
The Anti-Goldilocks Debugger
Helping the Average Bear Debug Transparently Transformed Programs

Myoungkyu Song and Eli Tilevich
Dept. of Computer Science

Virginia Tech, Blacksburg, VA 24061, USA
{mksong,tilevich}@cs.vt.edu

Abstract
The practice of enhancing the bytecode of Plain Old Java
Objects (POJOs) with additional capabilities, including per-
sistence, distribution, and security, has become an indis-
pensable part of enterprise software development. The re-
sulting transparently-applied, large-scale structural changes
to the bytecode significantly complicate symbolic debug-
ging. This demonstration will showcase the Anti-Goldilocks
Java (AGJ) debugger, which enables the programmer to trace
and debug transparently transformed programs, without the
distraction of the bytecode-level enhancements obfuscat-
ing the program’s source code. AGJ executes a structurally-
enhanced program, while dynamically reinterpreting the de-
bugging output (e.g., ‘step’, ‘print variable’, etc.) to display
program information as pertaining to the original version
of the code. AGJ is based on a new debugging architecture
that leverages our domain-specific language for describing
enhancements.

A paper in the main technical program of OOPSLA 2009
[5] describes the design rationale and implementation details
of AGJ. This demonstration will showcase the functionality
of our reference implementation by using it to locate bugs
in a framework-based enterprise application from the finan-
cial industry. Using the domain of transparent persistence,
this demonstration will compare AGJ to the standard JDK
debugger, thereby highlighting the capabilities of AGJ to cut
through the morass of transparent bytecode enhancements in
order to find obscure bugs.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging—debugging aids, tracing

General Terms Languages, Design, Experimentation

Copyright is held by the author/owner(s).
OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
ACM 978-1-60558-768-4/09/10.

Keywords Debugging, program transformation, bytecode
enhancement

1. Introduction
Modern enterprise frameworks enable the programmer to
build business logic components using Plain Old Java Ob-
jects (POJOs)—application objects that do not implement
special interfaces or call framework API methods. POJO-
based frameworks have become mainstream in the enterprise
Java community, as they improve separation of concerns,
speed up development, and improve portability [3].

To provide services to a POJO, enterprise frameworks
commonly enhance its bytecode, either statically, as an ex-
tra build step, or dynamically, at class load time. A typical
bytecode enhancement constitutes a structural transforma-
tion that adds methods and fields, changes direct field ac-
cesses with setter/getter methods, adds new super classes/in-
terfaces, etc. As a consequence of such bytecode enhance-
ments, the running version of an enterprise application con-
tains functionality that has no representation at the source
code level, making the source-level debugging of enterprise
applications containing enhanced bytecode nontrivial. En-
hancements play an essential role in the architecture of an
enterprise application, as they enable POJOs to interact with
a framework—one cannot simply turn off the enhancements
to make the debugging process easier. As a result, tracing,
analyzing, and fixing buggy programs with enhanced byte-
code presents a challenge exacerbating the development of
framework-based applications.

Standard debuggers fall short when used to debug pro-
grams containing enhanced bytecode, as they attempt to
show both the original logic and the transparently intro-
duced enhancements, even though they have no source level
representation. When it comes to debugging, bytecode en-
hancement stealthily obfuscates the program, often making
it impossible to map the debugged version back to the origi-
nal source code. The programmer debugging a program that
contains enhanced POJOs can feel utterly confused and frus-
trated. Indeed, seeing your code having been stealthily mod-
ified by some external entity conjures up feelings similar

811



to that experienced by a proverbial bear from “Goldilocks
and the Three Bears” [1], with the programmer tempted to
scream in utter frustration: “Someone’s changed my POJO!”

2. Anti-Goldilocks Debugger
To help debug transparently-enhanced programs, we have
created a new debugging architecture that augments a stan-
dard debugger with the functionality required to dynami-
cally reinterpret the source code information pertaining to
enhancements. Specifically, the debugger, on demand, sym-
bolically undoes the enhancements that have been made to
the debugged code. Our implementation, showcased in this
demonstration, is called Anti-Goldilocks Java or AGJ for
short. The intuition behind the name is that we aim at coun-
teracting the actions of Goldilocks, who has meddled with
the bears’ belongings, surreptitiously altering them. By anal-
ogy, Goldilocks is a transparent bytecode enhancer.

