming cycle consisted of coding on paper, key-
punching, compiling, festering, and debugging. One cycle
per workday was good luck.

But we were incredibly productive. It would take one pro-
grammer 2–6 weeks to create an application, test it, and
put it into production. Often we could document a return-
on-investment of more than 1000%. For example, I wrote a
program that increased the efficiency of the reconciliation
process that increased the number of checks we cleared each
day by 20% thereby increasing the interest earned on those
deposits by more than $1,000 per day—five days a week, 50
weeks per year: $250,000 per year. The program took me
about three weeks to write.

Our experience at the bank didn’t seem atypical. In a lot of
ways the late 60s were a true golden age of application soft-
ware development. But it was not to last. In August of 1968,
a mere month before I joined the bank, NATO sponsored the
first “Conference on Software Engineering” with the intent
of finding solutions to the “software crisis.”

Although for me those late 60s and also the early 70s were
a golden age for software development, my nostalgia for them
is not a motivation for what I will tell you over the next few
days. That experience did, in a deep and pervasive manner,
establish the perspective that affected the future develop-
ment of my ideas.

It is true that we were naïve—uninformed by theory or
deep understanding of what we were doing—and that we
were simply automating well understood procedures in a well
understood domain; but we were “doing the right thing” by
focusing on understanding and improving an existing system
and not attempting to create an artificial replacement system.

If development had continued in this “unselfconscious”
(à la Christopher Alexander) manner we would have arrived
at essentially the approach that I am advocating, that I taught
in Cuba, thirty years ago.

Instead the problem was redefined in terms of creating
artificial systems. My cynicism and skepticism toward the
numerous development fads and revolutions I was to see

269

tion were exceptional— all were church historians or church
theologians.

Instead of the typical Sunday School children’s lessons, my
classmates and I got a healthy dose of metaphysics, Gnostic
philosophy (this is why the Catholic Church in particular
dislikes Mormonism), and morality based on the premise
that we all were potential gods, and it was our responsibility
to make that happen.

My interests and focus those years was science. I read
everything written by popular science authors like Hoyle,
Clarke, and Gamow, plus hundreds (I am not bragging) of
monographs on physics and mathematics. In high school I
fast-tracked my math education with a two-hour, four sub-
ject junior year (Trigonometry, College Algebra, Statistics,
and Probability) so that I could take Calculus I and II my
senior year.

Then, in my first semester of college—freshman year—ev-
erything changed. Physics I (mechanics) turned out to be
deadly dull—so did the entire major curriculum. I abandoned
it. Pure accident had led me to take a freshman seminar on
the Bhagavad-Gita and Indian Philosophy.

By the end of the semester I had changed my major to Asian
Philosophy—eventually focusing on the metaphysics of Bud-
dhism, Taoism, and their offspring, Zen (which turned out to
resonate perfectly with the Mormon theology I had learned
as a teenager), and abandoned all but a curious, “what’s new”
interest in science and physics.

Science, math, and eventually computer science seemed,
to me, to be too limited, to be focused only on easy ques-
tions—that is, questions that had demonstrable and provable
answers. They were too simple!

John von Neumann (according to the recollections of John
Alt), at the first ACM conference in 1947, captured an impor-
tant aspect of what I was feeling:

von Neumann mentioned the “new programming
method” for ENIAC and explained that its seemingly
small vocabulary was in fact ample: that future com-
puters, then in the design stage, would get along on a
dozen instruction types, and this was known to be ad-
equate for expressing all of mathematics….Von Neu-
mann went on to say that one need not be surprised
at this small number, since about 1,000 words were
known to be adequate for most situations of real life,
and mathematics was only a small part of life, and a
very simple part at that. This caused some hilarity in
the audience, which provoked von Neumann to say: “If
people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.”

I was interested in life, in the complicated—the complex,
actually—and in the mystical, in altered states of conscious-
ness, and always, in the human. I never shared the fascination
with the computer, the artificial, the scientific and mathemati-

over the next sixty years is grounded in the conviction that
all of those “advances” were focused on the wrong problem.

Writer: The transition out of the bar was far less dramatic
than my ingress; the sun was just below the horizon, the
breeze had shifted, coming off the ocean, just a hint of the
cooling evening ahead.

I had assumed that Estrelita had joined us to help an alco-
hol-impaired old man make it home safe. Instead she held
his hand, hugged his arm, and rested her head on his shoul-
der, while he gestured at buildings in old central Havana and
pointed out landmarks.

West: A lot of these buildings had scaffolding and falsework
when I came here in 1994. Castro had made restoration of
the Cuban patrimony a priority. Alas, he had money to start
but not finish the work. When the embargo was removed, the
economy blossomed. More and more projects were started
and it seemed every building in town was under renovation.
Although money was plentiful, labor became scarce as work-
ers focused on economic sectors that were growing faster
than construction.

Writer: “Yes, tourism grew by several hundred percent to
account for about 10% of the overall economy. Agriculture
tripled to account for about 12%, and medical services also
tripled to account for about 15%.

“What no one expected was the massive rise in software-
supported systems and computer applications that grew from
nothing to account for just over 40% of GDP.

“People here say that it was your ideas that made it possible
for Cuban developers to dominate not only the domestic soft-
ware market but all of South and Central America.

“Forgive me for being blunt, but outside of Cuba no one knows
who you are, or anything about your ideas.

“What are those ideas? Where did they come from? Why do
the only seem to work here?”

He sighed. Estrelita looked up at him with a warm, amused
smile. She turned her attention to me with a look that said,

“get ready for this.” Obviously gathering his thoughts, Dave
walked silently for a few blocks until we arrived at his home.

He lived in a three-story, circa 1880s, colonial façade build-
ing on the Malecon. A four-lane street—now busier than ever
with both modern and classic (think 1950s) cars—separated
his home from the ocean.

West: It is politically correct for me to live here only because
the first two floors are classified as a school—a studio, really.
Cuba is still Communist and re-purposing these buildings
away from multiple family dwellings back to single ownership
is frowned upon—both by the government and the people.

Writer: We climbed the stairs to the third floor and a
waiting dinner on an open patio overlooking the ocean; he
continued his story.

West: I was raised in Utah as a Mormon—this is relevant,
hang on just a bit—and ages 12 to 18, I received about twelve
hours a week of religious instruction. This is not unusual
except for the fact that the laypeople providing that instruc-

270

others, mostly young, about half and half male and female,
had joined us for dinner and stayed to listen to Dave’s stories.

We had strong Cuban coffee (mostly for the guests, I think)
followed by glasses of Coca-Cola made with real Cuban sugar
with lime wedges (mostly for Dave). Fine Cuban cigars—Co-
hibas and Bolivars—for almost everyone.

West: Never smoked until I came to Cuba, and have only
smoked Cuban cigars when I visited and occasionally since
I moved here.

I want to tell you about the emergence of a culture—a
group of people sharing values, worldview, technology, and
behaviors. Like any culture, it is not homogenous. Outliers
and dissidents exist. Culture is often invisible to those who
share it, but its power over their actions and their rational-
izations for those actions are very real and very powerful. It
may seem as if I am stereotyping people in that culture but,
except for details, that stereotype is in fact quite accurate.

The roots of this new culture is Western Rationalism, the
Age of Reason, Descartes and Leibniz et al., and the circa
1900 physics of Mach and Einstein.

