
Garbage Collection of Actors 

Dermis Kafura Doug Washabaugh 
Department of Computer Science Digital Equipment Corporation 

Virginia Polytechnic Institute tay2-2/b4 
and State University 153 Taylor Street 

Blacksburg, VA 24061 Littleton, MA 01460 
email: kafura@vtopus.cs.vt.edu email: washabaugh@quiver.enet.dec.com 

phone: 703-231-5568 phone: 508-952-3535 

Jeff Nelson 
Digital Equipment Corporation 

ZKO2-3/N30 
110 Spitbrook Road 
Nashua, NH 03062 

email: jnelson@tle.enet.dec.com 
phone: 603-881-0867 

ABSTRACT 

This paper considers the garbage collection of concurrent 
objects for which it is necessary to know not only 
“reachability, “ the usual criterion for reclaiming data, but 
also the “state” (active or blocked) of the object, For the 
actor model, a more comprehensive definition than 
previously available is given for reclaimable actors. Two 
garbage collection algorithms, implementing a set of 
“coloring” rules, are presented and their computational 
complexity is analyzed. Extensions are briefly described to 
allow incremental, concurrent, distributed and real-time 
collection. It is argued that the techniques used for the actor 
model applies to other object-based concurrent models. 

Keywords: garbage collection, object-based concurrency, 
automatic memory management, actors, ACT++ 

SECTION I. INTRODUCTION 

Great interest has recently been shown in object-based 
concurrent languages. These languages are considered useful 
for at least the following reasons: 

l parallelism inherent in a system of concurrent objects 
can be exploited readily by parallel architectures [Athas 
19871, 

. asynchrony among entities in the real world can be 
represented directly by concurrent objects [Kafura 
19883, 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage, the ACM copyright notice and the 
title of the publication and its date appear, and notice is giver1 
that copying is by permission of the Association for Compguting 
Machkery. To copy otherwise, or to republish, requires a fee 
and/or specific permission. 
o 1990 ACM 089791-41 l-2!90/0010-0129...$1.50 

l distributed applications can be programmed “naturally” 
using concurrent objects interacting via messages 
[Black 19871 [Yonezawa 19871, 

. conceptual economy results from a single object 
abstraction which unifies the notions of a processor 
(thread of control), memory (encapsulated variables) 
and communication (messages). 

We are interested in using object-based concurrent languages 
in applications which are distributed, embedded and time 
sensitive [Kafura 19881. 

A fundamental implementation concern for object-based 
languages is memory management. Automatic methods (i.e., 
garbage collection) for managing memory are preferable 
because: 

l programmer controlled memory management is 
notoriously error-prone [Bloom 19871, 

. a better division of responsibility results when the 
system does what it does best (manage resources) and 
the programmer does what programmers do best (design 
systems), 

. system-wide optimization of memory usage and 
memory management mechanisms is best achieved in a 
regime of automatic resource control. 

The above motivations apply to sequential as well as 
concurrent object-based languages. Additional reasons for 
using garbage collection in object-based concurrent 
languages are: 

. it is significantly more difficult for a programmer to 
correctly manage concurrent objects than passive data 
because both reachability and state must be considered, 

126 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990 



l garbage concurrent objects not only consume memory 
space but may also consume processing capacity 
making it even more imperative that garbage concurrent 
objects be identified quickly. 

. in distributed applications it is unlikely that a 
programmer could devise a correct and efficient 
distributed algorithm for managing distributed 
resources. 

As implied axrove, garbage collection of concurrent objects 
differs from garbage collection of sequential objects or data. 
Roughly speaking, an actor may be defined as garbage if it 
lacks either one (or both) of the following properties: 

l comuutnble: the actor is active or can become active 
hereafter 

. reachable. the actor can send information to or receive -A 
informalion from a “root”. 

Virtually all previous garbage collectors have focused 
exclusively on determining an object’s reachability. Notable 
exceptions are garbage collection schemes for functional, 
distributed and/or actor-based languages. 

Baker and Hewitt [Baker 19771 described a variation of a 
mark-and-sweep garbage collector for functional languages 
which collected garbage expressions. Garbage collection in 
functional languages was also explored by Hudak [Hudak 
19821 [Hudak 19831 who presented algorithms for marking a 
directed graph representing a distributed functional program. 
These algorithms can be applied to the garbage collection of 
distributed functional objects. This work is relevant because 
of the close parallel between the concurrent evaluation of 
functional expressions and the concurrent execution of 
objects. However, there are basic differences between the 
functional model and the concurrent object model: functional 
models do not have cyclic dependencies while concurrent 
objects may; concurrent objects do not evaluate to a single 
result as do functional expressions. Thus, the garbage 
collection techniques developed for functional languages are 
not directly applicable to object-based concurrent languages. 

