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Abstract 

Widespread acceptance of concurrent object- 
oriented programming in the field can only be ex- 
pected if smooth integration with sequential pro- 
gramming is achieved. This means that a common 
language base has to be used, where the concurrent 
syntax differs as little as possible from the sequen- 
tial one but is associated with a “natural” concurrent 
semantics that makes library support for concurren- 
cy superfluous. In addition, not only should sequen- 
tial classes be reusable in a concurrent context, but 
concurrent classes should also be reusable in a 
sequential context. It is suggested that cmcurrcmy 
nnnofutions be inserted into otherwise sequential 
code. They are ignored by a sequential compiler, 
but a compiler for the extended concurrent language 
will recognize them and generate the appropriate 
concurrent code, The concurrent version of the 
language supports active and concurrent objects and 
favours a declarative approach to synchronization 
and locking which solves typical concurrency prob- 
lems in an easier and more readable way than previ- 
ous approaches. Concurrency annotations are intro- 
duced using E@ieZ as the sequential base. 
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1 Introduction 

Existing approaches to concurrent object-oriented 
programming suffer from several weaknesses: 

1. Concurrency and synchronization do not blend 
well with inheritance. 

2. Concurrency features (language constructs 
and/or library classes) are too low-level, stick- 
ing with traditional notions such as processes 
and inter-process communicati~)~~. 

3. Concurrent code is not reusable in a sequential 
setting although syntax and semantics often 
come close to a sequential variant. Vice versa, 
although sequential code often lends itself to a 
natural concurrent interpretation, this is usually 
not exploited. 

3. is particularly annoying because it hampers con- 
current sotiware engineering, cspcciatty code reuse 
across the boundary bclwcen sequcntiality and con- 
currency. This problem is present cvcn with 
languages that are extensions of sequential 
languages, such as Concurrent Smalltalk 

[Yokote/Tokoro 871 or Concurrent C++ 
[GehanilRoome 881. 

Seen from the software engineering point of view, it 
would be attractive lo take an integrated approach 
to the development of both sequential and con- 
current object-oriented sof(warc: use O//P tanguage 
which allows for both a sequential and a concurrent 
interprclation, dcpcnding on Ihe compiler (or com- 
pilation switch) being used. Ideally, the scqucntial 
semantics of a piece of code should come “rcason- 
ably close” to its concurrent semantics. 

OOPSLA’92, pp. 327-340 
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Our goal is approximation, if not attainment, of this 
ideal. In particular, it is important that the con- 
current semantics blend well with inheritance, as a 
key to reuse. According to the terminology sug- 
gested in [Papathomas/Nierstrassz 911, the approach 
reported here is heterogeneous and supports corz- 
current objects and proxies: i.e., objects may be ac- 
tive, may be threaded, may synchronize incoming 
requests and may support asynchronous service exe- 
cution. Two languages known for similar properties 
are SINA [Tripathi/Aksit 881 [Aksit et al. 911 and 
ACT++ [Kafura/Lee 901. The emphasis here, how- 
ever, is less on concurrent language design and 
more on a common language framework accomo- 
dating both sequentiality and concurrency. 

Our approach does not hinge on a particular 
language. Obviously, though, not all languages are 
equally well suited. We have chosen E@el [Meyer 
881 as our experimentation vehicle, for reasons that 
will become evident below. Examples will be 
based on version 3 of the language [Meyer 921. 

Eiffel has been used as the basis for concurrent pro- 
gramming before. A system called EiffelN 
[Caromel 901 uses a slightly modified compiler and 
a library class PROCESS; concurrent objects are 
not allowed. Another system [Colin/Geib 911 relies 
completely on library classes; it is more llcxible, 
but at the expense of cumbersome programming 
and poor reusability. A considerably modified ver- 
sion of Eiffel, called Distributed Eiffel, is dcscribcd 
in [Gunaseelan/LeBlanc 911. 

The system described here relies heavily on m7m- 

dons to be inserted into otherwise sequential Eiffel 
text. These “concurrency annotations” have the 
form of Eiffel comments which are ignored by the 
(sequential) Eiffel compiler. They become 
significant, however, when interpreted by a com- 
piler supporting a concurrent semantics. In addi- 
tion, the concurrent interpretation of a given pro- 
gram text may be slightly different from the scqucn- 
tial interpretation even if no annotat.ion is directly 
involved. The annotated version of the language is 
called CEiffeel. 

Sections 2 and 3 motivate and describe the con- 

currency annotations, Ihcir interdcpendcncc and 
their interplay with inheritance. Delayed cxccution 
of operations on objects and its relation lo cxccp- 
tions is the subject of section 4. Contcnlion on ac- 
cess to objects raises scheduling questions, to be 

discussed in section 5. Our work on concurrent 
object-oriented programming is part of a larger cl- 
fort to support the distributed execution of objcct- 
oriented programs in heterogeneous environmcnls 
(project HERON). This conlcxt and ~hc status of 
the project will be dcscribcd in section 6. Com- 
parison with related work can bc li)und throughout 
the paper. For an overview on current Ircnds in 
concurrent object-oricnlcd programming see 
[Papalhomas/Nicrstrasz 9 1 ] and [Agha ct at. 9 I]. 

2 Inter-object concurrency 

Before turning to Eill‘ct we inlroducc an informal 
object model together with sonic basic tcrminotogy, 
trying to capture most of the commonly used no- 
tions (or object-oricnlcd concurrency while avoid- 
ing any bias towards a specific language. 

