Concurrency Annotations

Klaus-Peter Lohr
Institut fir Informatik, Freie Universitit Berlin
Nestorstrafie 8-9, W-1000 Berlin 31, Germany
lohr@inf.fu-berlin.de

Abstract

Widespread acceptance of concurrent object-
oriented programming in the field can only be ex-
pected if smooth integration with sequential pro-
gramming is achieved. This means that a common
language base has to be used, where the concurrent
syntax differs as little as possible from the sequen-
tial one but is associated with a "natural” concurrent
semantics that makes library support for concurren-
cy superfluous. In addition, not only should sequen-
tial classes be reusable in a concurrent context, but
concurrent classes should also be reusable in a
sequential context. It is suggested that concurrency
annotations be inserted into otherwise sequential
code. They are ignored by a sequential compiler,
but a compiler for the extended concurrent language
will recognize them and generate the appropriate
concurrent code. The concurrent version of the
language supports active and concurrent objects and
favours a declarative approach to synchronization
and locking which solves typical concurrency prob-
lems in an easier and more readable way than previ-
ous approaches. Concurrency annotations are intro-
duced using Eiffel as the sequential base.

Key words

Concurrent object-oriented programming, reusable
concurrent code, concurrency annotations, Eiffel,
CEiffel

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1992 ACM 0-89791-539-9/92/0010/0327...$1.50

1 Introduction

Existing approaches to concurrent object-oriented
programming suffer from several weaknesses:

1. Concurrency and synchronization do not blend
well with inheritance.

2. Concurrency features (language construcls
and/or library classes) are too low-level, stick-
ing with traditional notions such as proccsses
and inter-process communication.

3. Concurrent code is not reusable in a sequential
setting although syntax and semantics often
come close to a scquential variant. Vice versa,
although sequential code often lends itself to a
natural concurrent interpretation, this is usually
not exploited.

3. is particularly annoying because it hampers con-
current software engineering, especially code reuse
across the boundary between sequentiality and con-
currency. This problem is present cven with
languages that are extensions of sequential

languages, such as Concurrent Smalltalk
[Yokote/Tokoro 87} or Concurrent C++
[Gehani/Roome 88].

Seen from the soltware engineering point of view, it
would be attractive (o take an integrated approach
to the development of both scquential and con-
current object-oricnted soltware: use one language
which allows for both a sequential and a concurrent
interpretation, depending on the compiler (or com-
pilation switch) being used. Ideally, the scquential
semantics of a piece of code should come "reason-
ably close" to its concurrent semantics.

OOPSLA’92, pp. 327-340

327

Our goal is approximation, if not attainment, of this
ideal. In particular, it is important that the con-
current semantics blend well with inheritance, as a
key to reuse. According to the terminology sug-
gested in [Papathomas/Nierstrasz 91}, the approach
reported here is heterogeneous and supports cor-
current objects and proxies: i.e., objects may be ac-
tive, may be threaded, may synchronize incoming
requests and may support asynchronous service exe-
cution. Two languages known for similar properties
are SINA [Tripathi/Aksit 88] [Aksit et al. 91] and
ACT++ [Kafura/Lee 90]. The emphasis here, how-
ever, is less on concurrent language design and
more on a common language framework accomo-
dating both sequentiality and concurrency.

Our approach does not hinge on a particular
language. Obviously, though, not all languages are
equally well suited. We have chosen Eiffel [Meyer
88] as our experimentation vehicle, for reasons that
will become evident below. Examples will be
based on version 3 of the language [Meyer 92].

Eiffel has been used as the basis for concurrent pro-
gramming before. A system called Eiffel//
[Caromel 90] uses a slightly modified compiler and
a library class PROCESS; concurrent objects are
not allowed. Another system [Colin/Geib 91] relies
completely on library classes; it is more flexible,
but at the expense of cumbersome programming
and poor reusability. A considerably modified ver-
sion of Eiffel, called Distributed Eiffel, is described
in [Gunaseelan/LeBlanc 91].

The system described here relies heavily on annota-
tions to be inserted into otherwise sequential Eiftel
text. These “"concurrency annotations” have the
form of Eiffel comments which are ignored by the
(sequential) Eiffel compiler. They become
significant, however, when interpreted by a com-
piler supporting a concurrent semantics. In addi-
tion, the concurrent interpretation of a given pro-
gram text may be slightly different from the sequen-
tial interpretation even if no annotation is directly
involved. The annotated version of the language is
called CFEiffel.

Sections 2 and 3 motivate and describe the con-

currency annotations, their interdependence and
their interplay with inheritance. Delayed execution
of operations on objects and its relation 10 excep-
tions is the subject of section 4. Contention on ac-
cess to objects raises scheduling questions, 10 be
discussed in section 5. Our work on concurrent
object-oriented programming is part of a larger ef-
fort to support the distributed execution of object-
oriented programs in heterogeneous environments
(project HERON). This contcxt and the status of
the project will be described in section 6. Com-
parison with retated work can be found throughout
the paper. For an overview on current trends in
concurrent object-oriented programming see
[Papathomas/Nierstrasz 91] and [Agha ct al. 91].

2 Inter-object concurrency

Before turning to Eilfel we introduce an informal
object model together with some basic terminology,
trying to capture most of the commonly used no-
tions for object-oriented concurrency while avoid-
ing any bias towards a specific language.