With few exceptions, this culture imposes, often invisibly
and unconsciously, its worldview, its values, its traditions on
everyone whose work is even remotely associated with com-
puting and computers. In fact, obtaining any professional
applied computing title—programmer, systems analyst, user
experience designer, etc.—depends on successful navigation
and enculturation in the academic computer science culture.

Part of this culture emerged with the first academic pro-
grams in the area of computational science. The part I am
most focused on is the nonacademic profession, the applied
developers who work in corporations, governments, and
organizations of all types. This is the largest segment of the
culture—as much as 75% of all those in computing work—
and came into existence, essentially, beginning in 1968 with
the proclamation of a “Software Crisis.”

Mariel, please show our guest that clipping on the wall
over there.

Writer: Mariel handed me a framed page from the No-
vember 8, 1966, issue of Business Week. The headline read:

“Software gap—a growing crisis for computers.” Under that
the words, “Shortage of programmers—and the fruits of their
solitary art—is stunting growth of computer use and costing
the industry hard cash.”

West: Note the second paragraph where it states that pro-
gramming is a new human intellectual art, not a mechanical
or electronic skill. And lower down where it describes the
software crisis as a lack of programmers sufficient to meet
demand. The crisis was the growing divergence between de-
mand (every business, government, and army was desperate
for software) and supply (knowledgeable and capable software
developers). In 1968 the large majority of programmers were
re-purposed domain experts; e.g. scientists, military officers
(think Admiral Grace Hopper), or business experts.

cal, even though I spent fifty years as a professional software
developer and was a professor of computer science, MIS, and
software engineering in various schools at various universities.

This choice meant I was soon left in the dust, lacking the
ability to comprehend, use, or contribute to the theories of
programming, and computing theory. This meant I did not
publish in the right journals or get invited to the right con-
ferences. I was a nobody.

Writer: “Did that bother you?”
West: Of course! I had things to say that I thought were

important, that mattered, that could help. But I did not have
the reputation to get them listened to. But, in time, the resent-
ment went away as I saw how people, like Terry Winograd,
who had the rep, got tenure at Stanford, and yet, when his
ideas drifted from “pure” computer science, they were mostly
ignored. It wasn’t personal, just part of the culture.

But much of what I lacked in the area of computer science
and programming technology, I possessed in the area of soft-
ware development—not software engineering, just develop-
ment. I did become a tenured professor—at one point in the
world’s largest software development masters program (900+
students) at the University of St. Thomas, presented over 50
papers at refereed conferences, and wrote three books. But
I never felt part of the in crowd or influential, except in the
case of some of my students.

Writer: He rolled a now-empty glass between his palms.
Crisis
West: Culture is key here—observing and understanding

culture.
After twenty years in software—from operator to IT direc-

tor—I returned to university as a student. Between 1985 and
1988 I completed three degrees: MS Computer Science, MA
Cultural Anthropology, and PhD Cognitive Anthropology.

I took anthro courses because I never, in that twenty years,
had a system I developed fail for technical reasons; always
something social, psychological, or political—something
cultural—got in the way.

Anthropology taught me how to be an anthropologist, to
take advantage of my natural position: on the outside, look-
ing in. I became a participant-observer: in the world of com-
puting, but not of it. Ignorant, unfortunately, of every detail,
every nuance understood by an insider, by a member of that
culture; but with the advantage of perspective, a vantage
point yielding insights.

I’m going to give you what Clifford Geertz calls a “thick
description,” an ethnography of a very real computing cul-
ture. You see, I’m not a historian or scholar any more. I just
want to tell you what I saw during my career, and how that
contrasted with my own ideas.

Writer: “You mean insights?”
West: Actually, I’ll tell you stories that illustrate those in-

sights and my ideas.
Writer: There was a pause as dinner concluded and we

adjourned to the balcony for coffee and cigars. About ten

271

Permit me a brief aside—some of my many critics com-
plain when I say this about Grace Hopper. Admiral Hopper
was selected for the Mark I and Univac projects because of
her PhD in math and expertise in computer languages and
compilers. Her selection to head the COBOL effort, however,
was grounded in her domain expertise in Pentagon procure-
ment and management policies and procedures.

Back to the main point: the pool of domain experts as po-
tential developers was essentially dry—no more were avail-
able without negatively affecting the domain, e.g., the busi-
ness and its normal operations.

Quality and waste were not real issues, yet. Although much
of the software in the late 60s and early 70s was, by today’s
standards, inefficient, murky, and poorly conceived; but even
the worst software was usable, cost very little to produce, and
was easily replaced if it was intolerable. The reason for vari-
ety in quality was individual differences among developers.

Given that the crisis was a lack of capable programmers,
why was the answer “software engineering”?

That 1968 NATO Conference on Software Engineering:
those invited to the conference were scientists, mathemati-
cians, engineers, and generals plus academics from the few
extant computer science university programs—those aca-
demics were almost exclusively mathematicians and electri-
cal engineers by background and training.

The Business Week article described programming as a
“human intellectual art.” Why wasn’t the NATO conference
named “Software Artistry?”

I was not privy to the discussions leading up to the NATO
conference, nor did I have access to academic faculty in com-
puter science. However, I did read the business press and later
reports and papers from the NATO conference and others.
There was debate of art versus science but science prevailed
and art lost.

Why? First, the volume of programmers needed was huge.
No one had experience with the mass production of artists.
Since the end of World War II, however, the entire higher
educational system was retooled to mass-produce scientists
and engineers. Sputnik put even more energy and money in
that endeavor.

Second, there was the cost efficiency of one professor teach-
ing a subject like math—with its discrete, right and wrong
answers—to 500 students in one lecture hall; as compared
with the arts faculty with a studio restricted to ten or so stu-
dents at any given time.

But the real reason that art lost, I believe, is because of a ba-
sic misconception of what was involved in writing a program.

Reflecting on the work of my colleagues in 1968 it was clear
that programming had two distinct aspects: deciding what
the program should do, and how the program should do it.
Doing the first part well requires a deep understanding of

the problem and the domain along with insight, gained from
experience. This is art or at minimum, craft.

If, however, you assume that the “what” of a program can
be articulated in nothing more than a set of imperative re-
quirements, then programming requires nothing more than
knowledge how to provide instructions about how the com-
puter is supposed to satisfy those requirements.

Writer: “Requirements?”
West: A detailed, discrete, accurate, complete, and unam-

biguous description of the conditions and capabilities needed
to achieve a desired objective. The programmer simply decides
what algorithms, control statements, data structures, and er-
ror handling to employ to meet those conditions and provide
those capabilities. That is, satisfy requirements.

Generalized, this view of programming became what Her-
bert Simon called “the sciences of the artificial.” Simon’s views
did not establish the mindset of this emerging computing
culture; he simply provided a concise and concrete articu-
lation of an already dominant worldview. Computer scien-
tists, especially academics, were obsessed with the precise
and clean world of mathematics, occasionally expressed in
the form of electronic circuits, and the physics of transistors
and magnets. Herb Simon argued, in Sciences of the Artificial,
that both the computer and the world were deterministic ma-
chines operating in accordance with mathematically precise
principles—sets and function types.