Halstead’s garbage collector for distributed actors [Halstead 
19781 uses the concept of an actor reference tree, which is a 
set of processors and connections between processors such 
that each processor has a reference to the actor. Garbage 
collection is performed by the reducing the actor reference 
tree until it contains a single processor. A local garbage 
collector is then used on each processor to collect garbage 
actors. A drawback of this method is that it cannot detect 
cyclic garbage. The algorithms presented in this paper collect 
cyclic garbag :. 

Emerald uses an object-based language for programming 
distributed applications [Black 19871. Garbage collection in 
Emerald is discussed briefly in [Jul 19881. It is interesting to 
note that the overall structure of Emerald’s distributed 
collection system is very similar to our own (see Section 5). 
From the stmdpoint of the actor model, the principle 
limitation of the Emerald approach is that it considers only 

reachability of objects. As indicated above this is too weak a 
criterion for collecting garbage in the actor model. 

The remainder of this paper is organized as follows. Section 
2 presents a brief overview of the actor model, define 
reclaimable actors and show more explicitly why previous 
garbage collection techniques are not directly applicable for 
collecting reclaimable actors. Section 3 describes the rules 
for identifying reclaimable actors and shows two algorithms 
for implementing these rules. The computational complexity 
of the two algorithms is analyzed in Section 4. Finally, 
Section 5 briefly describes how these algorithms can be 
extended to allow for concurrent, incremental, real-time and 
distributed collection. 

SECTION II. THE ACTOR MODEL AND 
RECLAIMABLE ACTORS 

The Actor Model 

A detailed description of the actor model can be found in 
[Agha 19861. The principle features and terminology of the 
actor model which relate to the garbage collection problem 
are these: 

actor: a concurrently active object. There are no 
passive entities. Each actor is uniquely identified by the 
address of its single mail queue. 

acquaintance: actor B is an acquaintance of actor A if 
B’s mail queue address is known to actor A. 

inverse acquaintance: if actor A is an acquaintance 
of actor B, then actor B is an inverse acquaintance of A. 

acquaintance list: a set of mail queue addresses 
including any mail queue address contained in a message 
on the actors mail queue or in transit to the mail queue. 
This accounts for delays in message processing. 

topology: actors may be dynamically created and 
actors may be dynamically bound (i.e., acquaintances 
can be passed at run-time through mail messages). 

behavior: a thread of execution within an actor. 
There may be many active threads within an actor, each 
thread processing a different mail message. 

blocked actor: an actor all of whose behaviors are 
blocked. 

active actor: an actor with at least one active 
behavior. 

root actors: an actor designated as being “always 
useful.” Examples of root actors are those which have 
the ability to directly affect real-world through sensors, 
actuators, I/O devices, users, etc. 

It is important to make the following two observations. 
First, the garbage collection problem and its solution as 
presented in this paper are not limited to the actor model. 

October 21-25, 1990 ECOOPlOOPSLA ‘90 Proceedings 127 



Similar techniques should be applicable to any object-based 
concurrent model which has the following general properties: 
encapsulated objects interact exclusively via messages; the 
communication structure is not static; the state and 
acquaintances of each object can be determined. Second, the 
extended message passing primitives used in the actor-based 
language which we are defining. ACT++ [Kafura 19901, do not 
interfere with the properties just noted. 

Table 1 shows the symbols used to depict an actor system. 
An example actor system is shown in Figure 1. 

Table 1. Legend for Actor Figures 

Symbol 1 Interpretation of Symbol 

0 Blocked Actor 

0 Active Actor 

A Root Actor 

Acquaintance Arc 

To illustrate the features of the actor model and to form an 
appreciation of the complexity of determining which actors 
are garbage, consider the acto; system shown k Figure 1. In 
this figure, actors A and I are root actors and by definition are 
not garbage. It can be easily seen that actors J.K.L and M are 

garbage - they cannot communicate with a root actor. 
Whatever actions they take cannot be made visible to the 
outside world. Notice that J and M are active while K and L are 
blocked. This shows that state alone is not a sufficient 
criterion. Actor E is blocked and there is no way for it to 
become active because it has no inverse acquaintances. 
However, actor H also has no inverse acquaintances but it is 
not garbage because it is active and can communicate directly 
with the root actor I. Message from the root actor A can reach 
actors B,C,D and G. If these messages contain A’s mail queue 
address, these four actor can become active and communicate 
directly with a root actor. Hence, they are not garbage. 
Finally. actor F could send a message to G containing F’s own 
mail queue address. G in turn could send A’s mail queue address 
to F allowing F to communicate with the root actor A. SO F is 
not garbage. This example illustrates that the relationships 
between the computable and reachable criteria is not simple. 

