
Concurrency Annotations

Klaus-Peter Liihr
Institut fii Informatik, Freie UniversitIt Berlin
Nestorstrape 8-9, W-1000 Berlin 3 1, Germany

lohr@inf.fu-berlin.de

Abstract

Widespread acceptance of concurrent object-
oriented programming in the field can only be ex-
pected if smooth integration with sequential pro-
gramming is achieved. This means that a common
language base has to be used, where the concurrent
syntax differs as little as possible from the sequen-
tial one but is associated with a “natural” concurrent
semantics that makes library support for concurren-
cy superfluous. In addition, not only should sequen-
tial classes be reusable in a concurrent context, but
concurrent classes should also be reusable in a
sequential context. It is suggested that cmcurrcmy
nnnofutions be inserted into otherwise sequential
code. They are ignored by a sequential compiler,
but a compiler for the extended concurrent language
will recognize them and generate the appropriate
concurrent code, The concurrent version of the
language supports active and concurrent objects and
favours a declarative approach to synchronization
and locking which solves typical concurrency prob-
lems in an easier and more readable way than previ-
ous approaches. Concurrency annotations are intro-
duced using E@ieZ as the sequential base.

Key words

Concurrent object-oriented programming, reusable
concurrent code, concmrency annotations, Eiffel,
CEiffel

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1992 ACM 0-89791-539-9/92/0010/0327...$1.50

1 Introduction

Existing approaches to concurrent object-oriented
programming suffer from several weaknesses:

1. Concurrency and synchronization do not blend
well with inheritance.

2. Concurrency features (language constructs
and/or library classes) are too low-level, stick-
ing with traditional notions such as processes
and inter-process communicati~)~~.

3. Concurrent code is not reusable in a sequential
setting although syntax and semantics often
come close to a sequential variant. Vice versa,
although sequential code often lends itself to a
natural concurrent interpretation, this is usually
not exploited.

3. is particularly annoying because it hampers con-
current sotiware engineering, cspcciatty code reuse
across the boundary bclwcen sequcntiality and con-
currency. This problem is present cvcn with
languages that are extensions of sequential
languages, such as Concurrent Smalltalk

[Yokote/Tokoro 871 or Concurrent C++
[GehanilRoome 881.

Seen from the software engineering point of view, it
would be attractive lo take an integrated approach
to the development of both sequential and con-
current object-oriented sof(warc: use O//P tanguage
which allows for both a sequential and a concurrent
interprclation, dcpcnding on Ihe compiler (or com-
pilation switch) being used. Ideally, the scqucntial
semantics of a piece of code should come “rcason-
ably close” to its concurrent semantics.

OOPSLA’92, pp. 327-340

327

Our goal is approximation, if not attainment, of this
ideal. In particular, it is important that the con-
current semantics blend well with inheritance, as a
key to reuse. According to the terminology sug-
gested in [Papathomas/Nierstrassz 911, the approach
reported here is heterogeneous and supports corz-
current objects and proxies: i.e., objects may be ac-
tive, may be threaded, may synchronize incoming
requests and may support asynchronous service exe-
cution. Two languages known for similar properties
are SINA [Tripathi/Aksit 881 [Aksit et al. 911 and
ACT++ [Kafura/Lee 901. The emphasis here, how-
ever, is less on concurrent language design and
more on a common language framework accomo-
dating both sequentiality and concurrency.

Our approach does not hinge on a particular
language. Obviously, though, not all languages are
equally well suited. We have chosen E@el [Meyer
881 as our experimentation vehicle, for reasons that
will become evident below. Examples will be
based on version 3 of the language [Meyer 921.

Eiffel has been used as the basis for concurrent pro-
gramming before. A system called EiffelN
[Caromel 901 uses a slightly modified compiler and
a library class PROCESS; concurrent objects are
not allowed. Another system [Colin/Geib 911 relies
completely on library classes; it is more llcxible,
but at the expense of cumbersome programming
and poor reusability. A considerably modified ver-
sion of Eiffel, called Distributed Eiffel, is dcscribcd
in [Gunaseelan/LeBlanc 911.

The system described here relies heavily on m7m-

dons to be inserted into otherwise sequential Eiffel
text. These “concurrency annotations” have the
form of Eiffel comments which are ignored by the
(sequential) Eiffel compiler. They become
significant, however, when interpreted by a com-
piler supporting a concurrent semantics. In addi-
tion, the concurrent interpretation of a given pro-
gram text may be slightly different from the scqucn-
tial interpretation even if no annotat.ion is directly
involved. The annotated version of the language is
called CEiffeel.

Sections 2 and 3 motivate and describe the con-

currency annotations, Ihcir interdcpendcncc and
their interplay with inheritance. Delayed cxccution
of operations on objects and its relation lo cxccp-
tions is the subject of section 4. Contcnlion on ac-
cess to objects raises scheduling questions, to be

discussed in section 5. Our work on concurrent
object-oriented programming is part of a larger cl-
fort to support the distributed execution of objcct-
oriented programs in heterogeneous environmcnls
(project HERON). This conlcxt and ~hc status of
the project will be dcscribcd in section 6. Com-
parison with related work can bc li)und throughout
the paper. For an overview on current Ircnds in
concurrent object-oricnlcd programming see
[Papalhomas/Nicrstrasz 9 1] and [Agha ct at. 9 I].

2 Inter-object concurrency

Before turning to Eill‘ct we inlroducc an informal
object model together with sonic basic tcrminotogy,
trying to capture most of the commonly used no-
tions (or object-oricnlcd concurrency while avoid-
ing any bias towards a specific language.