If you could (Simon and physicists like Mach stated that
this was, in principle, true) specify the current state of such
a machine and a desired state, you could define with math-
ematical precision the exact set of transforms necessary to
turn requirements (specification of desired state) into an ex-
ecutable set of instructions necessary to ensure the machine
would, in fact, be in that desired state.

Moreover, the transformations could be determined and
stated by a machine operating according to mathematical
laws of its own. Automatic programming!

At the same time, roughly, the business community con-
tributed a misbegotten concept of its own, “scientific manage-
ment.” Grounded in a misanthropic assessment of the working
class as “lazy, dishonest, and prone to mistakes,” scientific
management believed in the necessity to define in precise
detail exactly what each employee should do to accomplish
any and every task that came their way and then force the
employee to comply with those instructions. Further, tasks
would be decomposed to the point that each worker would
be responsible for one task repeated over and over again for
a full 8-hour shift.

The caricature of programmers in those days was “Twinkie
eating, Coke swilling, basement dwelling, socially inept
males afraid of girls.” Who more might a manager wish to
subject to the dictates of scientific management? (Few of my

272

colleagues in those days would recognize themselves in that
caricature. This is an example of being blind to the culture
within which one is embedded.)

Writer: The full moon, risen rather spectacularly from the
bay, was approaching mid-sky. Neighbors on a nearby roof
top patio were enjoying a three piece band by dancing Cu-
ban folk dances. Most of the kids had drifted off. Estrelita,
with others, had cleaned up. Estrelita only was still present.

West: Enough for now. You want to continue tomorrow?
Writer: “Very much!”
West: I’ll send a car for you around 15:00. We can talk more

or you can listen to more stories on the beach as we watch
the young, beautiful, and rich (the new class of Cuban youth
and international tourists) frolic in the surf.

Someone will be waiting for you at the front door to take
you to your hotel.

Buenos Noches.

2. The Illogic of Business

Writer: I spent the next morning trying to get a sense of the
Cuban people. I was looking for something, some character
trait, some cultural bias, some aspect of ‘spirit’ that might
explain why Professor West had met with such success here
and not in his homeland.

Riding a “camel,” a public transport vehicle based on a flat-
bed semi truck, I noticed that 1950-era autos still dominated
traffic. The expectation had been that all those vintage cars
would have been sold to collectors in the US. Dealers out-
side Cuba also expected to make a killing selling old parts.
Neither happened.

During the fifty-year embargo, the Cubans learned self-
reliance, determination, and, above all, ingenuity. They also
developed a healthy suspicion of and antipathy toward the
US. Not toward the people, of course, but toward govern-
ment, banks, and large corporations—including all those
parts hoarders and speculators expecting to make a killing
at the expense of the ‘naïve Cubans.’

They also had a fifty-year window where they developed
healthcare systems—like medical information, medical treat-
ment, and medical education—free from the dominance of
the insurance and pharmaceutical companies that shaped
the US system.

When it came to software, the Cubans had spent fifty years
figuring it out for themselves. They lacked the investment in
legacy systems and technology lock-in— think relational da-
tabases—that constrained thinking in the US. They did not
have the asset base necessary to do much, but what they did
develop was inexpensive, effective, simple and lean.

Estrelita was my driver from the hotel to a beachfront res-
taurant at the resort of Varadero (once the site of the only golf
course in Cuba). I took the opportunity to make a discrete ‘I
thought’ inquiry about her relationship with Dave.

“Oh you silly Americans,” she laughed, “Dave is old, you
know!”

West: Buenas tardes. Pull up a chair and have a daiquiri.
We honor Hemingway again, in his choice of afternoon drink,
if not his favorite drinking establishment.

Writer: We met on the veranda, an extension of a bar at-
tached to a restaurant, which was attached to a high rise
hotel, via a path winding among tropical palms and flowers,
animated by birds and turtles. The daiquiris, like the mojitos
the evening before, were bottomless.

West: Tomorrow you will see and hear what is being done
in Cuba. You will be able to judge for yourself what I may or
may not have contributed.

Today, we must return again to the past and how one cul-
ture, of which we have already been speaking, evolved and
another emerged.

I must remind you again that every culture has variations
and degrees. Not every Frenchman can cook gourmet meals,
and not every American is a crude lover.

Descriptions of cultures, ethnographies, are essentially
true but sometimes false in the particulars. Not false really,
more like incomplete or with missing nuances and glossed-
over exceptions.

Before 1968, and for a while after, both the world of busi-
ness and the nascent world of computer science were in thrall
to the circa-1900 worldview of physics.

When the “what” of programming was separated from
the “how,” business was given the task of specifying what
was to be done, via a set of specifications or requirements,
and programmers were assigned the task of articulating the
how. What had been one culture gradually began to schism.

The computing culture we have been discussing focused
inward, expanding its theory, honing its worldview, reducing
behaviors and rituals to formal methods, etc. Simultaneously
it began a kind of virtual conquest—of empire building—by
assuming within itself every activity even remotely associ-
ated with a computer.

In the late sixties it was actually hard to define the 16–30
courses expected of a CS college major plus another dozen
or so courses for each graduate Master’s degree and roughly
the same number for the PhD program. Technological ad-
vances soon made it easier as a variety of specializations—for
example, communication protocols, network configuration,
packet based communications with associated problems of
timing and assembly—expanded the realm of computing.

Adding to this was a kind of academic greed, “if it involves
a computer, it is ours!” Today ACM recognizes five discrete
subdisciplines (computer science, computer engineering,
information systems, information technology, and software
engineering) within computer science; three of which have
marginal connection to the original scope of computer science.

Only Management Information Systems (MIS) was able to
escape and become the purview of a different department—

273

Business, usually. Software engineering should have escaped
too, or really it should have been divided into two areas: the
engineering of virtual machines like compilers and device
drivers, and the art of application development. But that did
not happen.

As a consequence, students no longer had time or oppor-
tunity to learn about anything outside of computer science.

By the mid-1970s the typical IT shop contained few domain
experts. Essentially, one hundred percent of the employees
were professional computer scientists, software engineers, or
academically trained programmers. And this was considered
a good thing—developers did not need to know anything
about the domain in which they worked. In fact, it was nec-
essary because, as professionals, they would seldom be work-
ing in the same domain for their entire careers. Like hired
guns, they would move to where the needs were, and clean
up whatever mess they encountered.

Computer science had the luxury, until recently, of never
encountering systems that challenged their innate belief
system. They focused on the computer and on computing—
nothing but artificial, deterministic systems—and their be-
lief system held firm.

Business, in contrast, faced failure after failure when try-
ing to apply theories based on the deterministic, scientific,
worldview. Business learned—kind of—from these failures.
They started to look to something other than science to find
answers to their problems.

As early as the 1980s the business press was filled with ideas
about natural systems, like biotic ecologies.

Tom Peters wrote Thriving on Chaos in 1991 and introduced
a new idea based on complex systems subject to rapid change.
Pelle Ehn, in Work-Oriented Design of Computer Artifacts in
1988 asserted the need to consider computer and software ar-
tifacts as embedded in complex systems. Ehn specifically ad-
dressed the work of Herbert Simon (Sciences of the Artificial)
and argued it was an inadequate foundation for understand-
ing systems involving people and socio-political systems. Dee
Hock in Birth of the Chaordic Age argued that firms thrived
when operating at the boundary of order and chaos, and pre-
sented a detailed case study (VISA International).