2.1 Operations, activities and active objects 

Each class has a set of operrrtiorrs: they define pos- 
sible state transitions of any given object of thal 
class from one abstract state to another; Ihcy also 
provide for informalion Ilow hctwccn the ob.ject and 
its cnvironmcnt. How this is accomptishcd dcpcnds 
on the rcprcscntation (thc concrctc st31c) and is 
described by the co& of the class. For Ihc present 
discussion we do not distinguish bclwccn “class” 
and “type”. Remember, howcvcr. that the notions of 
inheritance and subtyping arc not identical [Cook ct 
al. fw [America/van der Linden 901 
[LaLonde/Pugh 911. It should also bc kcpl in mind 
that it is crucial for the dcvctopmcnt process not 
only to distinguish hclwccn ;I class and its signarurc. 
but also to ctcarly idcntilj/ its spccitication. 

An activation of an operation is catted an rrcrivif~~. 
At any given time, an object is cithcr irlle, i.c.. with 
no current activity, or blu~j, i.c., thcrc is one activity 
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or multiple concurrent activities. Note that con- 
current activities of an object may have a combined 
effect that cannot be achieved by any serial execu- 
tion of those activities. If a class imposes no restric- 
tions on multiple activities for its objects, it is 
called a concurrent clnss; an object of that class is 
called a concurrent object. If multiple activities are 
not allowed the class is called ntomic (and so are 
the objects). 

An activity starts when a corresponding request has 
arrived and is accepted by the object. An atomic ob- 
ject will accept a request only when it is idle. We 
can think of two ways of how requests are gencrat- 
ed: 

1. A request is issued by another object through 
operation invocntion. The originator of the in- 
vocation is called the clierzt of that invocation, 
the invoked object is called the server. 

2. An autonomoc~s operation issues a request for 
itself as soon as the object has been crcarcd 
and initialized. When the activity terminates 
the request is re-issued. An autonomous 
operation has an empty signature. A class or 
an object that has autonomous operations is 
also called autonomous. 

A request that has been issued but not accepted yet 
is said to be pending. When an activity terminates 
it generates a reply (if the operation has no result, 

the reply carries no value)‘. 

Invocation raises the issue of how the client activity 
and the server activity are related. Sequential se- 
mantics postulates nested execution: after having 
generated the request the client activity waits for Ihc 
reply. But in a concurrent environment the client 
may also be allowed to proceed after the acceptance 
- or even immediately after the invocation - and to 
synchronize with the reply later, if necessary. This 
is commonly known as client/server nsynch~~~y. If 
asynchrony is declared a property of the operation 
(as opposed to being caused by the client), the 
operation is called mynchrono~~s, as is the 

’ We exclude rhe possibility of sending a reply bc- 
fore termination, for reasons to be explained later. 
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corresponding class and its objects. Note lhat a 
class/object can be both autonomous and asynchro- 

nous. 

An object that is autonomous or asynchronous is 
called an ncrive object; the others are called pclssive. 
Active objects are sources of a varying number of 
concurrently executing activities in a running sys- 
tem. Note that we treat passiveness vs. activeness 
on the one hand and atomicity vs. non-atomicity on 

the other hand as independent issues (in contrast to 
other approaches, known from literature). Non- 
atomicity means intrtr-object concurrency whereas 
activeness causes irlter-object concurrency. We 
avoid notions like “process” or “lhread” and dcrer 
the question of how to implcmcnl aclivc objects un- 
til later. 

There are ways to simulate autonomy by asynchro- 
ny, but it is not natural to do so, especially when in- 
hcritance is involved. Autonomy makes it possible 
to model autonomous enlitics which need nol bc 
triggered from the outside in order to become ac- 
tive. Asynchrony is mainly used to achicvc spccd- 
up, which of course dcpcnds on Ihc purallcl cxccu- 
tion abilities of the underlying system architecture. 
Autonomy causes Irorimrltrrl comzurrer~cy whereas 
asynchrony causes verricrrl co//c1uwIfcy (within a 
functional hierarchy). 

2.2 Asynchrony 

In E(ffil an operation is reprcscntcd by an cxportcd 
feature, i.e., ;I routine or an altrihutc. Functions and 
attributes deliver results, procedures do not. The 
two classes involved in a clicnl/server relationship 
between objects arc called client class and supplier 
class. As Eil‘l%I is seclucntial, there arc no auto- 
nomous or asynchronous opcralions, and consc- 
quently no active objects. 

An obvious way to interpret Eiffcl code as con- 
current code is to consider trll exported routines 
asynchronous and to use Irrzjj .s~~/rc/lrl~rrizrrrio,l: upon 
invocation of a function a result is returned immedi- 
ately, but this result is just a proxy for the expected 
reply; later on, the first operation on that proxy im- 



plies a synchronization with the delivery of the real 
result upon termination of the corresponding activi- 
ty. Similar techniques are known from other 
languages [Papathomas/Nierstrasz 911; Eiffel// uses 
the term wait-by-necessify [Caromel90]. 