2.1 Operations, activities and active objects

Each class has a set of operations: they define pos-
sible state transitions ol any given object of that
class from onc abstract state to another; they also
provide for information flow between the object and
its environment. How this is accomplished depends
on the representation (the concrete state) and is
described by the code of the class. For the present
discussion we do not distinguish between "class”
and "type". Remember, however, that the notions of
inheritance and subtyping are not identical [Cook ct
al. 90] [America/van der Linden 90)]
{LaLonde/Pugh 91]. It should also be kept in mind
that it is crucial for the development process not
only to distinguish between a class and its signature,
but also to clearly identity its specification.

An activation of an operation is called an activity.
At any given time, an object is cither idle, i.c., with
no current activity, or busy, i.c., there is one activity

328

or multiple concurrent activities. Note that con-
current activities of an object may have a combined
effect that cannot be achieved by any serial execu-
tion of those activities. If a class imposes no restric-
tions on multiple activities for its objects, it is
called a concurrent class; an object of that class is
called a concurrent object. If multiple activities are
not allowed the class is called atomic (and so are
the objects).

An activity starts when a corresponding request has
arrived and is accepted by the object. An atomic ob-
ject will accept a request only when it is idle. We
can think of two ways of how requests are generat-
ed:

1. A request is issued by another object through
operation invocation. The originator of the in-
vocation is called the client of that invocation,
the invoked object is called the server.

. An autonomous operation issues a request for
itself as soon as the object has been created
and initialized. When the activity terminates
the request is re-issued. An autonomous
operation has an empty signature. A class or
an object that has autonomous operations is
also called autonomous.

A request that has been issued but not accepted yet
is said to be pending. When an activity terminates
it generates a reply (if the operation has no result,

the reply carries no value)!.

Invocation raises the issue of how the client activity
and the server activity are related. Sequential se-
mantics postulates nested execution: after having
generated the request the client activity waits for the
reply. But in a concurrent environment the clicnt
may also be allowed to proceed after the acceptance
- or even immediately after the invocation - and t©
synchronize with the reply later, if necessary. This
is commonly known as client/server asynchrony. 1f
asynchrony is declared a property of the operation
(as opposed to being caused by the client), the
operation is called asynchronous, as is 1he

! 'We exclude the possibility of sending a reply be-
fore termination, for reasons to be explained later.

329

corresponding class and its objects. Note that a
class/object can be both autonomous and asynchro-
nous.

An object that is autonomous or asynchronous is
catled an active object; the others are called passive.
Active objects are sources of a varying number of
concurrently executing activities in a running sys-
tem. Note that we treat passiveness vs. activeness
on the one hand and atomicity vs. non-atomicity on
the other hand as indcpendent issues (in contrast o
other approaches known from literature). Non-
atomicity means intra-object concurrency whereas
activeness causes inter-object concurrency. We
avoid notions like "process” or "thread" and defer
the question of how to implement active objects un-
til later.

There are ways to simulate autonomy by asynchro-
ny, but it is not natural to do so, especially when in-
heritance is involved. Autonomy makes it possible
10 model autonomous entitics which need not be
triggered from the outside in order 10 become ac-
tive. Asynchrony is mainly used to achicve speed-
up, which of course depends on the parallel exceu-
tion abilities of the underlying system architecture.
Autonomy causes fiorizontal concurrency whereas
asynchrony causes vertical concurrency (within a
functional hicrarchy).

2.2 Asynchrony

In Eiffel an operation-is represented by an exported
feature, i.e., a routine or an attribute. Functions and
attributes deliver results, procedures do not. The
two classes involved in a client/server refationship
between objects are called client class and supplicr
class.
nomous or asynchronous opcrations, and conse-
quently no active objects.

As Eiffel is sequential, there are no auto-

An obvious way te interpret Eiffel code as con-
current code is to consider all exported routines
asynchronous and 1o use lazy synchronizafion: upon
invocation of a function a result is returned immedi-
ately, but this result is just a proxy for the expected
reply; later on, the first operation on that proxy im-

plies a synchronization with the delivery of the real
result upon termination of the corresponding activi-
ty. Similar techniques are known from other
languages [Papathomas/Nierstrasz 91]; Eiffel// uses
the term wait-by-necessity [Caromel 90].

Now while it is certainly possible to write meaning-
ful concurrent programs in such a variant of the
language, serious objections remain. First, due to
the rather fine-grained concurrency caused by a
plentitude of small routines, efficiency will most
likely be so poor as to defeat the very purpose of in-
troducing concurrency in the first place. Secondly,
and at least as important, writing programs that
behave correctly under the concurrent interpretation
will not be easy. The programmer has to be very
careful to avoid unplanned interference between the
concurrent activities. Such interference looms
everywhere, even if the system does not contain
concurrent objects. The innocent-looking code

r := server.computel(y);--async.--
compute2 (z);

r.p; -- synchronization --

r.q;

may have weird effects if server or vy are in-
volved in compute2. The most important point,
however, is that the concurrent semantics of this
code may be so different from its sequential seman-
tics that we miss our goal - reuse across the
sequential/concurrent boundary. In Eiffel// asyn-
chrony is explicit: it is provided by PROCESS 0b-
jects only. Unfortunately, though, this ties asyn-
chrony to atomicity.