Christopher Alexander was a significant source of inspi-
ration for the 1968 NATO conference because his first book,
Notes on the Synthesis of Form, held out an approach that
would support a program of formal, mathematical design.
Alexander, however, turned away from the ideas expressed
in Notes, to those found in Timeless Way of Building and
Nature of Order.

Although the first adopters of Alexander’s ideas were asso-
ciated with the world of computing—specifically object-ori-
ented approaches—much of the patterns community today is
focused on organizational patterns, educational patterns, so-
cial change patterns, and even patterns for beauty, earthquake
preparedness, social cooking, and dealing with dementia.

Problems stemming from the highly dynamic nature of the
enterprise, and the socio-economic context in which it oper-
ated, came to dominate business thinking. Change, change
management, adaptability, and innovation were the problems
and issues at the forefront of business since the 1990s.

Tellingly, business did not look to computing or IT for as-
sistance in dealing with their new problems. In part this was
simply because of the adversarial relationship that had come
to exist between them, but in part it was a widely shared per-
ception that computer scientists and software engineers with
their formalist mindset had little to offer.

Instead they turned to the design professions, particular-
ly graphic, product, and industrial design—thinking these
practitioners had the skill and the knowledge necessary to
understand and work with complex systems.

Unlike deterministic systems, complex systems are not
predictable. It is not possible to measure, or even to know,
all relevant variables, and relationships are integrated with
context and therefore lack the abstract universality of phys-
ics or computation laws.

Designers (architecture and the applied arts like graphic,
product, industrial, and interior design) constitute their own
culture, with a worldview, concepts, practices, and technology
that came into being specifically to address problems that are
malformed, ambiguous, deeply context sensitive, and “wicked.”

Business found it very easy to align itself with the culture
of design.

The business relationship with IT continued to degenerate.
First it was just adversarial—who could blame whom when
systems inevitably failed—then it escalated to labeling IT a
commodity, to the belief that IT was the single biggest barrier
to the realization of enterprise goals like agility (adaptability
in the face of rapid change), innovation, and sustainability.

Notably, one part of business did not share in this cul-
tural shift. The IT department had yet to escape the clutches
of scientific—i.e., antihuman—management and were easy
prey for vendors and academicians pushing solutions in the
form of formally defined methods and automated tools that
embodied and enforced those methods.

Immense effort was put into developing automated tools,
computer assisted development tools that would, eventually—it
was believed—replace human developers entirely. Automated
code from abstract pictorial specifications! Huge frameworks
like the failed IBM Repository and the wildly successful—in
terms of sales, not results—SAP.

Another aside: to be fair, the motivation for things like
the IBM repository was not primarily automated code and
elimination of human programmers. One big issue was re-
use. Numerous efforts to achieve reuse, at the level of code
or modules, failed. Few recognized that the failure stemmed
from framing the problem in the context of computers and
virtual machines—where there are many ways to do the exact
same thing, but each of those ways is deeply embedded in a

274

context that includes the idiosyncratic “style” of a program-
mer. Reuse in the real world is a solved problem and could
have been a source of inspiration, but was not.

Advocates of these formal approaches were primarily aca-
demics or were housed in vendor companies. Those forced
to use them were, increasingly, the product of an academic,
formalism-oriented education and enculturation process:
the perfect conditions to usher in a golden age of software
development.

Writer: Pausing briefly, Dave switched drinks from dai-
quiris to coke with lime wedges. Estrelita emerged from the
surf like Ursula Andress, toweled her hair, and slipped into
a beach wrap. She joined us at the table.

West: It did not happen. The tools and the methods were
not useful for those charged with using them. People do not
work that way, and there were so many implicit assumptions
and constraints imposed by the tools that they inhibited cre-
ative thinking.

Much of what was learned in school turned out to be of
little use on the job. In the 90s and 00s, large consulting com-
panies put their recruits, all from top computer science pro-
grams around the US, through two-month “boot camps” in
practical development before they were considered “billable.”

Practitioners found themselves between two conflicting cul-
tures: CS convinced about “how things should be done” and
business equally convinced about “how things really are done”.

3. Au Contraire

West: Practitioners are paid by organizations that see
themselves as complex, dynamic, essentially organic systems
charged with solving the kind of ill-defined, ambiguous and
wicked problems that arise from complex systems. At the
same time they are governed by an IT management complex
that, fundamentally, does not trust or respect them. Making
things even harder are all the unconscious, cultural presup-
positions picked up in college.

Being capable and smart people, practitioners found so-
lutions to their problems. Sometimes by modifying and ex-
tending what they had learned in school. Most structured
methods—excepting Dijkstra’s structured programming—
were defined by practitioners like Larry Constantine, James
Martin, Ed Yourdon, Michael Jackson, and Fred Brooks. At
other times, practitioners staged pseudo-revolts against the
status quo; Objects and Agile are exemplars.

Contrarian views were expressed by those deep within the
computing culture, like David Parnas’s “The Rational Design
Process: how and why to fake it,” and Peter Naur’s “Program-
ming as Theory Building.” More recently, Christiane Floyd
and her colleagues deconstructed software development in
their book, Software Development as Reality Construction.

These innovations never had legs. Despite the fact that they
could demonstrate with tons of empirical evidence, their su-
periority to the “official” CS-derived approaches, they seldom

had impact beyond one or two years. None had any endur-
ing effect on the practice. And none gained any credence
within academia.

Innovations from the practice tended to follow one of two
paths: the truly innovative were discarded quickly—behavior-
driven object design and Naur’s theory building come readily
to mind—or they were revised and assimilated.

Extreme Programming is an obvious example of this lat-
ter fate. XP rapidly gained too large a foothold to be flung
aside and entered the event horizon of CS/SE. XP was first
relegated to the “kiddy table” of the software development
feast—deemed suitable only for small, non-critical, unim-
portant projects. Then each of its practices was redefined in
ways that removed any vestige of difference from an exist-
ing SE practice (e.g., user story to requirement card). Then
XP was encased in the straitjacket of project management
(Scrum) and the shackles of production processing (Lean),
and redefined as Agile. The nail in the coffin occurred when
Agile became “CMM consistent” and “Six Sigma compliant.”

If the clichéd man from Mars visited software development
shops circa 1970 and again in 2010, the differences would be
almost indiscernible. Then they spoke COBOL-ish and today
they speak Java-nese: that’s it.

Writer: “Excuse me for interrupting this fascinating and
thorough history lecture, but when will you start telling me
about your ideas and what is happening in Cuba?”

West: Patience, we’re almost there.
Ideas from the more academic contrarians were noted, but

seldom taken seriously. Those from the practice, however, were
lost as much to sabotage from the proposers as co-option by
the computerists.

Agile is perhaps the best example.
Extreme programming had some great ideas, some genuine

insights. “System Metaphor” was one, but no one understood
it and so Beck abandoned it, at least as an official practice.

“User Stories” were not developed (in fact, I wrote the book
chapter that offers the most comprehensive explanation) and
little, if anything, was said in their defense as they were co-
opted and reduced to verbose requirements.