Now while it is certainly possible to write meaning- 
ful concurrent programs in such a variant of the 
language, serious objections remain. First, due to 
the rather fine-grained concurrency caused by a 
plentitude of small routines, efficiency will most 
likely be so poor as to defeat the very purpose of in- 
troducing concurrency in the first place. Secondly, 
and at least as important, writing programs that 
behave correctly under the concurrent interprctalion 
will not be easy. The programmer has to be very 
careful to avoid unplanned interference between the 
concurrent activities. Such interference looms 
everywhere, even if the system does not contain 
concurrent objects. The innocent-looking code 

r := server.computel(y);--async.-- 

compute2 (z); 

r.p; -- synchronization -- 

r.q; 

may have weird effects if server or y are in- 
volved in computea. The most important point, 
however, is that the concurrent semantics of lhis 
code may be so different from its sequential seman- 
tics that we miss our goal - reuse across the 
sequential/concurrent boundary. In EiffelN asyn- 
chrony is explicit: it is provided by PROCESS ob- 
jects only. Unfortunately, though, this ties asyn- 
chrony to atomicity. 

Rejecting implicit asynchrony for CEiffcl, we at- 
tach an asynchrony nnnotntiorz to a routine that is to 
be executed asynchronously under concurrent in- 
terpretation. The annotation is written as a com- 
ment - -v-- which is ignored under sequential in- 

terpretation2. The v may be read as a downward 
arrow or as “vertical concurrency”. The following 

2 We pretend that an Eiffel comment which SI:UIS 
with -- also ends with --. This is not so; i( cncls with 
the line end. But observing this woukl force us to USC a 
poor layout in the examples below. 

example demonstrates the use of the annotation: 

computel(y: Tl) : T2 is --v-- 
do . . . . . end; -- compute1 -- 

Both the class and the objects arc said to bc asyn- 
chronous in this case. After an invocation of com- 
putel the client proceeds immcdiatcly, even be- 

fore the request is accepted’. Lazy synchronization 
is used in claiming the result, if any. - The annota- 
tion is ignored in local calls of the routine (i.e., calls 
from within the class). 

Note that asynchrony is not just an implcmcntation 
property of an operation. The client must know 
about asynchrony in order to avoid undesirable in- 
lerfercnce with the asynchronous activity. Consider 
the alternative approach where a client uses a ,li,,-k 
operation for introducing ad-hoc asynchrony. This 
leaves the client in control; but it is inappropriate in 
those casts where client and scrvcr have lo 
coopertrte to achieve a common goal which means 
that “intcrfcrcncc” is mandatory rather than unwant- 
cd. Bcsidcs, declaring operations asynchronous al- 
lows for a more efficient implcnlcnlation than ad- 
hoc forking. For thcsc reasons asynchrony is intro- 
duced as a property of an opcralion ralher than the 
effect of a fork operation. In any cast, asynchrony 
must be considcrcd part of the spec(jcatiorr ol’ ;I 
class. 

In the absence of intcrfcrencc, the asynchrony anno- 
tation does not change the semantics of operation 
invocation. This is also lruc t’or many kinds of 
“weak intcrfcrencc” based on commutative opcra- 
tions on shared ohjects. As pointed out above, it 
cannot be upheld for all cases of inlcrfcrcncc. 

3 As opposecl Lo :I “synchronous scncl” or a 
rcndczvous-like inlcraclion bclwecn clicnc and scrvcr 
lhis requires hufl’cring 01’ rcqucsts hut is bcclcr suilctl for 
distriburcd irnplclnenl;~lion (cf. scclion S). 

330 



2.3 Autonomy 

There is no satisfying way of automatically idcnti- 
fying autonomous operations under a concurrent se- 
mantics. Viewing non-exported routines with an 
empty signature as autonomous is about the closest 
we can get. But this would sometimes force us to 
introduce dummy signatures and thus would also 
hamper reuse of existing sequential classes. 

Our choice for CEiffel is again using an annotation. 
The autonomy annotation is written - - >- -. The 
annotation can only be attached to a routine with an 
empty signature, as in 

action is -->-- 

do . . . . . end; -- action -- 

Under concurrent interpretation, an autonomous 
routine generates requests for itself as mentioned 
under 2.1.2. If it is exported, additional rcqucsts 
may be generated through invocation by clients 
(which proceed immediately, as with an asynchro- 
nous routine). 

A class may feature several autonomous routines. 
Also, there may be both asynchronous routines and 
autonomous routines. Each routine, however, is ei- 
ther synchronous or asynchronous or autonomous. 
Let us consider the example of a class Moving 
which captures properties of moving bodies in two- 
dimensional space; it might be used in a simple ani- 
mation system. The velocity of a Moving object 
can be “remotely controlled”. The given code ig- 
nores the actual display programming and any 
alignment with real time. 

class Moving 

creation create 
feature -- interface -- 

position: Vector; 

setVelocity(v: Vector) is 

do velocity.set(v.x,v.y) end; 

feature {> -- hidden -- 
velocity: Vector; 

stepTime: Real; 

step is -->-- 
do position.set 

(positi0n.x + 
velocity.x*stepTirne, 
positi0n.y + 

velocity.y*stepTime) end; 

create(startingPoint: Vector; 

timeunit: Real) is 
require timeunit > 0 

do position := startingpoint; 

stepTime := timeunit end; 
end -- Moving -- 

Note that Moving must be atomic (it is atomic 
indeed, as explained in 3.1 below). If it were con- 
current, overlapping setvelocity activities 
could have nasty effects: concurrently setting the 
velocity to ( 0 , 1 ) and ( 1, 0 ) might produce the 
velocity ( 0 , 0 ) (depending on the implen~cntalion 
of Vector). 