2.1 Operations, activities and active objects

Each class has a set of operrrtiorrs: they define pos-
sible state transitions of any given object of thal
class from one abstract state to another; Ihcy also
provide for informalion Ilow hctwccn the ob.ject and
its cnvironmcnt. How this is accomptishcd dcpcnds
on the rcprcscntation (thc concrctc st31c) and is
described by the co& of the class. For Ihc present
discussion we do not distinguish bclwccn “class”
and “type”. Remember, howcvcr. that the notions of
inheritance and subtyping arc not identical [Cook ct
al. fw [America/van der Linden 901
[LaLonde/Pugh 911. It should also bc kcpl in mind
that it is crucial for the dcvctopmcnt process not
only to distinguish hclwccn ;I class and its signarurc.
but also to ctcarly idcntilj/ its spccitication.

An activation of an operation is catted an rrcrivif~~.
At any given time, an object is cithcr irlle, i.c.. with
no current activity, or blu~j, i.c., thcrc is one activity

328

or multiple concurrent activities. Note that con-
current activities of an object may have a combined
effect that cannot be achieved by any serial execu-
tion of those activities. If a class imposes no restric-
tions on multiple activities for its objects, it is
called a concurrent clnss; an object of that class is
called a concurrent object. If multiple activities are
not allowed the class is called ntomic (and so are
the objects).

An activity starts when a corresponding request has
arrived and is accepted by the object. An atomic ob-
ject will accept a request only when it is idle. We
can think of two ways of how requests are gencrat-
ed:

1. A request is issued by another object through
operation invocntion. The originator of the in-
vocation is called the clierzt of that invocation,
the invoked object is called the server.

2. An autonomoc~s operation issues a request for
itself as soon as the object has been crcarcd
and initialized. When the activity terminates
the request is re-issued. An autonomous
operation has an empty signature. A class or
an object that has autonomous operations is
also called autonomous.

A request that has been issued but not accepted yet
is said to be pending. When an activity terminates
it generates a reply (if the operation has no result,

the reply carries no value)‘.

Invocation raises the issue of how the client activity
and the server activity are related. Sequential se-
mantics postulates nested execution: after having
generated the request the client activity waits for Ihc
reply. But in a concurrent environment the client
may also be allowed to proceed after the acceptance
- or even immediately after the invocation - and to
synchronize with the reply later, if necessary. This
is commonly known as client/server nsynch~~~y. If
asynchrony is declared a property of the operation
(as opposed to being caused by the client), the
operation is called mynchrono~~s, as is the

’ We exclude rhe possibility of sending a reply bc-
fore termination, for reasons to be explained later.

329

corresponding class and its objects. Note lhat a
class/object can be both autonomous and asynchro-

nous.

An object that is autonomous or asynchronous is
called an ncrive object; the others are called pclssive.
Active objects are sources of a varying number of
concurrently executing activities in a running sys-
tem. Note that we treat passiveness vs. activeness
on the one hand and atomicity vs. non-atomicity on

the other hand as independent issues (in contrast to
other approaches, known from literature). Non-
atomicity means intrtr-object concurrency whereas
activeness causes irlter-object concurrency. We
avoid notions like “process” or “lhread” and dcrer
the question of how to implcmcnl aclivc objects un-
til later.

There are ways to simulate autonomy by asynchro-
ny, but it is not natural to do so, especially when in-
hcritance is involved. Autonomy makes it possible
to model autonomous enlitics which need nol bc
triggered from the outside in order to become ac-
tive. Asynchrony is mainly used to achicvc spccd-
up, which of course dcpcnds on Ihc purallcl cxccu-
tion abilities of the underlying system architecture.
Autonomy causes Irorimrltrrl comzurrer~cy whereas
asynchrony causes verricrrl co//c1uwIfcy (within a
functional hierarchy).

2.2 Asynchrony

In E(ffil an operation is reprcscntcd by an cxportcd
feature, i.e., ;I routine or an altrihutc. Functions and
attributes deliver results, procedures do not. The
two classes involved in a clicnl/server relationship
between objects arc called client class and supplier
class. As Eil‘l%I is seclucntial, there arc no auto-
nomous or asynchronous opcralions, and consc-
quently no active objects.

An obvious way to interpret Eiffcl code as con-
current code is to consider trll exported routines
asynchronous and to use Irrzjj .s~~/rc/lrl~rrizrrrio,l: upon
invocation of a function a result is returned immedi-
ately, but this result is just a proxy for the expected
reply; later on, the first operation on that proxy im-

plies a synchronization with the delivery of the real
result upon termination of the corresponding activi-
ty. Similar techniques are known from other
languages [Papathomas/Nierstrasz 911; Eiffel// uses
the term wait-by-necessify [Caromel90].

Now while it is certainly possible to write meaning-
ful concurrent programs in such a variant of the
language, serious objections remain. First, due to
the rather fine-grained concurrency caused by a
plentitude of small routines, efficiency will most
likely be so poor as to defeat the very purpose of in-
troducing concurrency in the first place. Secondly,
and at least as important, writing programs that
behave correctly under the concurrent interprctalion
will not be easy. The programmer has to be very
careful to avoid unplanned interference between the
concurrent activities. Such interference looms
everywhere, even if the system does not contain
concurrent objects. The innocent-looking code

r := server.computel(y);--async.--

compute2 (z);

r.p; -- synchronization --

r.q;

may have weird effects if server or y are in-
volved in computea. The most important point,
however, is that the concurrent semantics of lhis
code may be so different from its sequential seman-
tics that we miss our goal - reuse across the
sequential/concurrent boundary. In EiffelN asyn-
chrony is explicit: it is provided by PROCESS ob-
jects only. Unfortunately, though, this ties asyn-
chrony to atomicity.