Most egregious of all was the failure to recognize constrain-
ing presuppositions like the assumption that all work should
be organized in terms of projects and the assumption that
programs would always be so large and complicated that test-
ing was the only way to understand, document, and assure
the integrity of programs.

Similarly, the Poppendiecks failed to see that most of Lean
makes sense only if one assumes the very production model
of development rejected by Naur; and Scrum recapitulates
scientific management, even to the point of using the tired
metaphor, Scrum “master.”

Writer: Sun set, our party had moved to a patio with an
open fire at its center. A pig had been roasting there the en-
tire day. At the periphery were pots of beans and rice and
vegetables. Our party now numbered close to twenty, sitting

275

at tables arranged to form a shallow arc, Dave at the center
table. I was across from him, my back to the fire pit.

West: Remember, I am like an anthropologist, living and
working with the tribe; sharing their work, living their lives,
but never truly one of them. I see things about them that they
do not see, or do not admit seeing. I have my biases, of course,
but do my best to set them aside and report in as objective a
manner as possible.

OK, pretend it’s 2015: CS can point to trillions of lines of
working code defining the infrastructure of the world and
everything that has become dependent on that infrastruc-
ture. We do not worry much, anymore, about the computa-
tional integrity of our machines (computers and peripheral
devices). The code behind our communication systems and
the Internet is a marvel. Much of it is, at least officially, the
product of software engineering.

From this success has come a kind of hubris—if it worked
for us here, then it will obviously work for everyone, every-
where. All they need to do is master “computational thinking”
and the mathematics and logic that underpin that thinking.

Empirical evidence suggests otherwise. Despite all the ar-
guments against its methodology and quibbles about its defi-
nitions and measurements—the Chaos Report from 2014 is a
very telling indicator of the success of applications.

Over six decades the percentage of systems delivered on-
time, on-budget, with complete functionality, and that are
still useful 2–5 years after they were conceived remains fairly
constant—about 10%–15%.

Anecdotal evidence abounds, but except for the much ma-
ligned Chaos Report, few scientific studies of failures have
been reported. We do not need scientific studies of failure,
but we could benefit greatly with ethnographic studies of
failure. This is because failure is systemic and not reducible
to quantifiable factors and formulaic relationships.

Remember, it’s 2015: imagine you’re flying across the US
on a commercial jetliner, 30,000 feet in the air. Take comfort:
the software monitoring your flight, providing instructions
to your pilot, and preventing collisions with other aircraft
was written and put into service roughly fifteen years before
Texas Instruments released the first Speak and Spell toy. The
system is called Host and it was written in the 1970s.

At least three attempts—costing between $400 and $800
million dollars each—have been made to replace Host. The
first two ended in failure and the money was written off.

The third attempt, called NextGen, is five years late and at
least $500 million dollars over budget. In theory it will be
deployed sometime this year, 2015. It has less capability and
less accuracy than the Google Maps app.

In 2013, the US Government spent $400–$500 million dol-
lars to build a Web site for health care. In 2014 it spent almost
the same amount to a second company to fix and maintain
that same Web site. The site itself handles, on an annual ba-
sis, less than .03% of the number of transactions processed
by Amazon.com in 2011.

And I lurked in the background. My own ideas were tak-
ing shape. They are grounded in the metaphysics and ethics I
learned as a youth in Utah (all that Mormon stuff) amplified
by the metaphysics and epistemology of Buddhist philosophy.
I see wholes. I apprehend—not analyze—reality. I think I see
all the “natural joins”—the areas of loose coupling—among
system elements and the dense clusters of resolving forces that
Alexander captured in his diagrams and later called “patterns.”

I am convinced of the communicative power of stories—
and only stories. I believe that metaphor, not logic, is the
fundamental property of thought.

My faith is in the unique abilities of human beings and
their magnificent minds. The idea of an artificial mind is
an absurdity in my worldview. By extension, I believe in the
ability of human beings to work together collaboratively and
cooperatively.

This ability requires humans willing to make the com-
mitment to be polymaths. If you want to be a god, as I was
taught, then you must come to know everything about every-
thing—and through experience, not just via books. The term

“modern polymath” was just coming into vogue in business
literature when I came to Cuba. It means that everyone, es-
pecially everyone on a development team, must be a broken
comb—with at least two deep areas of specialization (the ends
of the comb) and multiple areas of specialized ability in dif-
fering degrees (the broken teeth), all connected by the thick
backbone of the comb representing an ability to move among
specializations and weave together points from each into a
coherent whole. This whole can be communicated among all
those with similar expertise and experience profiles.

Yeah, 2015. That was the year I snapped.
Writer: Dave’s voice had been growing in volume and tim-

bre the last few minutes. He gazed about the table as if chal-
lenging those around him to challenge back. There was no
challenge, no obvious disagreement, just nodding heads. His
voice returned to normal as he closed out the evening’s tales.

West: You see, I am still angry, or maybe mad. I am cer-
tain my colleagues in the US would see me as such. Some of
my former students might not—I did have some influence.

My ideas are incompatible with software development as
it is advocated by the computing culture and mostly with
how it is practiced.

During the decade and a half that I argued on behalf of
object ideas, an increasing amount of that time focused on
why everyone was doing everything wrong. The objects of
UML had nothing to do with objects as envisioned by Alan
Kay and his contemporaries. Object decomposition and de-
sign (based on understanding and distributing behavior) was
essential; OO programming (based on UML-defined data
structures and algorithmic methods) was irrelevant! Similarly
with Agile: telling people that they completely misunderstood
Agile as a method instead of a culture and stories as computer
requirements instead of domain narrative was not popular.

Mine was a contrary interpretation of contrarian ideas.

276

drift. Also, even the most complex of systems can be boringly
predictable. It was once said that with the data on cell phones
and social media sites you could predict within 2 meters the
exact location of a human being 24 hours in advance. This
does not make that human a deterministic system, just really
boring and habit driven.

Anyway, given the assumption that you can create an artifi-
cial human, you go about gathering requirements—hundreds
of thousands of discrete requirements. Many have overlap-
ping variables. You have posed yourself a math problem—the
simultaneous solution of hundreds of thousand of discrete
equations.

However difficult solving those simultaneous equations
might be, they are, in principle, solvable; which brings you
to design. Other than some kind of bio-memetic metaphor to
identify subsystems and architecture, you have little to sug-
gest a way forward. You face a blank sheet of paper and must
sketch out a design. Further, it must be a design that you can
commit to at the beginning of your effort and by which you
will be bound until the culmination of your work.

It takes a lot of hubris to think you can build an artificial
human this way—hubris driven by the obvious successes
arising from the computing culture. Our world would not
be what it is today were it not for the ability of those in the
computing culture to build very large, very complicated, de-
terministic systems.

An alternative approach to the better-human problem is to
take the existing human being and intervene. The first step
is to understand that system as it is; an understanding that
is incomplete, often contradictory, and both uncertain and
ambiguous. This sets a tone, like the semi-apocryphal idea
that a physician must “first do no harm.” You proceed incre-
mentally and with great care.

You use tools, like Christopher Alexander’s first notion of
patterns (in Notes on the Synthesis of Form), or the behavior-
driven object identification approach, to isolate subsystems
and system elements—where interactions among involved
forces are cohesive and lightly coupled with forces outside
of that subsystem or element.