Rejecting implicit asynchrony for CEiffel, we at-
tach an asynchrony annotation to a routine that is to
be executed asynchronously under concurrent in-
terpretation. The annotation is written as a com-

ment --v-- which is ignored under scquential in-

terpretationz. The v may be read as a downward

arrow or as "vertical concurrency”. The following

2 We pretend that an Eiffel comment which starts
with -- also ends with --. This is nof so; it ends with
the line end. But observing this would force us o usc a
poor layout in the examples below.

example demonstrates the use of the annotation;

computel(y: T1l): T2 is --v--
do end; -- computel --

Both the class and the objects are said to be asyn-
chronous in this case. After an invocation of com-
putel the client proceeds immediately, even be-
fore the request is acccpted3. LLazy synchronization
is used in claiming the result, if any. - The annota-
tion is ignored in local calls of the routine (i.e., calls
from within the class).

Note that asynchrony is not just an implementation
property of an operation. The client must know
about asynchrony in order to avoid undesirable in-
terference with the asynchronous activity. Consider
the alternative approach where a client uscs 4 fork
operation for introducing ad-hoc asynchrony. This
leaves the client in control; but it is inappropriate in
those cases where client and server have to
cooperate (o achieve a common goal which means
that "interference” is mandatory rather than unwant-
ed. Besides, declaring operations asynchronous al-
lows for a more efficient implemientation than ad-
hoc forking. For these reasons asynchrony is intro-
duced as a property of an operation rather than the
effect of a fork operation. In any case, asynchrony
must be considercd part of the specification of a
class.

In the absence of interference, the asynchrony anno-
tation does not change the semantics of operation
invocation. This is also true for many kinds of
"weak interference” based on commutative opera-
tions on shared objects. As pointed out above, it
cannot be upheld for all cases of interference.

3 As opposed 1o a “synchronous send” or a
rendezvous-like interaction between client and server
this requires buffering of requests but is better suited for
distributed implementation (cf. scction 5).

2.3 Autonomy

There is no satisfying way of automatically identi-
fying autonomous operations under a concurrent se-
mantics. Viewing non-exported routines with an
empty signature as autonomous is about the closest
we can get. But this would sometimes force us (o
introduce dummy signatures and thus would also
hamper reuse of existing sequential classes.

Our choice for CEiffel is again using an annotation.
The autonomy annotation is written -->--. The
annotation can only be attached to a routine with an
empty signature, as in

ey
end; --

action is

do action --

Under concurrent interpretation, an autonomous
routine generates requests for itself as mentioned
under 2.1.2. If it is exported, additional requests
may be generated through invocation by clients
{which proceed immediately, as with an asynchro-

nous routine).

A class may feature several autonomous roulings.
Also, there may be both asynchronous routines and
autonomous routines. Each routine, however, is ei-
ther synchronous or asynchronous or autonomous.
Let us consider the example of a class Moving
which captures properties of moving bodies in two-
dimensional space; it might be used in a simple ani-
mation system. The velocity of a Moving object
can be "remotely controtled”. The given code ig-
nores the actual display programming and any
alignment with real time.

class Moving

creation create

feature interface -
position: Vector:

setVelocity (v: Vector) is

do velocity.set(v.x,v.y) end;

feature {} -- hidden --
velocity: Vector;
stepTime: Real;

331

step is -->--

do position.set
(position.x +
velocity.x*stepTime,
position.y +
velocity.y*stepTime) end;

Vector;

is

create(startingPoint:
timeUnit: Real)
require timeUnit > 0
do position startingPoint;
stepTime timeUnit end;
end -- Moving --

Note that Moving must be atomic (it is atomic
indeed, as explained in 3.1 below). If it were con-
current, overlapping setVelocity activities
could have nasty effects: concurrently setting the
velocity to (0, 1) and (1, 0) might produce the
velocity (0, 0) (depending on the implementation
of Vector).

Asynchronous and autonomous opcrations offer
scveral advantages over more traditional concepts
such as a "body" describing the lifclong behaviour
of an active object (as in Concurrent C++ and Eif-
fel//; sce also POOL [America 87) |[America §9]
and ABCL/1 [Yonczawa ct al. 87]). First, as a body
constitutes a permanent thread of control, con-
current activitics within an object are cither exclud-
ed or have to be created explicitly by the body (by a
mechanism similar to the detach in SINA).
Secondly, every request must be explicitly accepted
by the body (except if the body is omitted - but then
the object cannot be autonomous). This is not only
cumbersome for the programmer, it is incompatible
with multiple inheritance, because the body has (o
be redefined; even with simple inheritance,
redefinition is almost always required. A further
disadvantage is the fact that functional hicrarchies
of such objects are pronc o0 the same pitfalls as
known from nested monitors.

Autonomous opcerations do not suffer from these
problecms. Note that the semantics of an auto-
nomous opcration is not identical to that of a body
comtaining a corresponding loop. It is also
beneficial that asynchrony is not tied to the presence

of a body because asynchrony and atomicity are in-
dependent issues.

Consider a non-autonomous version of the class
Moving where step would be exported and the
steps of a moving object would have to be driven by
an external force. Such a class is easily upgraded
into an autonomous version. Vice versa, the auto-
nomous version is readily reusable in a sequential
environment.