Rejecting implicit asynchrony for CEiffcl, we at-
tach an asynchrony nnnotntiorz to a routine that is to
be executed asynchronously under concurrent in-
terpretation. The annotation is written as a com-
ment - -v-- which is ignored under sequential in-

terpretation2. The v may be read as a downward
arrow or as “vertical concurrency”. The following

2 We pretend that an Eiffel comment which SI:UIS
with -- also ends with --. This is not so; i(cncls with
the line end. But observing this woukl force us to USC a
poor layout in the examples below.

example demonstrates the use of the annotation:

computel(y: Tl) : T2 is --v--
do end; -- compute1 --

Both the class and the objects arc said to bc asyn-
chronous in this case. After an invocation of com-
putel the client proceeds immcdiatcly, even be-

fore the request is accepted’. Lazy synchronization
is used in claiming the result, if any. - The annota-
tion is ignored in local calls of the routine (i.e., calls
from within the class).

Note that asynchrony is not just an implcmcntation
property of an operation. The client must know
about asynchrony in order to avoid undesirable in-
lerfercnce with the asynchronous activity. Consider
the alternative approach where a client uses a ,li,,-k
operation for introducing ad-hoc asynchrony. This
leaves the client in control; but it is inappropriate in
those casts where client and scrvcr have lo
coopertrte to achieve a common goal which means
that “intcrfcrcncc” is mandatory rather than unwant-
cd. Bcsidcs, declaring operations asynchronous al-
lows for a more efficient implcnlcnlation than ad-
hoc forking. For thcsc reasons asynchrony is intro-
duced as a property of an opcralion ralher than the
effect of a fork operation. In any cast, asynchrony
must be considcrcd part of the spec(jcatiorr ol’ ;I
class.

In the absence of intcrfcrencc, the asynchrony anno-
tation does not change the semantics of operation
invocation. This is also lruc t’or many kinds of
“weak intcrfcrencc” based on commutative opcra-
tions on shared ohjects. As pointed out above, it
cannot be upheld for all cases of inlcrfcrcncc.

3 As opposecl Lo :I “synchronous scncl” or a
rcndczvous-like inlcraclion bclwecn clicnc and scrvcr
lhis requires hufl’cring 01’ rcqucsts hut is bcclcr suilctl for
distriburcd irnplclnenl;~lion (cf. scclion S).

330

2.3 Autonomy

There is no satisfying way of automatically idcnti-
fying autonomous operations under a concurrent se-
mantics. Viewing non-exported routines with an
empty signature as autonomous is about the closest
we can get. But this would sometimes force us to
introduce dummy signatures and thus would also
hamper reuse of existing sequential classes.

Our choice for CEiffel is again using an annotation.
The autonomy annotation is written - - >- -. The
annotation can only be attached to a routine with an
empty signature, as in

action is -->--

do end; -- action --

Under concurrent interpretation, an autonomous
routine generates requests for itself as mentioned
under 2.1.2. If it is exported, additional rcqucsts
may be generated through invocation by clients
(which proceed immediately, as with an asynchro-
nous routine).

A class may feature several autonomous routines.
Also, there may be both asynchronous routines and
autonomous routines. Each routine, however, is ei-
ther synchronous or asynchronous or autonomous.
Let us consider the example of a class Moving
which captures properties of moving bodies in two-
dimensional space; it might be used in a simple ani-
mation system. The velocity of a Moving object
can be “remotely controlled”. The given code ig-
nores the actual display programming and any
alignment with real time.

class Moving

creation create
feature -- interface --

position: Vector;

setVelocity(v: Vector) is

do velocity.set(v.x,v.y) end;

feature {> -- hidden --
velocity: Vector;

stepTime: Real;

step is -->--
do position.set

(positi0n.x +
velocity.x*stepTirne,
positi0n.y +

velocity.y*stepTime) end;

create(startingPoint: Vector;

timeunit: Real) is
require timeunit > 0

do position := startingpoint;

stepTime := timeunit end;
end -- Moving --

Note that Moving must be atomic (it is atomic
indeed, as explained in 3.1 below). If it were con-
current, overlapping setvelocity activities
could have nasty effects: concurrently setting the
velocity to (0 , 1) and (1, 0) might produce the
velocity (0 , 0) (depending on the implen~cntalion
of Vector).

Asynchronous and autonomous operations offer
several advantages over more traditional concepts
such as a “body” describing the lifelong bchaviour
of an active object (as in Concurrent C++ and Eif-
fel//; see also POOL [America 871 [America X9]
and ABCL/l [Yonczawa ct al. 871). First, as a body
constitutes a permanent thread of control, con-
current activities within an object are cithcr cxclud-
cd or have to bc created explicitly by the body (by a
mcchanixm similar lo 11~ detach in SINA).
Secondly, cvcry rcqucst musl bc explicitly acccplcd
by the body (except if the body is omitted - but then
the object cannot be autonomous). This is not only
cun~hcrsonic for the programmer, it is incompatible
with multiple inheritance, because the body has to
be rcdctincd; cvcn with simple inheritance,
redefinition is almost always required. A further
disadvantage is the fact that funclional hierarchies
of such objects are prone to the same pitfalls as
known from ncstcd monitors.

Autonomous opcralions do not suf‘fcr from these
problems. Note that the semantics of an auto-
nomous opcralion is !ro[identical to that of a body
conlaining a corresponding loop. It is also
hcnclicial that asynchrony is not tied to the presence

331

of a body because asynchrony and atomicity are in-
dependent issues.

Consider a non-autonomous version of the class
Moving where step would be exported and the
steps of a moving object would have to be driven by
an external force. Such a class is easily upgraded
into an autonomous version. Vice versa, the aulo-
nomous version is readily reusable in a sequential
environment.