Then you make “the smallest possible change that will work”
to the system, to paraphrase Ward Cunningham. No change
can be irrevocable—if it fails you must be able to reverse
course. If it has unexpected and undesirable consequences,
you expand your knowledge of the system, and try again. If
change renders something you did irrelevant, you simply
throw that thing away and replace it. The idea is never to in-
vest too much time and energy into making big alterations
to the system, because change is inevitable and you might
need to take different directions.

You treat the human as the living system it is, as highly
dynamic and complex. Biological systems are not the only
living systems. A business enterprise is such a system—busi-
ness professionals have themselves adopted this view of their
world. That is why they use the vocabulary and metaphors

But, tomorrow you will see for yourself. We meet at my
home; we work with others in the studio.

4. Living System Design

Writer: I arrived at Dave’s Malecon home promptly at 8:00
AM. He and Estrelita were on a small balcony on the third floor.
He motioned me up. Passing the first two floors, I witnessed
an abundance of activity, most of it the “olas,” unpacking, and
friendly updating that takes place among any group arriving
for work or school. A few groups were already standing at
whiteboards or gathered around computer terminals—this
was a software development facility.

Estrelita met me at the door to the third-floor apartment.
She was professionally dressed and handed me a cup of cof-
fee while gesturing the way to the patio.

West: Buenos Dias! Buenos Dias. Come, sit, and enjoy the
coffee. I wish to tell you one more thing, give you a metaphor
that you can use to frame what you see today.

Consider a human being. It’s a complex system, densely
interconnected, highly dynamic, and constantly changing,
evolving. Unlike the twinkling Little Star, a typical human
being is often less than optimal, always it can use some im-
provements, some corrections. This is your task—make a
better human being.

For those in the computing culture this is a daunting task.
For them, a human is nothing more than a vastly compli-
cated machine and their task is taken to be the creation of
an artificial human; something built from electronic circuits
and mechanical (perhaps in some instances including dis-
crete bits of biological) stuff operating according to laws—of
physics, math, and logic.

They are being true to the ideas of Herbert Simon who
in his Sciences of the Artificial asserted that self-organizing
complex systems with emergent properties are simply not-
yet-understood, deterministic systems.

Years back, a group from the Software Engineering Insti-
tute did a study for the US government on Ultra-Large Scale
systems. They described such systems as qualitatively differ-
ent from the systems with which computer science (CS) was
familiar and with which CS has had so much success. The
initial—almost knee-jerk—reaction of some traditional com-
puter science faculty was to deny this qualitative difference
and instead treat ULS as systems of systems, all of which were
deterministic (technically, top level systems are only statisti-
cally deterministic). Later, this work was assimilated into CS
dogma, at first by explaining that the “internet of things” was
indeed different from systems of systems, but only because
those pesky things interacted with the unpredictable world,
and so broke the fiction of determinism.

I should note here that even the most deterministic sys-
tem has uncertainty and is not, except in principle, totally
predictable. There are stray cosmic rays disturbing random
bits and creating unexpected consequences; aging and decay,

277

of complex systems, self-organization, agent-based modeling,
change (even chaos), learning, culture, and design as they
struggle with their concerns and their objectives.

We joke about computer scientists and software engineers
being experts at building and modifying “dead” systems. We
mean deterministic and mechanical systems. In contrast we
talk about our systems as living and use the label of “Living
Systems Design” as our umbrella concept.

Come let me show you.
Writer: We went down a floor and a half. It acted as a kind

of stage, a place where one could be seen and heard by those
everywhere else in the building.

West: Ola my friends; buenas dias. As you know, we have a
guest who is very curious about you, what you are doing, and
why you are doing it. Please do not stop what you are doing,
but forgive us if, as we move among you, we stop and interrupt
you for a bit. We have many questions, but you have much
knowledge, so please share it with us without reservation.

Writer: As we moved from the dais to the first floor, Dave set
the scene and explained a bit more about what we were to see.

West: This is both a school, in a sense, and a development
shop. Everyone you see is working, for wages, on work done
on behalf of our client companies. When an individual is
ready, they leave and immediately start work for one of those
companies or others that are eager to hire them. I am pleased
to say that an increasing number of those who leave start
their own businesses based on ideas begun within these walls.

We have no curriculum, but we have a very broad un-
derstanding of what a person should be able to do and how
they should be able to communicate and work cooperatively.
When it is necessary to learn a bit of knowledge, that bit is
provided, taking care to connect it to the work that is being
done and to other bits that provide context and lead to deeper
understanding.

Writer: Stopping at a group in animated discussion, Dave
asked what they were working on. One young man answered:

“We are working with the Clinique Français, replacing the in-
formation system they brought with them from France. Today
we are talking about our approach. Carmen, please explain.”

Carmen: Our goal is comprehensive change—changing the
existing Clinique into a transformed Clinique—as a whole
system. We are guided by the metaphor of biological evolu-
tion tempered by the fact that culture is the evolutionary
device and mechanism that allows for change at other than
the glacially slow pace of biology.

We also ground our work in Naur’s idea of theory build-
ing and the fact that theory exists only in the minds of those
who participate in its creation. Because we are transforming
the Clinique as a whole, everyone involved must participate
in the construction of the theory.

Our theory must be of the Clinique, as a complex system,
and not just the information system, which is but one ele-
ment of Clinique.

We must identify all the elements making up the system,
model them, and understand how and why they interact
and what contribution each makes to the system as a whole.

Years ago, Professor Dave taught that the best way to de-
compose a system was by recognizing the behavior, the re-
sponsibilities of the objects (elements) that make up that sys-
tem. We talk of “contribution” but mean what the professor
meant as responsibility.

Only after we understand the system will we be in a posi-
tion to decide whether any given element or subsystem-as-
element might be better constructed as an artificial object, a
computer application.

West: Excuse the interruption, but when are you going to
start writing code? Are you planning to spend lots of upfront
time designing and planning?

Carmen: Not at all! We are doing something that was never
talked about in software development as we have read about
it. We are engaged in understanding the domain—the Cli-
nique as a system—and making sure our understanding is
the same as those directly involved in the Clinique.

Our first step is simply to present to our clients the tools
and techniques and ideas that will facilitate our theory de-
velopment. Theory building is continuous. We will identify
possible software bits early and often, implement them, and
test how they conform to or modify our theory. It is possible
that we will write code this afternoon.

Writer: As we moved across the floor, Dave shared an aside.
West: Back in the late 1990s, a group of frustrated Small-

talk programmers, survivors of the infamous “Project Death
Marches” documented by Ed Yourdon, and those perplexed
with how UML became a de facto standard, staged a revolt.

Kent Beck’s eXtreme Programming was the first noticeable
voice; soon joined by a whole choir. All of them asserting,

“We know what we are doing, we know how to do it, we are
professionals, just let us alone and we will give you what you
need!” The Agile movement was born.

Much of what you see in our studio reflects the early ideas
of XP: the open space, the self-organized teams, informa-
tion radiators, the whole team, and stories—all can be seen
everywhere you turn. All with an important difference—we
do not compromise those ideas, as happened in the US. The
same is true with our use of objects.

What that means, of course, is almost everyone here fol-
lows my interpretation of all of these practices. Although I
am certain of the correctness and the value of what I have
taught here, most of those reading your reportage of our con-
versations will vehemently disagree.