Note that an autonomous class can be specified just
like a sequential class, only with additional men-
tioning of which operations are autonomous. A
client has to be aware that the server can undergo
spontaneous state changes, as if "dacmon" clients
causing these changes were present.

2.4 Asynchrony, autonomy and inheritance

Inheritance works for asynchronous and auto-
nomous routines as for any other feature. Let us
look at a simple example. Imagine a class Beep-
ing that captures the property "repeatedly generat-
ing a beep sound" where the beeping can be turned
off and on. A simple version is

class Beeping

creation create

feature interface
on(b: Boolean) is
do beepon := b end;

hidden -
Boolean;
Speaker;

feature {}
beepon:
sound:
beep is -->--
do if beepon then
sound.beep end end;
create(s: Speaker) is
require s /= Void
do sound s end;
end -- Beeping --

Now if we want to capture the propertics of objects

332

both moving and becping we can use muliiple in-
heritance. The resulting class has several synchro-
nous routings and two autonomous routines. By in-
troducing additional attributes we can design, say, a
class Mouse that captures the properties of a - still
rather abstract! - rodent:

class Mouse

inherit
Moving rename create

as mcreate end;
Beeping rename create

as bcreate end
creation create
feature

end -

.....

Feature adaptation (like renaming, redefinition,
changing the export status etc.) applies to asynchro-
nous and autonomous routines as to any other
feature. Redefinition and cffecting (of a deferred
function), collectively known as redeclaration,
deserve special mentioning. Changing the con-
currency properly in a redeclaration is allowed,
although rare. Typical cases are:

- A deferred routine carries no annotation, The
corresponding effective routine is marked
-—v--.

- An elfective routine is marked --v--. A ma-
jor reorganization of some features allows the
former routine to be redeclared as an attribute
(which never carricsa --v--).

Attaching a concurrency annotation to a deferred
routine is not prohibited, although it is of mere dec-
lamatory value. E.g., the asynchrony annotation
would specily that the routine has to cooperate with
the client, as mentioned in 2.2.

Note that an inherited routine can have different
concurrency properties in different heirs. E.g., let €
be a parent of A and B, with a deferred routine
op. A might declare op asynchronous while B
might not. Due to the polymorphism we cannot (ell
whether the call ¢.op (with ¢ of type C) will
generate a synchronous or an asynchronous activity.
Thus, the situation is safe only il A’s implementa-
tion of op is interference-free (2.2).

3 Intra-object concurrency

3.1 Compatibility

Under sequential interpretation all classes are de
facto atomic. This property should be maintained
under concurrent interpretation unless concurrency
is explicitly allowed. Declaring two operations
compatible allows them to be executed concurrent-
ly. Compatibility is declared by means of compati-
bility annotations attached to the
relevant routines. E.g., we might find the following
declarations in a class Queue written in CEiffel:

”...

enqueue (x: T) is--||dequeue, length--
do end;

dequeue: T is--|lenqueue, length--
do end;

length: Integer is--||--

do end;

Compatibility has nothing to do with the
specification of a class. The annotations express
that the class has been implemented in such a way
that a certain overlapping of activities (e.g., of an
enqueue activity and a dequeue aclivity) can
safely be allowed, i.e., does not violate the
specification of the class. Compatibility is always a
symmetric relation; redundant compatibility infor-
mation can be omitted in the annotations. If no
name is given in an annotation, the routine is com-
patible with itself and all other routines annotated in
this way. An operation implemented as an attribute
is "implicitly annotated" with --]|--. The explicit
--|l-- is typically used for read-only operations
which do not change the state of the object.

A finer granularity of the compatibility relation can
be achieved by interrelating requests rather than
operations. This takes the parameters into account,
asin

update(k: Key; d: Data) is
--|| update(x,y) if x/=Kk,
lookup (%) if x/=k -~

It causes more overhead but can increase the poten-
tial parallelism considerably and thus may be help-

333

ful on certain parallel architectures. The syntax of
an individual element in a compatibility annotation
is

Unqualificd_call | 1£ Expression |

As a central property of CEiffel, compatibility an-
notations are independent of asynchrony and auton-
omy annotations. E.g., we might add --v--tothe
declaration of engueue (although it is probably
not worth the effort, given the simplicity of the
operation). This implies the strict independence of
intra-object concurrency and inter-object concurren-
cy as postulated in 2.1.

A general compatibility annotation --||-- can be
attached to the class head; this is shorthand for ex-
pressing that everything is compatible, ic., the
class is concurrent. If no compatibility annotation
and no exported attributes are present, the class is
atomic. A class that is neither atomic nor fully con-
current is said to be semi-concurrent.

3.2 Controlled objects

Within one program, the annotations in a class are
observed or ignored on a per-object basis. Whether
an object is going to behave according to the
sequential or the concurrent interpretation of its
class is determined by the

control annotation -- ' —-

The annotation is attached to the declared type ol an
entity, as in

g: Queue[Message] ~--!--

It affects the creation of g, declaring that the ob-
jcct4 is 10 be controlled, i.e., that the annotations
are in effect. In addition to object-specific control-
ling, there is also class-specific controlling: --1--
can be attached to a class head; this causes all ob-
jects of that class to be controtled.

4 Note that if Queue is an "expanded type” the
creation is implicit and g denotes the object. It Queue
is not expanded, the object must be created explicitly and
q denotes a reference to the object.