Note that an autonomous class can be speci'ed just

like a sequential class, only with additional men-
tioning of which operations are autonomous. A
client has to be aware that the server can undergo
spontaneous state changes, as if “dacmon” clicnrs
causing these changes were present.

2.4 Asynchrony, autonomy and inheritance

Inheritance works for asynchronous and auto-
nomous routines as for any other feature. Let us
look at a simple example. Imagine a class Beep-
ing that captures the property “repeatedly gcncrat-
ing a beep sound” where the beeping can bc turned
off and on. A simple version is

class Beeping

creation create
feature -- interface --

on(b: Boolean) is
do beepon := b end;

feature {> -- hidden --

beepon: Boolean;
sound: Speaker;

beep is -->--
do if beepon then

sound.beep end end;

createcs: Speaker) is
require s /= Void

do sound := s end;
end -- Beeping --

Now if we want to capture the properties of objects

both moving and beeping WC can USC multiple in-
hcritance. The resulting class has several synchro-
nous routines and two autonomous routines. By in-
troducing additional attributes we can design, say, a
class Mouse that captures the properlies of a - still
rather abstract! - rodent:

class Mouse

inherit
Moving

Beeping

rename treat e
as mcreate end;
rename treat e
as bcreate end

creation create

feature
end -- Mouse --

Fcaturc adaptation (like renaming, redcfinilion,
changing the export status etc.) applies to asynchro-
nous and autonomous rourines as to any other
feature. Redefinition and cl‘litcting (01’ a dclcrrcd
function), collectively known as rd~cl~rrc~fiorr.

deserve special mentioning. Changing the con-
currency property in a redcclaration is allowed,
allhough rare. Typical cases arc:

- A deferred routine carries no annotation. The
corresponding effective routine is marked

--V-- .

- An effective routine is marked --v- -. A ma-
jor reorganization of some features allows the
former routine to be redcclared as an attribute
(which never carries a - -v- -).

Attaching a concurrency annotation IO ;I dcl‘crrcd
routine is not prohihitcd, although it is 01‘ mere dcc-
lamatory value. E.g., the asynchrony anriolaIiori
would specify that the rouline has to cooperale with
the client, as mcntioncd in 2.2.

Note that an inherited routine can have difl’erent
concurrency properties in dill‘ercnt heirs. E.g., let C
be a parent ol A and B, with a del‘erred routine
op. A might d&arc op asynchronous while B
might not. Due to the polymorphism WC cannel lcll
whether the call c . op (wilt1 c of lypc C) will
generate a synchronous or an asynchronous activily.
Thus, the situation is safe only if A's implcmcnta-
tion of op is interference-free (2.2).

332

3 Intra-object concurrency

3.1 Compatibility

Under sequential interpretation all classes are de
facto atomic. This property should be maintained
under concurrent interpretation &ess concurrency
is explicitly allowed. Declaring two operations
compatible allows them to be executed concurrent-
ly. Compatibility is declared by means of compcrti-

bility annotckms - -11 . . . -- attached to the
relevant routines. E.g., we might find the following
declarations in a class Queue written in CEiffel:

enqueue (x : T) is--lldequeue, length--

do end;

dequeue: T is--lIenqueue, length--

do end;
length: Integer is--II--
do end;

Compatibility has nothing to do with the
specification of a class. The annotations express
that the class has been implemerzted in such a way
that a certain overlapping of activities (e.g., of an
enqueue activity and a dequeue activity) can
safely be allowed, i.e., does not violate the
specification of the class. Compatibility is always a
symmetric relation; redundant compatibility infor-
mation can be omitted in the annotations. If no
name is given in an annotation, the routine is com-
patible with itself and all other routines annotated in
this way. An operation implemented as an attribute
is “implicitly annotated” with - -II- -, The explicit
--II- - is typically used for read-only opcralions
which do not change the state of the object.

A finer granularity of the compatibility relation can
be achieved by interrelating requests rather than
operations. This takes the parameters into account,
as in

update(k: Key; d: Data) is
--II update(x,y) if x/=k,

lookup(x) if x/=k --

It causes more overhead but can increase the potcn-
tial parallelism considerably and thus may be hclp-

ful on certain parallel architectures. The syntax of
an individual element in a compatibility annotation
is

Unqualificd~call \ if Expression 1

As a central property of CEiI‘fcl, compatibility an-
notations NY inrieperlderlt of asynchrony and auton-
omy annotations. E.g., we might add --v-- to the
declaration of enqueue (although it is probably
not worth the effort, given the simplicity of the
operation). This implies the strict independence of
intra-object concurrency and inter-object concurren-
cy as postulated in 2.1.

A general compatibility annotation - -II- - can be
attached to the class head; this is shorthand li)r cx-
pressing that cvcrything is compatible. i.c.. the
class is cnr~currmt. If no compatibility annotation
and no expofled attributes arc present, the class is
atomic. A class that is neither atomic nor fully con-
current is said to be sen7i-corlcrlrr~rI[.

3.2 Controlled objects

Wilhin one program, the annotations in a class arc
obscrvcd or ignored on a per-object basis. Whcthcr
an object is going to behave according to the
sequential or the concurrent interprelation of its
class is determined by the

corm-01 trlmottrtiorl - - ! - - .

The annotation is attached to the declared type 01’ an
entity, as in

q: Queue[Message] --!-- ;

It affects the creation of q, declaring that the ob-

jcct4 is to be corll~)lled, i.e., that the annotations
are in effect. III addition to object-specific control-
ling, there is also class-specific controlling: - - ! - -

can be attached to a class head; this pauses all ob-

jects of that class to bc controlled.