Writer: We arrived at another group.
West: Here we have one of the few so-called “projects” in

our studio. We normally do not do projects—isolated and
time boxed development work—nor do we send our people to
organizations that do not share our antipathy to “the project.”

Miguel, can you describe what you are doing?

278

Miguel: We are working on an email system under the
sponsorship of HaCom, our local phone and ISP provider.

We began our work with a return to metaphor and under-
standing how a guiding metaphor, what Beck called a “System
Metaphor,” can influence the design of a product.

Most email systems are grounded in the metaphor of a
post office—mail comes into a central office and is then dis-
tributed to individual box holders. They, in turn, retrieve
the mail, open, read or discard it. If they want to reply they
send their own message to a central location for distribution.

Terabytes of data streams around the Internet hourly. Which
would be OK except that 70%–80% is junk—unwanted, un-
invited, and often malicious.

We are basing our system on the metaphor of a rural mail-
box—something remote from your home or business—that
you visit only when the “flag is up.” This metaphor led us to
a design that could have existed in the very early days of the
Internet but was not pursued because of the latency required
for mail retrieval on modems.

You compose mail and store it on your own server, your
desktop, or mobile. You can then send a notice of availability
to whomever you wish, but this notice is restricted to a short
descriptive subject line and a link to the email.

This drastically reduces the flow of bits across the network.
Only mail that someone wants to read actually makes the
journey from origin to destination.

Right now we are working on how to make it impossible
to spoof your server id, location, and ownership. If we suc-
ceed we might have a mechanism for eliminating spam. We
are hoping to solve some of the technical problems encoun-
tered by the IETF in 2003 in order to address spam and other
related issues like the spoofing I mentioned, but we are not
there yet. Because so few will respond to a notice—far less
than the miniscule number that actually respond to soliciting
email—it will no longer be economical. Second, everyone will
know where the notices are coming from, and even they can
be blocked. If there is fraud or other illegality, the authorities
have a paper trail and evidence for court.

Writer: We moved to the second floor, a wide balcony
with a central open space atrium, skylights above, a view of
the mezzanine stage area and the first floor below. Several
large flags or draperies with symbols and vivid colors hung
from the second floor ceiling as well as the railing separating
floors one and two. Noticing where I was looking, Dave said,

“team identification and solidarity—also sound dampening.”
Almost half of the second floor seemed to be occupied by

a single team. As we approached, a spokesperson stood to
greet us.

Spokesman: Hello, welcome to team Leopard. Here we
work for several companies around town: a medical firm, a
retail store, a cigar manufacturer, and an export company.

Our group consists of those you see in this room and an
equal number in our client companies—about evenly divided
between those with a development focus and a business fo-

cus. The larger group is divided into teams, about five people
each team, and we work on overlapping iteration cycles so
every day at least one team completes a cycle and takes on
new work. This means that no unit of work waits more than
a day or two before it moves from proposal to development
and no more than three weeks from proposal to deployment.

 People are constantly moving from team to team and from
studio to client site. Sometimes we see movement among cli-
ent sites as well. All of this is in support of a common shared
theory of the system we address and modify.

Our work is story driven. A story is a narrative, rich with
context, characters, plot, and props. We tell stories to articu-
late and share our understanding of a complex system—to
communicate our consensual theory of that system.

Our story telling is loosely based on the model provided
by Elizabeth Kostova in her novel, The Historian. The story
of a young girl in search of her mother develops via the tell-
ing of discrete stories, at various levels of nesting and hence
detail, each story explaining one character, one action, one
motive, etc.

When a story becomes sufficiently focused, usually two to
three levels deep in the nesting, and we believe it will take
no more than five people working three weeks to implement
and deploy, then it becomes a unit of work. The vast majority
of stories can be implemented and deployed in a day or two,
so each team will spend an iteration implementing multiple
stories. Here are some examples:

The way we handle product returns is all wrong. (1)
We should have the customer take their items directly
to the department where they bought them and have a
salesperson take care of the return using a cell phone
or tablet app. First, the salesperson would (2) identify
that the item came from our store and (3) ascertain
the reason for the return. Depending on the reason,
different actions can be taken: defective (offer (4) re-
placement, (5) credit, or (6) refund); don’t want (offer
credit or refund); wrong size (7) make an exchange),
(8) etc. The goal should always be to turn the refund
action into a sales opportunity.

Stories can be nested in several levels. Here are the stories
within the one above, and stories a level below that.

1. policy / procedure story, no software required
2. identify item—use your knowledge of merchandise,

labels and tags, receipt information, or an (a) inven-
tory lookup capability, to confirm the item was sold
by our store or another store in our company.

Writer: He listed many stories. It was clear he was enthu-
siastic about them. He continued.

Spokesman: The stories in our example constitute a thread—
a collection of stories sharing the same context and related to

279

the same objective. Threading does not determine the order
in which stories are addressed or implemented. The thread
simply provides context. Each actionable story is assigned a
priority—a fraud detection story might have a higher prior-
ity than every other story and need to be implemented even
before the return process is moved to departments and away
from the return desk.

Over here, on these screens, you can observe our workflow.
Please notice the absence of anything resembling a project.
The center screen collects and displays, in real time, all the
stories generated by individuals or teams in our client com-
panies. The only organizing device is some color coding to
identify the client company and priority, with more urgent
stories at the top of the screen.

The other stories track movement, from selection by a team
to deployment. Each team has its own screen.

Note that we use card images—faithful to the physical 3x5
advocated by Kent Beck.

The screens on this wall are replicated at several points
in each of our client organizations. The purpose is to keep
everyone involved and aware of the evolving theory. It also
sparks ideas for new stories. The purpose is to continually
build a culture of empowerment, change awareness, and design
thinking—by making everything transparent and ubiquitous.

We also design our software to be runtime modifiable—like
using indexed collections to store descriptive data instead of
object variables with getter and setter methods. If the descrip-
tion changes we can increase, decrease, or alter the contents
of the collection without reprogramming the object.

Some things you might notice by their absence are archi-
tecture and testing. The system is our architecture. None
of our software objects are sufficiently complicated or large
enough to warrant much in the way of formal testing. We can
implement—write the code that realizes the story— in 100
lines, or less, of pretty simple code. The real trick is design
and relying on actionable stories as a unit of work.

Writer: We continued our visits with teams in the studio for
most of the day. We joined teams for lunch and I listened to
many instances of “Professor West told us…” as people tried
to explain what I was seeing and how it worked. Surprisingly,
nothing I heard was revolutionary. I had two last questions for
Dave when we retired to his apartment at 5:00, when every-
one was leaving the building, satisfied with their day’s work.

We were enjoying a pre-dinner mojito on his terrace and
not the Bodequita, which would have been full circle.

Writer: “Why does everything I heard today sound so nor-
mal? So unsurprising?”

West: Probably because none of it is new. I am certain you
have heard it all before; after all coupling and cohesion have
been concepts since the 60s, objects since the 80s, and agile
since 2000. All of these ideas, these techniques, have been
talked about over and over again.

All I did was take them seriously, try to understand the
truth—the mystical true nature behind each concept. Then I

sought to link them to other things I knew and other ideas—
often far from computer science—that I had encountered. I
noticed connections, like the similarity between Alexander’s
decomposition approach based on cohesion and coupling of
resolved forces to yield diagrams (later called “patterns” and
the almost indistinguishable form of behavior/responsibility-
driven objects.