Asynchronous and autonomous operations offer 
several advantages over more traditional concepts 
such as a “body” describing the lifelong bchaviour 
of an active object (as in Concurrent C++ and Eif- 
fel//; see also POOL [America 871 [America X9] 
and ABCL/l [Yonczawa ct al. 871). First, as a body 
constitutes a permanent thread of control, con- 
current activities within an object are cithcr cxclud- 
cd or have to bc created explicitly by the body (by a 
mcchanixm similar lo 11~ detach in SINA). 
Secondly, cvcry rcqucst musl bc explicitly acccplcd 
by the body (except if the body is omitted - but then 
the object cannot be autonomous). This is not only 
cun~hcrsonic for the programmer, it is incompatible 
with multiple inheritance, because the body has to 
be rcdctincd; cvcn with simple inheritance, 
redefinition is almost always required. A further 
disadvantage is the fact that funclional hierarchies 
of such objects are prone to the same pitfalls as 
known from ncstcd monitors. 

Autonomous opcralions do not suf‘fcr from these 
problems. Note that the semantics of an auto- 
nomous opcralion is !ro[ identical to that of a body 
conlaining a corresponding loop. It is also 
hcnclicial that asynchrony is not tied to the presence 
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of a body because asynchrony and atomicity are in- 
dependent issues. 

Consider a non-autonomous version of the class 
Moving where step would be exported and the 
steps of a moving object would have to be driven by 
an external force. Such a class is easily upgraded 
into an autonomous version. Vice versa, the aulo- 
nomous version is readily reusable in a sequential 
environment. 

Note that an autonomous class can be speci'ed just 

like a sequential class, only with additional men- 
tioning of which operations are autonomous. A 
client has to be aware that the server can undergo 
spontaneous state changes, as if “dacmon” clicnrs 
causing these changes were present. 

2.4 Asynchrony, autonomy and inheritance 

Inheritance works for asynchronous and auto- 
nomous routines as for any other feature. Let us 
look at a simple example. Imagine a class Beep- 
ing that captures the property “repeatedly gcncrat- 
ing a beep sound” where the beeping can bc turned 
off and on. A simple version is 

class Beeping 

creation create 
feature -- interface -- 

on(b: Boolean) is 
do beepon := b end; 

feature {> -- hidden -- 

beepon: Boolean; 
sound: Speaker; 

beep is -->-- 
do if beepon then 

sound.beep end end; 

createcs: Speaker) is 
require s /= Void 

do sound := s end; 
end -- Beeping -- 

Now if we want to capture the properties of objects 

both moving and beeping WC can USC multiple in- 
hcritance. The resulting class has several synchro- 
nous routines and two autonomous routines. By in- 
troducing additional attributes we can design, say, a 
class Mouse that captures the properlies of a - still 
rather abstract! - rodent: 

class Mouse 

inherit 
Moving 

Beeping 

rename treat e 
as mcreate end; 
rename treat e 
as bcreate end 

creation create 

feature . . . . . 
end -- Mouse -- 

Fcaturc adaptation (like renaming, redcfinilion, 
changing the export status etc.) applies to asynchro- 
nous and autonomous rourines as to any other 
feature. Redefinition and cl‘litcting (01’ a dclcrrcd 
function), collectively known as rd~cl~rrc~fiorr. 

deserve special mentioning. Changing the con- 
currency property in a redcclaration is allowed, 
allhough rare. Typical cases arc: 

- A deferred routine carries no annotation. The 
corresponding effective routine is marked 

--V-- . 

- An effective routine is marked --v- -. A ma- 
jor reorganization of some features allows the 
former routine to be redcclared as an attribute 
(which never carries a - -v- -). 

Attaching a concurrency annotation IO ;I dcl‘crrcd 
routine is not prohihitcd, although it is 01‘ mere dcc- 
lamatory value. E.g., the asynchrony anriolaIiori 
would specify that the rouline has to cooperale with 
the client, as mcntioncd in 2.2. 

Note that an inherited routine can have difl’erent 
concurrency properties in dill‘ercnt heirs. E.g., let C 
be a parent ol A and B, with a del‘erred routine 
op. A might d&arc op asynchronous while B 
might not. Due to the polymorphism WC cannel lcll 
whether the call c . op (wilt1 c of lypc C) will 
generate a synchronous or an asynchronous activily. 
Thus, the situation is safe only if A's implcmcnta- 
tion of op is interference-free (2.2). 
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3 Intra-object concurrency 

3.1 Compatibility 

Under sequential interpretation all classes are de 
facto atomic. This property should be maintained 
under concurrent interpretation &ess concurrency 
is explicitly allowed. Declaring two operations 
compatible allows them to be executed concurrent- 
ly. Compatibility is declared by means of compcrti- 

bility annotckms - -11 . . . -- attached to the 
relevant routines. E.g., we might find the following 
declarations in a class Queue written in CEiffel: 

enqueue (x : T) is--lldequeue, length-- 

do . . . . . end; 

dequeue: T is--lIenqueue, length-- 

do . . . . . end; 
length: Integer is--II-- 
do . . . . . end; 

Compatibility has nothing to do with the 
specification of a class. The annotations express 
that the class has been implemerzted in such a way 
that a certain overlapping of activities (e.g., of an 
enqueue activity and a dequeue activity) can 
safely be allowed, i.e., does not violate the 
specification of the class. Compatibility is always a 
symmetric relation; redundant compatibility infor- 
mation can be omitted in the annotations. If no 
name is given in an annotation, the routine is com- 
patible with itself and all other routines annotated in 
this way. An operation implemented as an attribute 
is “implicitly annotated” with - -II- -, The explicit 
--II- - is typically used for read-only opcralions 
which do not change the state of the object. 