4 Not tM if’ Queue is ~1 "cxpa~hcl ~ypc" 111~
crcalion is ilnplicit md q clcnotes lilt otjccl. II' Queue

is not cxpancltid, lhc object 1nus1 he crcalcd cxplicilly and
q clcnotcs a relcrence to the objccl.

333

If a class is not fully concurrent, the control annota-
tion causes a co?zcurrellcy control scheme to take
effect. For our semi-concurrent Queue, appropri-
ate locking mechanisms are automatically built into
the object. If Queue were atomic, q would refer
to an atomic object (which is akin to a monitor or a
sequential process).

Locking in CEiffel is a generalization of read/write
locking as employed in Distributed Eiffel
[Gunaseelan/LeBlanc 911. When an atomic or
semi-concurrent object is busy, requests that are in-
compatible with existing activities remain pending
as defined in 2.1. As soon as the termination of an
activity causes requests to become eligible for ac-
ceptance a standard scheduling strategy applies:
pending requests are accepted in arrival order
(FCFS); for details see section 5.

Object-specific controlling is rare. Most objects of
user-defined classes are not controlled, in particular
the vast amount of sequentially used objects in a
program. Also note that there is not even a riced to
control every object that is shared among con-
current activities. The usage pattern of a shared ob-
ject ultimately determines whether control is neces-
sary or not.

The basic classes Integer, Boolean etc. arc
atomic and controlled; this is implemented in
hardware (indivisible read/write operations). The
library classes Array[Tl and String arc

atomic but not controlled.

3.2 Compatibility and inheritance

The properties of an object are determined by its
class, but also by all ancestors of that class. Thus, if
inheritance is involved, the adjectives ~ro/~ic or
concurrent do not necessarily carry over from a
class to its objects.

If class B inherits from class A, the text of B may
include compatibility annotations referring to inher-
ited routines. A redecltrred routine may be annotat-
ed differently from the original. Wilh rr~.rtltiple irr-
izeritmce, any routine inherited iiom one parent is

compatible with any routine from any other parent
(unless we have repeated inheritance with sharing,
or deferred routines are involved).

Remember that all classes implicitly inherit liom
the universal class Any. This class provides rou-
tines for cloning, copying and comparing objccls;
reading of entire objects is involved here; copying
also involves writing. Reading an entire object is
compatible with itself and with all other operations
explicitly or implicitly annotated with - -11. . . --.
No compatibilities are declared for writing an entire
object.

The compatibilities introduced by declaring an heir
concurrent (altaching - -)I- - lo its head) do in-
volve trll inherited operations. Objects of such a
class are fully concurrent, i.e., thcrc is no con-
currency control.

4 Guarded classes

4.1 Preconditions and delays

An operation with a non-cmply precourliliorr
rcprcscnts a partial funclion wirh a domain charac-
terized by the precondition. A prccondi(ion can
state consistency requirements for parameters or
may restrict the states in which the operation can
meaningfully be executed; it may also involve both
parameters and state.

A violated precondition should raise an exception in
a scqucntial environmcnl. For a shared ob.jccl in a
concurrent environment, a precondition involving
the state should somcrimes act as a gmrd rather
than a source of exceptions: an incoming request
should be cfelcryerf if, and as long as, the precondi-
tion is violated l/~rl can be satisfied by changing the
state. A delayed request is pending (as defined in
2.1) and cannot be accepted until the precondition is
satisfied. The rationale for delaying is that if slale
is involved the precondition might become satisfied
Ihrough the ePfccls of olhcr acrivilics. 01‘ course,
[here is no guarantee li)r lhis, and the issue has IO be

334

studied in more detail. We will come back to this
in a moment.

A classical example is the finite queue. Overllow or
underflow of a sequential queue should raise an ex-
ception. But under concurrent interpretation, a
shared queue should act like a message buffer
where delays prevent overflows and underflows. A
generic Eiffel class Queue might look like this:

class Queue [Tl

feature
enqueue (x: T) is
require length < maxlength
do end;

dequeue : T is
require length > 0

do end;

maxlength: Integer is . . . ;

length: Integer is

do end;
.

end -- Queue --

This class has both a sequential and a concurrent in-
terpretation, the only difference being exceptions
vs. delays. Note that if we wanted to declare en-

queue (or even dequeue) asynchronous we
could do so, but, as mentioned in 3.2, it is probably
not of much use.

Since the class is atomic, operations on a controlled
Queue object behave like conditional (better “dc-
layed”) critical regions and the object behaves like a
delayed monitor with standard scheduling: acccpt-
able requests are served in arrival order. In this

case, the favourable moment for re-evaluating the
preconditions of delayed requests is when an uctivi-
ty terminates. We also use this technique for non-
atomic objects, for efficiency reasons. liemcmbcr
that the cost of reevaluation can be kept low by ap-
propriate compilation techniques [Schmid 761.

by the fact that precondition evaluation may overlap
with other activities. This may even cause different
values to be observed for an attribute that is referred
to several times in a precondition. But also
remember that sensible non-atomic implementa-
tions of objects do exist and that highly parallel data
structures are an active research subject

[Hcrlihy/Wing 901 [Herlihy 901. In fact, the above
Queue has a straightforward semi-concurrent im-
plemcntation as suggested by the compatibility an-
notations in the example in 3.2.