If a class is not fully concurrent, the control annota-
tion causes a concurrency control scheme to take
effect. For our semi-concurrent Queue, appropri-
ate locking mechanisms are automatically built into
the object. If Queue were atomic, g would refer
to an atomic object (which is akin to a monitor or a
sequential process).

Locking in CEiffel is a generalization of read/write
locking as employed in Distributed Eiffel
{Gunaseelan/LeBlanc 91). When an atomic or
semi-concurrent object is busy, requests that are in-
compatible with existing activities remain pending
as defined in 2.1. As soon as the termination of an
activity causes requests to become eligible for ac-
ceptance a standard scheduling strategy applics:
pending requests are accepted in arrival order
(FCFS); for details see section 5.

Object-specific controlling is rare. Most objects of
user-defined classes are not controlled, in particular
the vast amount of sequentially used objects in a
program. Also note that there is not even a need to
control every object that is shared among con-
current activities. The usage pattern of a shared ob-
ject ultimately determines whether control is neces-
sary or not.

The basic classes Integer, Boolean ctc. are
atomic and controlled; this is implemented in
hardware (indivisible read/write operations). The
library classes Array[T] and String are
atomic but not controlled.

3.2 Compatibility and inheritance

The properties of an object are determined by its
class, but also by all ancestors of that class. Thus, il
inheritance is involved, the adjectives atomic or
concurrent do not necessarily carry over from a
class to its objects.

If class B inherits from class A, the text of B may
include compatibility annotations referring to inher-
ited routines. A redeclared routine may be annotat-
ed differently from the original. With muliiple in-
heritance, any routine inheriled {rom one parent is

334

compatible with any routine from any other parent
(unless we have repeated inheritance with sharing,
or deferred routines are involved).

Remember that all classes implicitly inherit from
the universal class Any. This class provides rou-
tines for cloning, copying and comparing objects;
reading of entire objects is involved here; copying
also involves writing. Reading an entire object is
compatible with itself and with all other operations
explicitly or implicitly annotated with --|
No compatibilities are declared for writing an cntire
object.

The compatibilities introduced by declaring an heir
concurrent (attaching --J|-- to its head) do in-
volve all inherited operations. Objects ol such a
class are fully concurrent, ic., there is no con-
currency control.

4 Guarded classes

4.1 Preconditions and delays

An operation with a non-empty precondition
represents a partial function with a domain charac-
terized by the precondition. A precondition can
state consistency requirements for parameters or
may restrict the states in which the operation can
meaningfully be executed; it may also involve both

parameters and state.

A violated precondition should raise an exception in
a sequential environment. For a shared object in 4
concurrent e¢nvironment, a precondition involving
the state should sometimes act as a guard rather
than a source of exceptions: an incoming request
should be delayed if, and as long as, the precondi-
tion is violated and can be satisfied by changing the
state. A delayed request is pending (as defined in
2.1) and cannot be accepted until the precondition is
satisficd. ‘The rationale for delaying is that i’ state
is involved the precondition might become satisfied
through the eflfects of other activities. O course,
there is no guarantee for this, and the issue has to be

studied in more detail. We will come back 1o this
in a moment.

A classical example is the finite queue. Overflow or
underflow of a sequential queue should raise an ex-
ception. But under concurrent interpretation, a
shared queue should act like a message buffer
where delays prevent overflows and underflows. A
generic Eiffel class Queue might look like this:

class Queue(T]
feature

enqueue (x: T) is

require length < maxlength
do end;
dequeue: T is
require length > 0
do end;

maxlength: Integer is ...;
Integer is

end;

length:
do

.....

This class has both a sequential and a concurrent in-
terpretation, the only difference being exceptions
vs. delays. Note that if we wanted to declare en-
queue (or even degueue) asynchronous we
could do so, but, as mentioned in 3.2, it is probably
not of much use.

Since the class is atomic, operations on a controlled
Queue object behave like conditional (better "de-
layed") critical regions and the object behaves like a
delayed monitor with standard scheduling: accept-
able requests are served in arrival order. In this
case, the favourable moment for re-cvaluating the
preconditions of delayed requests is when an activi-
ty terminates. We also use this technique for non-
atomic objects, for efficiency reasons. Remember
that the cost of reevaluation can be kept low by ap-
propriate compilation techniques [Schmid 76].

It should be kept in mind that in non-atomic objects
all the usual interference problems are compounded

335

by the fact that precondition evaluation may overlap
with other activities. This may even cause different
values to be observed for an attribute that is referred
to several times in a precondition. But also
remember that sensible non-atomic implementa-
tions of objects do exist and that highly parallel data
structures are an active research subject
[Herlihy/Wing 90] [Herlihy 90]. In fact, the above
Queue has a straightforward semi-concurrent im-
plementation as suggésted by the compatibility an-
notations in the example in 3.2.

Preconditions can favourably be used in conjunc-
tion with autonomous operations. Actually, they
are the primary means for controlling autonomous
operations. E.g., the autonomous operation beep
in the class Beeping is much better expressed as

class beep is -->--
require beepon
do sound.beep end

In some concurrent languages an aclivity can send a
reply before it terminates; this allows the client to
continue while some "postprocessing” is performed
by the server. Ada is an early example for this,
POOL is another one. We cannot support this be-
cause it is incompatible with the Eiffel style of re-
turning a result (by assignment to the predefined en-
tity Result). But we can easily simulate it by
splitting the operation into a replying operation and
a delayed autonomous operation. (Admittedly, this
amounts to misusing horizontal concurrency for
vertical concurrency, and it negatively affects reusa-
bility: the sequential interpretation is unusable
without a redefinition of the replying operation.)