A finer granularity of the compatibility relation can 
be achieved by interrelating requests rather than 
operations. This takes the parameters into account, 
as in 

update(k: Key; d: Data) is 
--II update(x,y) if x/=k, 

lookup(x) if x/=k -- 

It causes more overhead but can increase the potcn- 
tial parallelism considerably and thus may be hclp- 

ful on certain parallel architectures. The syntax of 
an individual element in a compatibility annotation 
is 

Unqualificd~call \ if Expression 1 

As a central property of CEiI‘fcl, compatibility an- 
notations NY inrieperlderlt of asynchrony and auton- 
omy annotations. E.g., we might add --v-- to the 
declaration of enqueue (although it is probably 
not worth the effort, given the simplicity of the 
operation). This implies the strict independence of 
intra-object concurrency and inter-object concurren- 
cy as postulated in 2.1. 

A general compatibility annotation - -II- - can be 
attached to the class head; this is shorthand li)r cx- 
pressing that cvcrything is compatible. i.c.. the 
class is cnr~currmt. If no compatibility annotation 
and no expofled attributes arc present, the class is 
atomic. A class that is neither atomic nor fully con- 
current is said to be sen7i-corlcrlrr~rI[. 

3.2 Controlled objects 

Wilhin one program, the annotations in a class arc 
obscrvcd or ignored on a per-object basis. Whcthcr 
an object is going to behave according to the 
sequential or the concurrent interprelation of its 
class is determined by the 

corm-01 trlmottrtiorl - - ! - - . 

The annotation is attached to the declared type 01’ an 
entity, as in 

q: Queue[Message] --!-- ; 

It affects the creation of q, declaring that the ob- 

jcct4 is to be corll~)lled, i.e., that the annotations 
are in effect. III addition to object-specific control- 
ling, there is also class-specific controlling: - - ! - - 

can be attached to a class head; this pauses all ob- 

jects of that class to bc controlled. 

4 Not tM if’ Queue is ~1 "cxpa~hcl ~ypc" 111~ 
crcalion is ilnplicit md q clcnotes lilt otjccl. II' Queue 

is not cxpancltid, lhc object 1nus1 he crcalcd cxplicilly and 
q clcnotcs a relcrence to the objccl. 

333 



If a class is not fully concurrent, the control annota- 
tion causes a co?zcurrellcy control scheme to take 
effect. For our semi-concurrent Queue, appropri- 
ate locking mechanisms are automatically built into 
the object. If Queue were atomic, q would refer 
to an atomic object (which is akin to a monitor or a 
sequential process). 

Locking in CEiffel is a generalization of read/write 
locking as employed in Distributed Eiffel 
[Gunaseelan/LeBlanc 911. When an atomic or 
semi-concurrent object is busy, requests that are in- 
compatible with existing activities remain pending 
as defined in 2.1. As soon as the termination of an 
activity causes requests to become eligible for ac- 
ceptance a standard scheduling strategy applies: 
pending requests are accepted in arrival order 
(FCFS); for details see section 5. 

Object-specific controlling is rare. Most objects of 
user-defined classes are not controlled, in particular 
the vast amount of sequentially used objects in a 
program. Also note that there is not even a riced to 
control every object that is shared among con- 
current activities. The usage pattern of a shared ob- 
ject ultimately determines whether control is neces- 
sary or not. 

The basic classes Integer, Boolean etc. arc 
atomic and controlled; this is implemented in 
hardware (indivisible read/write operations). The 
library classes Array[Tl and String arc 

atomic but not controlled. 

3.2 Compatibility and inheritance 

The properties of an object are determined by its 
class, but also by all ancestors of that class. Thus, if 
inheritance is involved, the adjectives ~ro/~ic or 
concurrent do not necessarily carry over from a 
class to its objects. 

If class B inherits from class A, the text of B may 
include compatibility annotations referring to inher- 
ited routines. A redecltrred routine may be annotat- 
ed differently from the original. Wilh rr~.rtltiple irr- 
izeritmce, any routine inherited iiom one parent is 

compatible with any routine from any other parent 
(unless we have repeated inheritance with sharing, 
or deferred routines are involved). 

Remember that all classes implicitly inherit liom 
the universal class Any. This class provides rou- 
tines for cloning, copying and comparing objccls; 
reading of entire objects is involved here; copying 
also involves writing. Reading an entire object is 
compatible with itself and with all other operations 
explicitly or implicitly annotated with - -11. . . --. 
No compatibilities are declared for writing an entire 
object. 

The compatibilities introduced by declaring an heir 
concurrent (altaching - -)I- - lo its head) do in- 
volve trll inherited operations. Objects of such a 
class are fully concurrent, i.e., thcrc is no con- 
currency control. 