Preconditions can favourably be used in conjunc-
tion with autonomous operations. Actually, they
are the primary means for controlling autonomous
opcralions. E.g., the autonomous operation beep

in the class Beeping is much hcttcr cxprcsscd as

class beep is -->--

require beepon

do sound.beep end

In some concurrent languages an activity can send a
reply before it terminates; this allows the client to
continue while some “postprocessing” is performed
by the server. Ada is an early example for this,
POOL is anolhcr one. We cannot support this be-
cause it is incompatible with the Eiffel style of re-
turning a result (by assi@ment to the predclincd en-

tity Result). But we can easily simulate it by
splitting the operation into a replying operation and
a delayed autonomous operation. (Admilledly, this
amounts to misusing horizontal concurrency for
vertical concurrency, and it negatively aKects reusa-
bility: the sequential intcrprctation is unusable
without a redefinition of the replying operation.)

A typical example is a Repository object

rcscmbling a cloak-room: items can hc dcposiWd in

cxchangc for a “ticket”; the item is actually
“stowed” aticr handing out the ticket. When pick-
ing up the item later, the ticket has to bc prescntcd

(and is invalidalcd).

It should be kept in mind that in non-atomic objects
all the usual interference problems arc compounded

335

class Repository[Cl
feature

depositlitem: C) : T is
require SpaceAvailable

and place = Void

do place := item;

Result := getTicket end;

stow is -->--
require place /= Void
do

-- stow contents of place --

place := Void end;

pickuplticket: T): C is
require ticket.valid

do
-- hand out item and

invalidate ticket -- end;

.
end -- Repository --

For a shared Repository object it is obvious
that the preconditions of deposit and stow,
referring to the object’s state, must cause delays if
violated. It is equally obvious that violation of the
precondition of pickup must raise an exception.

4.2 Delays vs. exceptions and the delay annota-
tion

A problem arises with a private Repository ob-
ject: violation of the precondition of deposit
should raise an exception if not SpaceAvail-

able or else should cause a chhy if not
place=Void.

A similar problem occurs with a slighlly diffcrcnt
version of Repository where not even autono-
my is involved:

depositcitem: C) : T is
require SpaceAvailable

do end;

pickuplticket: T): C is
require validtticket)
do end;

Tickets are not reused; a ticket is invalidated by Ihe
very act of picking up (i.e., removing) the
corresponding item. The precondition of pickup
is state-dcpcndent: the routine valid checks for
the presence of an item associarcd with the given
ticket. If this check fails, an exception has 10 bc
raised, regardless of whether the ob.jccl is private or
shared. So with a shared object deposit must
produce delays while pickup must produce cx-
ceptions - although both preconditions refer to the
state.

The examples demonstrate that the scar& Ihr a
completely automatic decision for delays vs. cxccp-
tions is i‘utilc. This motivates Ihe inlroduction of a
rfelrry ~IIWO~~~~~O~~, wriltcn - - @ - - , which can bc in-
scrted bctwcen two asscrfion clauses in a prccondi-

tion ‘. IL divides rhc precondition into two parts, the
clocker and the gr4rrrrl. The checker of an aulo-
nomous routine must be empty. An objccr invoca-
lion that violates the precondition causes an cxccp-
tion if an asserlion clause in Ihe checker is violalcd;
otherwise, a delay occurs. A class that carries
guards is called a grm-tied clrrss; its objcc& are
called grmdd ohjjrm.

Several preconditions in the above examples have
to be annotated using --@-- . A variant of en-

queue might read

enqueuetx: T) is

require x /= Void;

--@-- length < rnaxlength

do end;

The prccondirion 01‘ the Iirst version of the depo-
sit opcralion in Repository may hc wriltcn
cirher

’ Rc~nembcr that the keyword require is t’ol-
lowed by a scqucnce of asscrlion cl~scs scp~:~lcd by
semicolons which rcprescnt semi-strict “and tl~cn” opera-
tars L .

336

require --@-- SpaceAvailable;

place = Void

or

require SpaceAvailable;
--@-- place = Void

depending on the desired semantics.

4.3 Redeclared preconditions

Redeclaration of a routine may involve weakening
the precondition. If an inherited routine with
precondition

require Al;...;An

is redeclared with

require else Bl;...;Bm

the effective assertion for the routine is

Bl;...; Bm or else Al;...;An .

If this assertion turns out to be violated, the request
is delayed if at least one of the disjuncts satisfies the
criterion for delaying given above.

As an example, consider a class that managcs
printers of different types. There is a fast “stan-
dard” printer and a slow “special” printer that has
special capabilities (say, colour) but includes the
capabilities of the normal printer. An operation

gettneedspecial: Boolean;

size: Integer): Printer is . . .

asks for a printer which is chosen on the basis of
availability, capabilities and the size of the printing
job. The precondition is

require size > 0;
--@-- specialidle or standardidle;

needspecial implies
specialidle

If we want to accomodate a third printer, say a slow
standard printer, we use inheritance and redefine the
get routine. The precondition is weakened by

require else sizer0 and size<5000;

--@-- not needspecial and
thirdidle

Only size<=0 raises an exception, both with the
original and with the redeclarcd get.

5 Scheduling

Pending requests raise the question 01‘ how the ac-
ceptance of requests is to be scheduled. The de-
fault scheduling strategy is basically FCFS: accept-
able requests arc accepted in the order they wcrc is-
sued. This strategy prefers a pending rcqucst, as
soon as it becomes acceptable, over a new accepl-
able request. It cannot, of course, prevent indelinite
delays.

We give a precise description of the default
scheduling strategy. Associated with cvcry object
that is controlled or guarded (or both) is a r~,llne.sf
list which at any time contains the pending requests
for that object. A pending request is much like a
variant record, with the operation corresponding to
the variant, the formal arguments to lhe record
fields and the actual arguments to the aclual record

components.