A ypical cxample is a Repository object
resembling a cloak-room: items can be deposited in
exchange for a "ticket"; the item is actually
"stowed" after handing out the ticket. When pick-
ing up the item later, the ticket has to be presented
(and is invalidated).

class Repository[C]
feature
deposit(item: C): T is
require spaceAvailable
and place void
do place := item;
Result getTicket end;

stow is -->--
require place /= Void
do

-- stow contents of place --
place := Void end;

pickup(ticket: T): C is
require ticket.valid
do

hand out item and

invalidate ticket end;

For a shared Repository object it is obvious
that the preconditions of deposit and stow,
referring to the object’s state, must cause delays if
violated. It is equally obvious that violation of the
precondition of pickup must raise an exception.

4.2 Delays vs. exceptions and the delay annota-
tion

A problem arises with a private Repository ob-
ject: violation of the precondition of deposit
should raise an exception if not spaceAvail-
able or else should cause a delay if not
place=Void.

A similar problem occurs with a slightly different
version of Repository where not even autono-
my is involved:

deposit (item: C): T is
require spaceAvailable
do end;

.....

336

pickup(ticket: T): C is
require valid(ticket)
do end;

Tickets are not reused; a ticket is invalidated by the
very act of picking up (i.e., removing) the
corresponding item. The precondition of pickup
is state-dependent: the routine valid checks for
the presence of an item associated with the given
ticket. If this check fails, an e¢xception has to be
raised, regardless of whether the object is privale or
shared. So with a shared object deposit must
produce delays while pickup must produce ex-
ceptions - although both preconditions refer to the

state.

The examples demonstrate that the search for a
completely automatic decision for dclays vs. excep-
tions is futile. This motivates the introduction of a
delay annotation, writlten - -@--, which can be in-
scried between two assertion clauses in a precondi-
tion *. It divides the precondition into two parts, the
checker and the guard. The checker of an auto-
nomous routine must be empty. An object invoca-
tion that violates the precondition causes an ¢xcep-
tion if an assertion clause in the checker is violated;
otherwise, a delay occurs. A class that carries
guards is called a guarded class; its ohjects are
called guarded objects.

Several preconditions in the above examples have
to be annotated using --@-- . A variant of en-
gueue might read
enqueue (x: T) is
require x /= Void;
--@-- length < maxlength
..... end;

The precondition of the first version of the depo-
S1t operalion in Repository may he wrillen
cither

5 Remember that the keyword require is fol-
lowed by a sequence of asscrtion clauses separated by
semicolons which represent semi-strict "and then" opera-
tors.

--@-- spaceAvailable;
place Void

require

or

require spacedAvailable;
--@-- place = VvVoid

depending on the desired semantics.

4.3 Redeclared preconditions

Redeclaration of a routine may involve weakening
the precondition. If an inherited routine with
precondition

require Al;...;An
is redeclared with

require else Bl;...;Bm
the effective assertion for the routing is

Bl;...;Bm or else Al;...;An

If this assertion turns out to be violated, the request
is delayed if at least one of the disjuncts satisfies the
criterion for delaying given above.

As an example, consider a class that manages
printers of different types. There is a fast "stan-
dard" printer and a slow "special" printer that has
special capabilities (say, colour) but includes the
capabilities of the normal printer. An operation

get (needspecial: Boolean;
size: Integer): Printer is

asks for a printer which is chosen on the basis of
availability, capabilities and the size of the printing
job. The precondition is

require size > 0;
--@-- specialidle or standardidle;
needspecial implies
specialidle

If we want to accomodate a third printer, say a slow
standard printer, we use inheritance and redefine the
get routine. The precondition is weakened by

337

require elge size>0 and size<5000;
--@-- not needspecial and
thirdidle

Only size<=0 raises an exception, both with the
original and with the redeclared get.

S Scheduling

Pending requests raise the question of how the ac-
ceptance of requests is to be scheduled. The de-
fault scheduling strategy is basically FCFS: accept-
able requests are accepted in the order they were is-
sucd. This strategy prefers a pending request, as
soon 4s il becomes acceptable, over a new accept-
able request. It cannot, of course, prevent indefinite
delays.

We give a precise description of the default
scheduling strategy. Associated with every object
that is controlled or guarded (or both) is a request
list which at any time contains the pending requests
for that object. A pending request is much like a
variant record, with the operation corresponding to
the variant, the formal arguments (o the record
ficlds and the actual arguments to the actual record
components.