4 Guarded classes 

4.1 Preconditions and delays 

An operation with a non-cmply precourliliorr 
rcprcscnts a partial funclion wirh a domain charac- 
terized by the precondition. A prccondi(ion can 
state consistency requirements for parameters or 
may restrict the states in which the operation can 
meaningfully be executed; it may also involve both 
parameters and state. 

A violated precondition should raise an exception in 
a scqucntial environmcnl. For a shared ob.jccl in a 
concurrent environment, a precondition involving 
the state should somcrimes act as a gmrd rather 
than a source of exceptions: an incoming request 
should be cfelcryerf if, and as long as, the precondi- 
tion is violated l/~rl can be satisfied by changing the 
state. A delayed request is pending (as defined in 
2.1) and cannot be accepted until the precondition is 
satisfied. The rationale for delaying is that if slale 
is involved the precondition might become satisfied 
Ihrough the ePfccls of olhcr acrivilics. 01‘ course, 
[here is no guarantee li)r lhis, and the issue has IO be 
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studied in more detail. We will come back to this 
in a moment. 

A classical example is the finite queue. Overllow or 
underflow of a sequential queue should raise an ex- 
ception. But under concurrent interpretation, a 
shared queue should act like a message buffer 
where delays prevent overflows and underflows. A 
generic Eiffel class Queue might look like this: 

class Queue [Tl 

feature 
enqueue (x: T) is 
require length < maxlength 
do . . . . . end; 

dequeue : T is 
require length > 0 

do . . . . . end; 

maxlength: Integer is . . . ; 

length: Integer is 

do . . . . . end; 
. . . . . 

end -- Queue -- 

This class has both a sequential and a concurrent in- 
terpretation, the only difference being exceptions 
vs. delays. Note that if we wanted to declare en- 

queue (or even dequeue) asynchronous we 
could do so, but, as mentioned in 3.2, it is probably 
not of much use. 

Since the class is atomic, operations on a controlled 
Queue object behave like conditional (better “dc- 
layed”) critical regions and the object behaves like a 
delayed monitor with standard scheduling: acccpt- 
able requests are served in arrival order. In this 

case, the favourable moment for re-evaluating the 
preconditions of delayed requests is when an uctivi- 
ty terminates. We also use this technique for non- 
atomic objects, for efficiency reasons. liemcmbcr 
that the cost of reevaluation can be kept low by ap- 
propriate compilation techniques [Schmid 761. 

by the fact that precondition evaluation may overlap 
with other activities. This may even cause different 
values to be observed for an attribute that is referred 
to several times in a precondition. But also 
remember that sensible non-atomic implementa- 
tions of objects do exist and that highly parallel data 
structures are an active research subject 

[Hcrlihy/Wing 901 [Herlihy 901. In fact, the above 
Queue has a straightforward semi-concurrent im- 
plemcntation as suggested by the compatibility an- 
notations in the example in 3.2. 

Preconditions can favourably be used in conjunc- 
tion with autonomous operations. Actually, they 
are the primary means for controlling autonomous 
opcralions. E.g., the autonomous operation beep 

in the class Beeping is much hcttcr cxprcsscd as 

class beep is -->-- 

require beepon 

do sound.beep end 

In some concurrent languages an activity can send a 
reply before it terminates; this allows the client to 
continue while some “postprocessing” is performed 
by the server. Ada is an early example for this, 
POOL is anolhcr one. We cannot support this be- 
cause it is incompatible with the Eiffel style of re- 
turning a result (by assi@ment to the predclincd en- 

tity Result). But we can easily simulate it by 
splitting the operation into a replying operation and 
a delayed autonomous operation. (Admilledly, this 
amounts to misusing horizontal concurrency for 
vertical concurrency, and it negatively aKects reusa- 
bility: the sequential intcrprctation is unusable 
without a redefinition of the replying operation.) 

A typical example is a Repository object 

rcscmbling a cloak-room: items can hc dcposiWd in 

cxchangc for a “ticket”; the item is actually 
“stowed” aticr handing out the ticket. When pick- 
ing up the item later, the ticket has to bc prescntcd 

(and is invalidalcd). 

It should be kept in mind that in non-atomic objects 
all the usual interference problems arc compounded 
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class Repository[Cl 
feature 

depositlitem: C) : T is 
require SpaceAvailable 

and place = Void 

do place := item; 

Result := getTicket end; 

stow is -->-- 
require place /= Void 
do . . . . . 

-- stow contents of place -- 

place := Void end; 

pickuplticket: T): C is 
require ticket.valid 

do . . . . . 
-- hand out item and 

invalidate ticket -- end; 

. . . . . 
end -- Repository -- 

For a shared Repository object it is obvious 
that the preconditions of deposit and stow, 
referring to the object’s state, must cause delays if 
violated. It is equally obvious that violation of the 
precondition of pickup must raise an exception. 

4.2 Delays vs. exceptions and the delay annota- 
tion 

A problem arises with a private Repository ob- 
ject: violation of the precondition of deposit 
should raise an exception if not SpaceAvail- 

able or else should cause a chhy if not 
place=Void. 

A similar problem occurs with a slighlly diffcrcnt 
version of Repository where not even autono- 
my is involved: 

depositcitem: C) : T is 
require SpaceAvailable 

do . . . . . end; 

pickuplticket: T): C is 
require validtticket) 
do . . . . . end; 

Tickets are not reused; a ticket is invalidated by Ihe 
very act of picking up (i.e., removing) the 
corresponding item. The precondition of pickup 
is state-dcpcndent: the routine valid checks for 
the presence of an item associarcd with the given 
ticket. If this check fails, an exception has 10 bc 
raised, regardless of whether the ob.jccl is private or 
shared. So with a shared object deposit must 
produce delays while pickup must produce cx- 
ceptions - although both preconditions refer to the 
state. 