When a rcqucst arrives at an object it cnlcrs Ihc rc-
quest list. If the compatibilities allow a corrcspond-
ing activity to be started, the activity is tentatively
started, evaluating the checker. If the checker is not
satishcd, the request is removed from Ihe request
list, the activity is aborted and an exception is
raised. In any case, the client is allowed to contin-
ue. Then the guard is checked. If it is satisfied, the
request is removed from the request list and the ac-
tivity continues (acceptance); if not, the activity is
aborted and the rcqucsl remains pending (delay).
When an activity terminates. the pending requests
are scanned in arrival order, and each rcqucst is

treated just as dcscribcd for an arriving request.
The following pseudo-code gives a slightly more
precise dcscriplion. Activations oL‘ request
arrival and activity termination arc
cxccutcd under mutual exclusion.

337

request arrival:

enter request list; check .

activity termination:

for each pending request(FCFS)

do check .

check:,

if compatible then

if checker ok then
if guard ok then

remove from request list;

accept end
else remove from request list;

raise exception end end .

If non-FCFS scheduling is required it must be pro-
grammed explicitly. This task can be alleviated
considerably by special language support which by
its very nature leaves the realm of a sequential pro-
gramming language. Annotations cannot do the job
any more. We take an approach that is based on
read-only access to the request list. This allows to
refer to pending requests either in preconditions or
in special scheduling routines and blends well with
inheritance. - A detailed discussion of explicit
scheduling is beyond the scope of this paper; the
reader is referred to [Lijhr 9 11.

This view is tied to the notion of a server process
and, if embodied in the programming language ralh-
er than conlined to system-level processes, leads to
concurrent application programs. Concurrency and
distribution combined allow us to write parallel pro-
grams that exploit both shared-memory and nct-
working parallelism.

Project HERON is an effort to dcvclop a platform
for the distributed execution of object-oriented pro-
grams in heterogeneous networks. It is a language-
based approach to what is called Open Distributed
Processing (ODP) by the IS0 and the ECMA [ISO
901 and covers mainly the com~rllrrlion viewp~i~/
and the elzgirreering viewpoir~r of OW.

HERON’s basic tenet is that the concurrency struc-
ture of an application system is not necessarily rc-
lated to its distribution structure The way dil‘fcrcnt
parts of the system are distributed among different
address spaces, and whcrc in the network these ad-
dress spaces are instantiated as system-level
processes (possibly thrcadcd) is not dctcrmincd by
programming but by an independent configuration
procedure. HERON uses Eiffel and CEiffel both as
the reference languages for application program-
ming and as the implementation languages for the
run-time support. The prc?jcct relics on cxpcricncc
gained from DAPHNE, a module-based system for
distributed execution of scqucntial Modula pro-
grams [Liihr et al. 881.

6 Context and perspective

6.2 Implementation issues
6.1 Project HERON

Smooth integration of sequential and concurrent
object-oriented programming is of particular impor-
tance if distributed execution of programs is to be
supported in a distribution-transparent manner. Ba-
sically, we take the view that distribution and con-
currency are independent issues as far as the appli-
cation programmer is concerned. This attitude is
rooted in the remote procedure call paradigm (RX)
which allows transparent distribution of sequential
programs. But then a slightly different view of
RPC, associated with the term “remote invocat,ion”,
is that of an inK A-process communication facility.

A CEiffel program can bc cxccutcd in a threaded
address space. But only the most nai’vc implcmcn-
tation would come up with a one-to-one corrcspon-
dence between activities and threads. Reusing
threads from a common pool is an obvious oplimi-
zation. But in some casts the compiler will be able
to rccognizc that several activities can share a
thread:

1. Non-remote concurrent passive objects: A
server activity shares the client’s thread, and
object interaction is implemented as procedure
call.

338

2. Atomic active objects: One thread is used lhr
all activities of an object, and object interac-
tion is implemented as message passing, possi-
bly across address space boundaries.

3. Folding atomic active objects: If there is a
plentitude of objects of the same class (think,
e.g., of a video game) and the underlying ar-
chitecture is not highly parallel, all activities of
those objects could be handled by one thread.

4. Chaining asynchronous activities: If an asyn-
chronous activity ends with the invocation of
another asynchronous operation, the same
thread can be used [Liihr 921.

HERON will support both single-address-space exe-
cution and distribution of programs among several
threaded address spaces which may reside on dif-
ferent machines. Any remote invocation, i.e., an in-
vocation across an address space boundary, will in-
volve different threads. As opposed to Distributed
Eiffel, the syntax and the semantics of CEil’l‘el are
not concerned with distribution issues. Regarding
class texts and object invocation, there is no diffcr-
ence between local and remote objects. A
configuration tool takes care of distribution issues
like stub generation and construction/placement of
load images on different nodes of the heterogcncous
network.

We have implemented a threading library for Eiffel
which is based on coroutines and asynchronous
Unix (SunOS) system calls. In order to accomodate
heterogeneity, we have striven for a portable design,
isolating a front-end from a system-specific back-
end; the latter can take advantage from operating
systems offering a true threading facility to user
programs (this is important for multi-processor ar-
chitectures).

A prototype version of a concurrent Eiffcl system is
being implemented as a precompiler which gcn-
erates threaded Eiffel code. Concurrently, run-time
support and a stub generator are being dcvcloped
for distributed execution.

6.3 Conclusion

The usage of concurrency annotations enables us to
write classes both representing correct sequential
Eiffel code and allowing for a concurrent interpreta-
tion. In most cases, a class can be used both in a
sequential and in a concurrent context, and inheri-
tance causes no surprises in concurrent programs.
The annotations are:

--v-- and-->-- : r asynchrony and autonomy
--)I. . . -- : compatibility
--@-- : delay on assertion violation
-- l-- . . controlling

Inheritance can be employed for reusing a sequen-
tial class carrying no annotations in the design of a
modified class fit for usage in a concurrent setting.