Notice that if a traditional marking algorithm is used for the 
system shown in Figure 1, actors E,F and H are not reachable 
from a root. These three actors would be incorrectly marked as 
garbage. Also, reference counting can miss actors which are 
garbage. In Figure 1, actors J, K and L all have non-zero 
reference counts. Even though all of them are garage they 
would not be considered as garbage by the reference counting 
scheme. 

Definition of Garbage in the Actor Model 

Informally, garbage actors are those whose presence or 
absence from the system cannot be detected by external 
observation. Excluded from interest are any visible effects due 
simply to the consumption of resources by garbage actors 
(e.g., increasing response time). 

Figure 1. An Actor System 

128 ECOOP/OOPSLA ‘90 Proceedinp October 21-25, 1990 



Agha [Agha 19861 defied an actor to be garbage if it is not 
processing any messages, if it is not the target of some 
undelivered message. and if it is not an acquaintance of any 
other actor. This definition is not comprehensive - there are 
actors which, according to the informal notions given above, 
are garbage but do not conform to Agha’s definition. For 
example, in Figure 1 actor J cannot communicate with a 
“root” actor. By our understanding it is, therefore, garbage. 
However, if fulfills none of Agha’s requirements. A more 
comprehensive definition of garbage actors, given in [Nelson 
19891 or [Washabaugh 19901, is now briefly reviewed. 

A garbage actor is one which is: 

1. not a root actor, and 

2. cannot potentially receive a message from a root 
actor, and 

3. cannot potentially send a message to a root actor. 

In this definition, the term “potentially” requires further 
clarification. An actor can send a message to a root actor 
only if the actor is active and has the root actor as a direct 
acquaintance. There is a set of transformations that can 
change an actor graph from a representation of what can 
currently hapFen to what can potentially happen. The two 
transformations concern change in the state (ready, blocked) 
of an individual actor and change in the topology of the 
system of actors. First, sending a message from an active or 
root actor to a blocked acquaintance allows the blocked actor 
to become active. This transformation reflects the ability of 
an actor to aher the state (ready or blocked) of another 
actor.The second transformation occurs when a root or active 
actor sends its own mail queue address or the mail queue 
address of one of its acquaintances to another of its 
acquaintances. This transformation reflects the ability of an 
actor to send a mail queue address, thereby changing the 
topology of the actor system. 

Suppose an actor system has the above transformations 
repeatedly applied until no more transformations can be 
applied. Then, all actors which are not direct acquaintances of 
root actors in the resulting topology are garbage. 

One key property of garbage actors is that they cannot 
become non-garbage. This is because actors are only 
determined to be garbage when there is no possibility of 
communication between it and a root actor. Therefore, once 
an actor is marked as garbage, there is no possible sequence 
of transformatb3ns which would cause the garbage actor to 
become non-garbage. 

SECTION HI,. MARKING ALGORITHMS 

The marking algorithms presented in this section assumed 
that the mutatcr is halted and that all actors in the system 
reside on the same node. In the final section of this paper we 
will describe extensions which remove these restrictions. 

The marking algorithms use three colors (white, gray and 
black) which, at then end of marking, have the following 
meanings: 

White: Actors colored white are not reachable from a root 
actor. 

Gray: Actors colored gray are reachable from a root actor, 
but can not become active. 

Black: Actors colored black are non-garbage. They are 
either root actors or are both reachable from a root 
actor and potentially active. 

The colors of actors can only be darkened. Black is darker 
than gray which is darker than white. 

Coloring Rules 

Underlying the marking algorithms is a set of coloring rules 
defined in [Nelson 19891 and described in Figure 2. Rule 1 
colors black actors that can receive message directly from a 
non-garbage actor. Rule 2 colors black actors that can send a 
message directly to a non-garbage actor. Rule 3 colors gray 
actors that could be non-garbage if they could become active. 
Rule 4 colors black actors which are currently gray 
(reachable) and can have a message sent to them from some 
active actor. The actor is colored black because it has both 
the reachable and computable properties. Rule 5 colors gray 
all blocked actors which, if they became computable, could 
send a message directly to a gray actor. 

1. All actors are colored white, with the exception of root 
actors which are colored black. 

2. Repeat the following rules until no more markings are 
made: 

Rule 1. Color black all acquaintances of black actors 
Rule 2. Color black all inverse acquaintances of black 

actors if the inverse acquaintance is not 
blocked. 

Rule 3. Color gray all inverse acquaintances of black 
actors if the inverse acquaintance is blocked. 

Rule 4. Color black all inverse acquaintances of gray 
actors if the inverse acquaintance is not 
blocked. 

Rule 5. Color gray all inverse acquaintances of gray 
actors if the inverse acquaintance is blocked. 