The examples demonstrate that the scar& Ihr a 
completely automatic decision for delays vs. cxccp- 
tions is i‘utilc. This motivates Ihe inlroduction of a 
rfelrry ~IIWO~~~~~O~~, wriltcn - - @ - - , which can bc in- 
scrted bctwcen two asscrfion clauses in a prccondi- 

tion ‘. IL divides rhc precondition into two parts, the 
clocker and the gr4rrrrl. The checker of an aulo- 
nomous routine must be empty. An objccr invoca- 
lion that violates the precondition causes an cxccp- 
tion if an asserlion clause in Ihe checker is violalcd; 
otherwise, a delay occurs. A class that carries 
guards is called a grm-tied clrrss; its objcc& are 
called grmdd ohjjrm. 

Several preconditions in the above examples have 
to be annotated using --@-- . A variant of en- 

queue might read 

enqueuetx: T) is 

require x /= Void; 

--@-- length < rnaxlength 

do . . . . . end; 

The prccondirion 01‘ the Iirst version of the depo- 
sit opcralion in Repository may hc wriltcn 
cirher 

’ Rc~nembcr that the keyword require is t’ol- 
lowed by a scqucnce of asscrlion cl~scs scp~:~lcd by 
semicolons which rcprescnt semi-strict “and tl~cn” opera- 
tars L . 
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require --@-- SpaceAvailable; 

place = Void 

or 

require SpaceAvailable; 
--@-- place = Void 

depending on the desired semantics. 

4.3 Redeclared preconditions 

Redeclaration of a routine may involve weakening 
the precondition. If an inherited routine with 
precondition 

require Al;...;An 

is redeclared with 

require else Bl;...;Bm 

the effective assertion for the routine is 

Bl;...; Bm or else Al;...;An . 

If this assertion turns out to be violated, the request 
is delayed if at least one of the disjuncts satisfies the 
criterion for delaying given above. 

As an example, consider a class that managcs 
printers of different types. There is a fast “stan- 
dard” printer and a slow “special” printer that has 
special capabilities (say, colour) but includes the 
capabilities of the normal printer. An operation 

gettneedspecial: Boolean; 

size: Integer): Printer is . . . 

asks for a printer which is chosen on the basis of 
availability, capabilities and the size of the printing 
job. The precondition is 

require size > 0; 
--@-- specialidle or standardidle; 

needspecial implies 
specialidle 

If we want to accomodate a third printer, say a slow 
standard printer, we use inheritance and redefine the 
get routine. The precondition is weakened by 

require else sizer0 and size<5000; 

--@-- not needspecial and 
thirdidle 

Only size<=0 raises an exception, both with the 
original and with the redeclarcd get. 

5 Scheduling 

Pending requests raise the question 01‘ how the ac- 
ceptance of requests is to be scheduled. The de- 
fault scheduling strategy is basically FCFS: accept- 
able requests arc accepted in the order they wcrc is- 
sued. This strategy prefers a pending rcqucst, as 
soon as it becomes acceptable, over a new accepl- 
able request. It cannot, of course, prevent indelinite 
delays. 

We give a precise description of the default 
scheduling strategy. Associated with cvcry object 
that is controlled or guarded (or both) is a r~,llne.sf 
list which at any time contains the pending requests 
for that object. A pending request is much like a 
variant record, with the operation corresponding to 
the variant, the formal arguments to lhe record 
fields and the actual arguments to the aclual record 

components. 

When a rcqucst arrives at an object it cnlcrs Ihc rc- 
quest list. If the compatibilities allow a corrcspond- 
ing activity to be started, the activity is tentatively 
started, evaluating the checker. If the checker is not 
satishcd, the request is removed from Ihe request 
list, the activity is aborted and an exception is 
raised. In any case, the client is allowed to contin- 
ue. Then the guard is checked. If it is satisfied, the 
request is removed from the request list and the ac- 
tivity continues (acceptance); if not, the activity is 
aborted and the rcqucsl remains pending (delay). 
When an activity terminates. the pending requests 
are scanned in arrival order, and each rcqucst is 

treated just as dcscribcd for an arriving request. 
The following pseudo-code gives a slightly more 
precise dcscriplion. Activations oL‘ request 
arrival and activity termination arc 
cxccutcd under mutual exclusion. 
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request arrival: 

enter request list; check . 

activity termination: 

for each pending request(FCFS) 

do check . 

check:, 

if compatible then 

if checker ok then 
if guard ok then 

remove from request list; 

accept end 
else remove from request list; 

raise exception end end . 

If non-FCFS scheduling is required it must be pro- 
grammed explicitly. This task can be alleviated 
considerably by special language support which by 
its very nature leaves the realm of a sequential pro- 
gramming language. Annotations cannot do the job 
any more. We take an approach that is based on 
read-only access to the request list. This allows to 
refer to pending requests either in preconditions or 
in special scheduling routines and blends well with 
inheritance. - A detailed discussion of explicit 
scheduling is beyond the scope of this paper; the 
reader is referred to [Lijhr 9 11. 