I read widely. When I moved to Cuba I had over 7,000 books
in my library. I had an open mind and refused to adopt any
label or any believer’s mentality.

In the classroom I was far more interested in having my
ideas challenged, especially by those with real experience, than
in promulgating doctrine and having it parroted back to me.

I was, and am, an outlier. It did not help that, before Cuba,
I had no existence proof of what I believed. Sure, I had suc-
cesses and was able to get teams to function as Agile, or de-
signs to reflect object advantages—but they were small scale
and not widely known. Why should anyone listen to me?

Writer: “But people in Cuba listened. Why?”
West: They were a profession starved for ideas, having been

deliberately excluded because of the Embargo and, it must
be said, the suspicions of a beleaguered Cuban government.

It was probably the only time in my life when being a long-
haired, bearded, Harley-riding radical actually stood to my
advantage. I was American, yes, but certainly not a represen-
tative of the established government. So they listened to me.

When I was here in ’94, I was able to plant a few seeds with
objects. What I left here was an idea of objects, the responsibil-
ity or behavior-driven approach that was already a minority,
almost inaudible, voice in the software profession. It worked
for them—in part because they had no legacy systems, like
relational databases with their antithetical model of reality,
to distract them. Nor anyone who followed me to “correct
the erroneous impression I had left behind.”

When I returned in 2015, there was still a vacuum that I
was happy to occupy. It was my good fortune that the Uni-
versity of Havana and the Polytechnic were the most presti-
gious schools in Cuba, so my ideas spread rapidly. It was at
least a year or two before others came to Cuba to contradict
me, but by then it was too late.

Writer: “Will you ever be accepted back home?”
West: Cuba is my home. But will I be accepted in the US

and the wider industrial world? Probably not.
There is a book on the shelf over there on Taoist painting.

That style of painting was the result of meditation and deep
understanding of the mystery of life. It was based on empiri-
cal study and contemplative insights.

Guo Ruoxu (ca. 1041–1098) was the most influential art critic
in eleventh century China. Committed to a formal “science”
of painting, he dismissed Daoist practitioners:

At the beginning of the [present] dynasty there was
a Daoist adept, Lu Xizhen, whose every painting of a
flower on a wall would attract bees. Aren’t such peo-

280

ple [who paint a flower on a wall to attract swarming
bees] the same who gain merit by bewildering people,
and find fame by confusing the practice of art? As for
rustics climbing a wall and beautiful women drop-
ping from a parapet, the dazzle of the five colors in the
midst of water, and the ascent of twin dragons beyond
the mists—all are the products of sorcery, fantastic lies
without any relation to the laws of painting. None such,
in consequence, is recorded here.

I fear I am but a Taoist software developer without stand-
ing. There are many who will dismiss whatever I have said—
whatever influence I have had, any successes of the Cuban
software movement—as “products of sorcery, fantastic lies,
without any relationship to the laws of development.” I doubt
that I will cross the threshold and be “recorded here.”

Writer: With those sad words I took my leave. I returned
to the Bodequita, alone this time, drank the obligatory mo-
jito, and before I left, I wrote my name and year on the wall,
down near the baseboard where a miniscule space remained.

t

I will write my article and it will be published. I can envi-
sion what the response will be.

Dave once said that the only way his ideas would prevail
is if the Cuban software industry were so successful that it
escaped the limited realm of Central and South America
and became adopted across the world. And even that might
not be enough, because then the world would co-opt, dilute,
and re-purpose all that he had said. The issue is really one
of cultural change, and history suggests that few cultures
change willingly but often by conquest. So, if Cuba were so
successful that the IT industry in the rest of the world utterly
failed to compete, then the prevailing culture would change.

Dave’s story—the way he tells it—flies in the face of every-
thing we’ve known to be true about programming since the
early 1970s: the progress of computer science as a science and
software engineering as engineering will eventually solve
most or all our software-related problems, just give it time.

The way he tells his story reveals biases—the golden age of
programming for him was the 1960s, and Cuba sat arrested
in time from those 1960s until he arrived in 2015, when his
hippie fantasy could resume. Like Christopher Alexander,
his motto could be “the grass was always greener yesterday.”

His own words reveal his megalomania and conviction
that only he is right.

Cuba was a fluke, in the sense that it was in stasis until his
arrival and there was a void that he was able to fill. He did
not have to change anyone’s mind or overcome decades of
propaganda with its resulting embedded cultural mind-set.
Those circumstances cannot and will not be repeatable else-
where. From what I have read the early days of both objects

and Agile were characterized by amazing success stories but
over time the impact of both was minimal.

I won’t need to slant my article; it’ll be clear to everyone—
right or wrong, Dave is simply crazy.

5. Afterword

An interview offers little opportunity to collect detailed
footnotes but readers immediately asked for references for
the things Dave was asserting, so I am doing my best to pro-
vide some additional information.

Early on, Dave mentioned some ideas of Hans George Ga-
damer. These came from Truth and Method, published by
Crossroads in New York, 1982.

The quote of John von Neumann’s remarks to the 1947 ACM
conference is cited in “Archaeology of computers: Reminis-
cences, 1945–1947,” Communications of the ACM, volume 15,
issue 7, July 1972, special issue: Twenty-fifth anniversary of
the Association for Computing Machinery, p. 694.

Clifford Geertz discusses his notion of “thick description”—
based on the philosophy of Gilbert Ryle—in his book The
Interpretation of Culture: Selected Essays. Basic Books, 1973.

The quote about scientific management view of workers as
“lazy…” is usually attributed to Frederick Taylor, one of the
primary founders of scientific management. I could not find
a specific instance of exactly that quote, but it would be easy
to infer from his comments about “soldiering”—the notion
that workers deliberately mislead management by obfuscat-
ing their work and taking more time than necessary, his as-
sertion that only management had the ability to plan and
direct work, and that workers need to be microcontrolled
with no room for individual initiative if tasks were ever to
be accomplished efficiently and profitably.

 Three contrarian viewpoints were cited in the text: D. C.
Parnas and P. C. Clemens, “Rationale Design Process: how
and why to fake it,” IEEE Transactions on Software Engineer-
ing, 12:2. Feb 1986, pp. 251–257; Peter Naur, “Programming
as Theory Building,” chapter 1.4 in Computing: A Human
Activity, New York: ACM Press, 1992; and Christiane Floyd,
Reinhard Budde, and Heinz Zullighoven, Software Develop-
ment as Reality Construction, Springer-Verlag, 1992.

West claims he wrote the book chapter “User Stories”—in
Ian Alexander and Neil Maiden, User Stories in Agile Develop-
ment, London: John Wiley and Sons, 2004. Kent Beck is listed
as co-author, but according to Dave, he made one suggestion
for the text, adding a paragraph that emphasized the intent
to redefine the relationship between user and developer to
one of cooperation instead of adversarial. Beck did not even
make edits to the text that Dave wrote.

The quote of Guo Ruoxu came from Shihshan Susan Huang,
Picturing the True Form: Daoist Visual Culture in Ancient
China. Cambridge, MA: Harvard University Asia Center
(Harvard East Asian Monographs), 2015.

281