We noticed that Eiffcl’s comment syntax is a minor
technical nuisance fi)r Llic annotations. We
idcntilicd another weak point in Eit‘fel: the ~cch-
nique used Ior returning the rcsull of II function - as-
signation to Result - is incompatible with post-
processing li la POOL.

So why Eiffel? The decisive argument was the
availability of assertions and their integration with
inheritance. We emphasized the close conceptual
relationship between preconditions and guards and
were able to associate delay semantics with an Eil-
fcl precondition by mcrc introduction of’ the delay
annotation. This approach is consistent with inheri-
tance and the weakening of preconditions on
redefinition.

Acknowledgements

[Agha ct ~11. 911 G. Agha, C. Hewitt, P. Wcgner, A.

Yonezawa (eds.): l’roc. OOPSLA-lxOOP ‘90
Workshop on Object-Based Concurrent Programming,
Ottawa, 1990. ACM 0013 Messenger 2.2, April 199 1

339

[Aksit et al. 911 M. Aksit, J.W. Dijkstra, A. Tripathi:
Atomic delegation: object-oriented transactions. IEEE

Software, March 199 1

[America 871 P.H.M. America: POOL-T: a parallel
object-oriented language. In [Yonezawa/Tokoro 871

[America/van der Linden 901 P.H.M. America, F. van
der Linden: A parallel object-oriented language with in-
heritance and subtyping. Proc. OOPSLNECOOP ‘90,

Ottawa, ACM 1990

[America 891 P.H.M. America: Issues in the design of a
parallel object-oriented language. Formal Aspects of
Computing 1.4, 1989

[Caramel 901 D. Caromel: Concurrency and reusability:

from sequential to parallel. JOOP 3.3,
September/October 1990

[Colin/Geib 911 J.-F. Colin, J.-M. Geib: Eiffel classes for
concurrent programming. Proc. TOOLS-4, Prentice-lIaI1
1991

[Cook et al. 901 W. Cook, W. Hill, 1’. Canning: Inhcri-
tance is not subtyping. Proc. 7. Annual ACM Symp. w

Principles of Programming Languages, 1990

[Gehani/Roome 881 N.H. Gehani, W.D. Roome: Con-
current C++: concurrent programming with class(es).
Software - Practice & Experience 16.12, December 1988

[Gunaseelan/LeBlanc 911 L. Gunaseelan, R.J. LeBlanc:
Distributed Eiffel: a language for progmmming multi-
granular distributed objects on the Clouds operating sys-
tem. Report 9100, College of Computing, Georgia Insti-
tute of Technology, 1991

[Herlihy 903 M.P. Herlihy: A methodology for imple-

menting highly concurrent data structures. Proc. 2.

Symp. on Priciples and Practice of Parallel Program-
ming, ACM 1990

[Herlihy/Wing 901 M.P. Herlihy, J.M. Wing: Lineariza-
bility: a correctness condition for conctment objects.
ACM TOPLAS 12.3, July 1990

[ISO 901 ISO/IEC JTCl/SC21/WG7: Basic lieli~cnce
Model of Open Distributed Processing. Oclober 1990

[Kafura/Lee 903 D.G. Kafura, K.H. Lee: ACT++: build-
ing a concurrent C++ with actors. JOOP 3.1, May 1990

[LaLonde/Pugh 913 W. LaLonde, .I. Pugh: Subclassing f
subtyping # is-a. JOOP 3.5, I90 I

[L&r et al. 881 K.-P. L<ihr, J. Miller, I... Ncntwig:
DAPHNE - Support for distributed applications program-
ming in heterogeneous computer networks. Proc. 8. Int.
Conf. on Distributed Computing Sysrems, San Jose,

IEEE 1988

[L&r 911 K.-P. L&r: Concurrency annotations and reu-

sability. Report B-91-13, Fachbereich Mathcmntik, l:rcic

Universitdt Berlin, November 1991

[Liihr 921 K.-P. LAlr: ConcuITency annolations improve
reusability. Proc. TOOLS USA ‘92, Santa Bxb‘ara.
Prentice-Hall 1992

[Meyer 881 B. Meyer: Object-oriented Software Con-
struction. Prentice-Hall 1988

[Meyer 921 B. Meyer: Eil’fel: The Language. Prcnticc-
Hall 1992

[Papnlholnas/Niers~asz 0 11 M. Papa~homas, 0. Nicr-
strasz: Supporting software rcusc in concun-eul object-

oriented languages: exploring lhe language design space.
In: D.C. Tsichritzis(ed.): Object Composition. Centre
Universitaire d’lnfonnatique, Universitc! de Genevc 1991

[S&mid 761 HA. Schmid: On Uie effcient implernenta-
tion of conditional critical regions and Uv.2 consmction 01’

monilors. Acta Inlh-matica 6.3, 1976

[Tripathi/Aksit 8X] A. Trip&ii, M. Aksil: Comrnunica-
tion, scheduling and rcsourcc rnanagcmcnl in SINA.
JOOP 1.4, Novemhcr/Deccmhcr 1988

[Yokotcflokoro 871 Y. Yokote, M. Tokoro: Concurrent
programming in Conculrenl Smalltalk. In

[Yonezaw‘flokoro X7]

[Yonezawa et al. 871 A. Yonezawa, E. Shibayama, T.
Takada, Y. l Ionda: Modelling and programming in the
object-oriented concurrcn~ Iauguagc AB<‘111. In
[Yonezawa/‘fokoro X7].

[Yonezaw~~I’okoro 871 A. Yonezawa, M, ‘I’okoro:
Object-oricntcd CWCUI-XIII Programming. The MIT
Press 1987

340