This view is tied to the notion of a server process 
and, if embodied in the programming language ralh- 
er than conlined to system-level processes, leads to 
concurrent application programs. Concurrency and 
distribution combined allow us to write parallel pro- 
grams that exploit both shared-memory and nct- 
working parallelism. 

Project HERON is an effort to dcvclop a platform 
for the distributed execution of object-oriented pro- 
grams in heterogeneous networks. It is a language- 
based approach to what is called Open Distributed 
Processing (ODP) by the IS0 and the ECMA [ISO 
901 and covers mainly the com~rllrrlion viewp~i~/ 
and the elzgirreering viewpoir~r of OW. 

HERON’s basic tenet is that the concurrency struc- 
ture of an application system is not necessarily rc- 
lated to its distribution structure The way dil‘fcrcnt 
parts of the system are distributed among different 
address spaces, and whcrc in the network these ad- 
dress spaces are instantiated as system-level 
processes (possibly thrcadcd) is not dctcrmincd by 
programming but by an independent configuration 
procedure. HERON uses Eiffel and CEiffel both as 
the reference languages for application program- 
ming and as the implementation languages for the 
run-time support. The prc?jcct relics on cxpcricncc 
gained from DAPHNE, a module-based system for 
distributed execution of scqucntial Modula pro- 
grams [Liihr et al. 881. 

6 Context and perspective 

6.2 Implementation issues 
6.1 Project HERON 

Smooth integration of sequential and concurrent 
object-oriented programming is of particular impor- 
tance if distributed execution of programs is to be 
supported in a distribution-transparent manner. Ba- 
sically, we take the view that distribution and con- 
currency are independent issues as far as the appli- 
cation programmer is concerned. This attitude is 
rooted in the remote procedure call paradigm (RX) 
which allows transparent distribution of sequential 
programs. But then a slightly different view of 
RPC, associated with the term “remote invocat,ion”, 
is that of an inK A-process communication facility. 

A CEiffel program can bc cxccutcd in a threaded 
address space. But only the most nai’vc implcmcn- 
tation would come up with a one-to-one corrcspon- 
dence between activities and threads. Reusing 
threads from a common pool is an obvious oplimi- 
zation. But in some casts the compiler will be able 
to rccognizc that several activities can share a 
thread: 

1. Non-remote concurrent passive objects: A 
server activity shares the client’s thread, and 
object interaction is implemented as procedure 
call. 
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2. Atomic active objects: One thread is used lhr 
all activities of an object, and object interac- 
tion is implemented as message passing, possi- 
bly across address space boundaries. 

3. Folding atomic active objects: If there is a 
plentitude of objects of the same class (think, 
e.g., of a video game) and the underlying ar- 
chitecture is not highly parallel, all activities of 
those objects could be handled by one thread. 

4. Chaining asynchronous activities: If an asyn- 
chronous activity ends with the invocation of 
another asynchronous operation, the same 
thread can be used [Liihr 921. 

HERON will support both single-address-space exe- 
cution and distribution of programs among several 
threaded address spaces which may reside on dif- 
ferent machines. Any remote invocation, i.e., an in- 
vocation across an address space boundary, will in- 
volve different threads. As opposed to Distributed 
Eiffel, the syntax and the semantics of CEil’l‘el are 
not concerned with distribution issues. Regarding 
class texts and object invocation, there is no diffcr- 
ence between local and remote objects. A 
configuration tool takes care of distribution issues 
like stub generation and construction/placement of 
load images on different nodes of the heterogcncous 
network. 

We have implemented a threading library for Eiffel 
which is based on coroutines and asynchronous 
Unix (SunOS) system calls. In order to accomodate 
heterogeneity, we have striven for a portable design, 
isolating a front-end from a system-specific back- 
end; the latter can take advantage from operating 
systems offering a true threading facility to user 
programs (this is important for multi-processor ar- 
chitectures). 

A prototype version of a concurrent Eiffcl system is 
being implemented as a precompiler which gcn- 
erates threaded Eiffel code. Concurrently, run-time 
support and a stub generator are being dcvcloped 
for distributed execution. 

6.3 Conclusion 

The usage of concurrency annotations enables us to 
write classes both representing correct sequential 
Eiffel code and allowing for a concurrent interpreta- 
tion. In most cases, a class can be used both in a 
sequential and in a concurrent context, and inheri- 
tance causes no surprises in concurrent programs. 
The annotations are: 

--v-- and-->-- : r asynchrony and autonomy 
--)I. . . -- : compatibility 
--@-- : delay on assertion violation 
-- l-- . . controlling 

Inheritance can be employed for reusing a sequen- 
tial class carrying no annotations in the design of a 
modified class fit for usage in a concurrent setting. 

We noticed that Eiffcl’s comment syntax is a minor 
technical nuisance fi)r Llic annotations. We 
idcntilicd another weak point in Eit‘fel: the ~cch- 
nique used Ior returning the rcsull of II function - as- 
signation to Result - is incompatible with post- 
processing li la POOL. 

So why Eiffel? The decisive argument was the 
availability of assertions and their integration with 
inheritance. We emphasized the close conceptual 
relationship between preconditions and guards and 
were able to associate delay semantics with an Eil- 
fcl precondition by mcrc introduction of’ the delay 
annotation. This approach is consistent with inheri- 
tance and the weakening of preconditions on 
redefinition. 
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