When a request arrives at an object it enters the re-
quest list. If the compatibilitics allow a correspond-
ing activity to be started, the activity is tentatively
started, evaluating the checker. If the checker is not
satisfied, the request is removed from the request
list, the activity is aborted and an exception is
raised. In any case, the client is allowed to contin-
ue. Then the guard is checked. If it is satisfied, the
request is removed from the request list and the ac-
tivity continues (acceptance); if not, the activity is
aborted and the request remains pending (delay).
When an aclivity terminates, the pending requests
are scanned in arrival order, and each request is
treated just as described for an arriving request.
The following pseudo-code gives a slightly more
precise description. Activations of request
arrival and activity termination are
executed under mutual exclusion.

request arrival:
enter request list; check
activity termination:
for each pending request (FCFS)
do check

check:,
if compatible then

if checker ok then
if guard ok then
remove from request list;
accept end

else remove from reguest list;
raise exception end end

If non-FCFS scheduling is required it must be pro-
grammed explicitly. This task can be alleviated
considerably by special language support which by
its very nature leaves the realm of a sequential pro-
gramming language. Annotations cannot do the job
any more. We take an approach that is based on
read-only access to the request list. This allows to
refer to pending requests either in preconditions or
in special scheduling routines and blends well with
inheritance. - A detailed discussion of explicit
scheduling is beyond the scope of this paper; the
reader is referred to [Lohr 91].

6 Context and perspective

6.1 Project HERON

Smooth integration of sequential and concurrent
object-oriented programming is of particular impor-
tance if distributed execution of programs is to be
supported in a distribution-transparent mannecr. Ba-
sically, we take the view that distribution and con-
currency are independent issues as far as the appli-
cation programmer is concerned. This attitude is
rooted in the remote procedure call paradigm (RPC)
which allows transparent distribution of sequential
programs. But then a slightly different view of
RPC, associated with the term "remote invocation",
is that of an int.-process communication facility.

338

This view is tied to the notion of a server process
and, if embodied in the programming language rath-
er than confined to system-level processes, lcads to
concurrent application programs. Concurrency and
distribution combined allow us to write parallel pro-
grams that exploit both shared-memory and nct-
working parallelism.

Project HERON is an effort to develop a platform
for the distributed execution of object-oriented pro-
grams in heterogeneous networks. It is a language-
based approach to what is called Open Distributed
Processing (ODP) by the ISO and the ECMA [ISO
90] and covers mainly the computation viewpoint
and the engineering viewpoint of QDP.

HERON?’s basic tenet is that the concurrency struc-
ture of an application system is nol necessarily re-
lated to its distribution structure. The way different
parts of the system are distributed among different
address spaces, and where in the network these ad-
dress spaces are instantiated as system-level
processes (possibly threaded) is not determined by
programming but by an independent configuration
procedure. HERON uses Eiffel and CEiffel both as
the reference languages for application program-
ming and as the implementation languages for the
run-time support. The project relies on experience
gained from DAPHNE, a module-based sysiem for
distributed execution of sequential Modula pro-
grams [Lohr et al. 88].

6.2 Implementation issues

A CEiffel program can be executed in a threaded
address space. But only the most naive implemen-
tation would come up with a onc-to-one correspon-
dence between aclivities and threads. Reusing
threads from a common pool is an obvious optimi-
zation. But in some cases the compiler will be able
10 recognize that several activities can share a
thread:

1. Non-remote concurrent passive objects: A
server activity shares the client’s thread, and
object interaction is implemented as procedure
call.

2. Atomic active objects: One thread is used for
all activities of an object, and object interac-
tion is implemented as message passing, possi-
bly across address space boundaries.

3. Folding atomic active objects: If there is a
plentitude of objects of the same class (think,
e.g., of a video game) and the underlying ar-
chitecture is not highly parallel, all activities of
those objects could be handled by one thread.

4. Chaining asynchronous activities: If an asyn-
chronous activity ends with the invocation of
another asynchronous operation, the same
thread can be used [Lohr 92].

HERON will support both single-address-space exe-
cution and distribution of programs among several
threaded address spaces which may reside on dif-
ferent machines. Any remote invocation, i.e., an in-
vocation across an address space boundary, will in-
volve different threads. As opposed to Distributed
Eiffel, the syntax and the semantics of CEiffel are
not concerned with distribution issues. Regarding
class texts and object invocation, there is no differ-
ence between local and remote objects. A
configuration tool takes care of distribution issues
like stub generation and construction/placement of
load images on different nodes of the heterogencous
network.

We have implemented a threading library for Eiffel
which is based on coroutines and asynchronous
Unix (SunOS) system calls. In order to accomodate
heterogeneity, we have striven for a portable design,
isolating a front-end from a system-specific back-
end; the latter can take advantage from operating
systems offering a true threading facility to user
programs (this is important for multi-processor ar-
chitectures).

A prototype version of a concurrent Eiffel system is
being implemented as a precompiler which gen-
erates threaded Eiffel code. Concurrently, run-time
support and a stub generator are being developed
for distributed execution.

6.3 Conclusion

The usage of concurrency annotations enables us to
write classcs both representing correct sequential
Eiffel code and allowing for a concurrent interpreta-
tion. In most cases, a class can be used both in a
sequential and in a concurrent context, and inheri-
tance causes no Surprises in concurrent programs.
The annotations are:

--v-- and -->-- : asynchrony and autonomy
--{l...-- : compatibility

--@-- : dclay on assertion violation

: controlling

Inheritance can be employed for reusing a sequen-
tial class carrying no annotations in the design of a
modified class fit for usage in a concurrent setting.

We noticed that Eiffel’s comment syntax is a minor
lechnical nuisance for the annotations. We
identified another weak point in Eiflel: the tech-
nique used for returning the result of a function - as-
signation to Result - is incompatible with post-
processing d la POOL.