As a fully-functional debugger, AGJ can step through the
code, set breakpoints, and print variable values. AGJ lever-
ages the Java Platform Debugger Architecture (JPDA)[6],
adding special translation modules to the standard layers of
protocols and interfaces provided by the JVM. AGJ uses a
special purpose domain-specific language, called Structural
Enhancements Rules (SER), for documenting bytecode en-
hancements. By interpreting SER scripts, AGJ dynamically
maps the executed enhanced code to the programmer written
code, undoing the enhancements on demand.

Figure 1 demonstrates the AGJ architecture, which inte-
grates a SER interpreter. To debug the enhanced bytecode,
AGJ takes as input a SER script declaratively describing the
enhancements, using it to transform the debugging output
reported to the programmer, as if the original version of the
code were being executed.

Mapping
Instruction

Enhanced
Bytecode

SER
ScriptScript

Figure 1. AGJ Architecture.

3. Demonstration Plan
From the programmer’s perspective, AGJ is a plug-in re-
placement for the standard JDK command-line debugger,
providing the capabilities to step through the code, set break-
points, print variable values, etc.

In this demonstration, the utility of AGJ will be shown by
tracking bugs in framework applications that use bytecode
enhancement as part of their software development cycle.

Example applications will include the enhancements used
by commercial enterprise frameworks and the ones used in
research prototypes.

The demonstration will start with a quick overview of
the Structural Enhancements Rules (SER) language, which
is used for expressing bytecode enhancements. SER is a
declarative, domain-specific language we have created. We
will briefly walk through the basic building blocks of SER
and show how this language can be used to express various
bytecode enhancement strategies.

Then, the main part of the demonstration will consist of
using AGJ to find several seeded bugs in two types of appli-
cations. The seeded bugs will concern the business logic of
the applications, including throwing a NullPointerException
and using incorrect calculations.

The first application calculates mortgage eligibility and
could be used by a bank. This application implements its per-
sistence functionality using the JDO framework [4], which
statically enhances the persisted classes to enable them to
interact with the framework’s runtime. The second applica-
tion is the “remoting” enhancement used in prior research
projects [2, 7] to provide remote access to a class by means
of distribution middleware.

For both applications, we will first show the program-
mer’s experience when trying to locate the bug using the
standard JDK debugger. Then we will demonstrate how AGJ
makes it easier to find the bug, by undoing the JDO frame-
work’s enhancements, which complicate the debugging pro-
cess. We aim at demonstrating how AGJ has the potential to
become an effective aid in locating bugs in enhanced pro-
grams.

References
[1] A. C. Elms. “The Three Bears”: Four interpretations. The

Journal of American Folklore, 90(357):257–273, 1977.

[2] M. Philippsen and M. Zenger. JavaParty–transparent remote
objects in Java. Concurrency Practice and Experience,
9(11):1225–1242, 1997.

[3] C. Richardson. Untangling enterprise Java. ACM Queue,
4(5):36–44, 2006.

[4] C. Russell. Java Data Objects 2.1, June 2007. http:
//db.apache.org/jdo/specifications.html.

[5] M. Song and E. Tilevich. Enhancing source-level program-
ming tools with an awareness of transparent program trans-
formations. In OOPSLA ’09: Proceedings of the 24th annual
ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, 2009.

[6] Sun Microsystems. Java Platform Debugger Architecture.
http://java.sun.com/javase/technologies/core/

toolsapis/jpda/.

[7] E. Tilevich and Y. Smaragdakis. J-Orchestra: Automatic Java
application partitioning. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP),
pages 178–204. Springer-Verlag, LNCS 2374, 2002.

812

http://db.apache.org/jdo/specifications.html
http://db.apache.org/jdo/specifications.html
http://java.sun.com/javase/technologies/core/toolsapis/jpda/
http://java.sun.com/javase/technologies/core/toolsapis/jpda/

	Introduction
	Anti-Goldilocks Debugger
	Demonstration Plan