So why Eiffel? The decisive argument was the
availabilily of assertions and their integration with
inheritance. We emphasized the close conceptual
relationship between preconditions and guards and
were able 1o associate delay semantics with an Eif-
fel precondition by mere introduction of the delay
annotation. This approach is consistent with inheri-
tance and the weakening of preconditions on
redefinition.

Acknowledgements

Thanks go to Olaf Langmack, Jacck Passia, Irina Piens
and Thomas Wolff for valuable comments on carlier
drafts of this paper. Olal also contributed to this work by
testing Eiltel-3 code on the Eiffel/S system.

References

[Agha et al. 911 G. Agha, C. Hewitt, P. Wegner, A.
Yonezawa (eds.): Proc. OOPSLA-ECOOP 90
Workshop on Object-Based Concurrent Programming,
Outawa, 1990. ACM OOPS Messenger 2.2, April 1991

339

[Aksit et al. 911 M. Aksit, J.W. Dijkstra, A. Tripathi:
Atomic delegation: object-oriented transactions. IELE
Software, March 1991

[America 87] PHM. America: POOL-T: a parallel
object-oriented language. In [Yonezawa/Tokoro 87]

[America/van der Linden 90] P.H.M. America, . van
der Linden: A parallel object-oriented language with in-
heritance and subtyping. Proc. OOPSLA/ECOOP 90,
Ottawa, ACM 1990

[America 89] P.H.M. America: Issues in the design of a
parallel object-oriented language. Formal Aspects of
Computing 1.4, 1989

[Caromel 90] D. Caromel: Concurrency and reusability:
from sequential to parallel. JOOP 33,
September/October 1990

[Colin/Geib 91] J.-F. Colin, J.-M. Geib: Eiffel classes for
concurrent programming. Proc. TOOLS-4, Prentice-Hall
1991

[Cook et al. 90] W. Cook, W. Hill, P. Canning: Inhcri-
tance is not subtyping. Proc. 7. Annual ACM Symp. on
Principles of Programming Languages, 1990

[Gehani/Roome 88] N.H. Gehani, W.D. Roome: Con-
current C++: concurrent programming with class(es).
Software - Practice & Experience 16.12, December 1988

[Gunaseelan/LeBlanc 91] L.. Gunaseelan, R.J. LeBlanc:
Distributed Eiffel: a language for programming mulli-
granular distributed objects on the Clouds operating sys-
tem. Report 91/50, College of Computing, Georgia Insti-
tute of Technology, 1991

[Herlihy 90] M.P. Herlihy: A methodology for imple-
menting highly concurrent data structures. Proc. 2.

Symp. on Priciples and Practice of Parallel Program-
ming, ACM 1990

{Herlihy/Wing 90] M.P. Herlihy, JM. Wing: Lineariza-
bility: a comrectness condition for concurrent objects.
ACM TOPLAS 12.3, July 1990

{ISO 90] ISO/IEC JTC1/SC21/W(G7: Basic Reference
Model of Open Distributed Processing. October 1990

[Kafura/Lee 90] D.G. Kafura, K.H. Lee: ACT++: build-
ing a concurrent C++ with actors. JOOP 3.1, May 1990

340

(LaLonde/Pugh 91] W. Lalonde, J. Pugh: Subclassing #
subtyping # is-a. JOOP 3.5, 1991

[Lobr et al. 88] K.-P. Lghr, J. Miller, 1.. Neniwig:
DAPHNE - Support for distributed applications prograin-
ming in heterogeneous computer networks. Proc. 8. Int.
Conf. on Distributed Computing Systems, San José,
IEEE 1988

[Ldhr 91] K.-P. Léhr: Concurrency annotations and reu-
sability. Report B-91-13, Fachbereich Mathematik, Freie
Universitiit Berlin, November 1991

[Lohr 92] K.-P. Lohr: Concurrency annolations improve
reusability, Proc. TOOLS USA '92, Santa Barbara.
Prentice-Hall 1992

[Meyer 88] B. Meyer: Object-oriented Software Con-
struction. Prentice-I{all 1988

[Meyer 92] B. Meyer: Eiffel: The Language. Prentice-
Hall 1992

[Papathomas/Nierstrasz 91] M. Papathomas, . Nier-
strasz: Supportling software reuse in concurrent object-
oriented languages: exploring the language design space.
In: D.C. Tsichritzis(ed.): Object Composition. Centre
Universitaire d’ Informatique, Université de Genéve 1991

[Schmid 76] H.A. Schmid: On the efficient implementa-
tion of conditiona! critical regions and the construction of
monitors. Acta Informatica 6.3, 1976

[Tripathi/Aksit 88] A. Tripathi, M. Aksit: Communica-
tion, scheduling and resource management in SINA,
JOOP 1.4, November/December 1988

[Yokote/Tokoro 871 Y. Yokote, M. Tokoro: Concurrent
programming in Concurrent Smalltalk. In
[Yonezawa/Tokoro 87]

[Yonezawa et al. 87] A. Yonezawa, E. Shibayama, T.
Takada, Y. Honda: Modelling and programming in the

object-oriented concurrent language ABCIL/L. In
[Yonezawa/Tokoro 87].
[Yonezawa/Tokoro 87] A. Yonezawa, M. Tokoro:

Object-oriented Concurrent
Press 1987

Programming. The MIT