3. Actors that are colored black are not garbage. Gray and 
white actors are garbage and can be reclaimed. 

Figure 2. Nelson’s Coloring Rules 

October 21-25 1990 ECOOP/OOPSLA ‘90 Proceedings 129 



1 
I 

3EGIN Initialization 
All root actors am placed in the black set. 
All other actors are placed in the white set. 
Resume Puller 

ZND Initialization 

3EGIN Puller 
FOR [each actor in the black set not yet examined] 

place non-black acquaintances of the actor in the black set 
END FOR 
resume Pusher 

:ND Puller 

3EGIN Pusher 
FOR [each actor in the white set] 

CASE: actor is active and an acquaintance is black or gray 
-> place actor in black set 

CASE: actor is blocked and an acquaintance is black or gray 
-> place actor in gray set 

END FOR 
IF [any actors were placed in the black or gray set] 

THEN resume Puller 
ELSE Termination 

<ND Pusher 

rermination: 
All actors which are not black am garbage 

Figure 3. Push-Pull Algorithm 

Push-Pull Marking Algorithm 

One implementation of the coloring rules uses two 
coroutines, a Pusher and a Puller, to move actors between 
black, gray, and white sets. The Pusher operates on actors in 
the white set. It pushes actors from the white set into the gray 
and black sets. The Puller operates on actors in the black set. 
It pulls actors from the white and gray sets into the black set. 
The algorithm for the Push-Pull marker is shown in Figure 3. 

The pusher coroutine implements rule 1 of Nelson’s 
algorithm. The first case of the puller implements rules 2 and 
4, and the second case implements rules 3 and 5. 

The actions of the Push-Pull algorithm are illustrated using 
the actor system shown in Figure 1. The initialization step 
puts actors A and I (root actors) in the black set and all other 
actors in the white set. For simplicity assume that actors are 
examined in alphabetical order. In the first pass, the Puller 
moves B into the black set since it is an acquaintance of A. A, 
B and I are now in the black set and A has been examined. The 
Puller next examines B and pulls its acquaintances (CD and 
G) into the black set. The remaining elements in the black 
set do not have acquaintances so the Puller will finish without 
adding any other actors to the black set. The actors in the 
white set are now E,F,H,J,K,L and M. The Pusher will move F 
and H to the black set and leave all others unchanged. On pass 

2 the Puller makes no changes while the Pusher moves E to 
the gray set (it is reachable but cannot become active). On 
pass three the Puller again takes no action. When the Puller 
also takes no action, it terminates. At the termination, the 
black set contains A, B, C, D, F, G, H, I. All other actors are 
garbage. 

Coloring Algorithm ls_Black 

This coloring algorithm, shown in Figure 4, uses two colors 
and a visit field. The first rule in the repeat loop colors black 
acquaintances of black actors. The second rule does a depth 
first search from active actors for a black actor. If a black 
actor is found, then the originating active actor is colored 
black. The visit field is used to detect cycles during the depth 
first search. 

Figure 5 shows an actor configuration which demonstrates 
some features of the “Is-Black” algorithm. At the start of the 
algorithm, actor F is colored black because it is a root actor, 
and all other actors are colored white. The algorithm begins 
by coloring actor G black because it is an acquaintance of a 
black actor. 

The algorithm next does a depth first search from active actor 
A. Note the cycle between actors A and B. The algorithm 
applies the function Is-Black to actor B, which in turn, 
queries actor A. The query from actor A returns false, because 

130 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990 



Ul anchors are colored black, all other actors are colored white 
,ass=o 

3EGIN Is Black 
REPE&T 

increment pass 
color black all acquaintances of black actors 
FOR all white active actors DO Depth-First(actor, pass) 

UNTIL [no new markings are made] 
3ND Is-Black 

3EGIN Depth-First(actor, pass) 
IF [actor = black] RETURN true 
ELSE IF [actor.visit == pass] RETURN false 
ELSE 

actor.visit = pass 
FOR [each acquaintance of the actor] 

IF [depth-first(acquaintance, pass)==truel 
color actor black 
RETURN true 

ENDIF 
END FOR 

ENDIF 
RETURN false 

IND Depth-First 

;found black 
;cycle detected 

;color return path 

rermination: 
All non-black actors are garbage 

Figure 4. Is-Black Algorithm 

1 

it has already been visited. When actor B queries actor C, it The algorithm next does a depth first search 
returns false because it is not black, nor does it have any D. It eventually encounters actor F. which 
black acquaintances. Therefore, the depth first search from so actors D and E are colored black. Actor E 
actor A failed, so it remains white. because it was on the search path. 

from active actor 
is colored black, 

was colored black 

Figure 5. Is-Black Example 

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 131 



Because an actor was colored, the fist step of the algorithm is 
repeated. This causes actor C to be colored black because it is 
an acquaintance of black actor D. Next, a depth first search is 
done from active actor A. This time the depth fist search 
finds black actor C, so actor A is colored black. 

Since an actor was again darkened, the algorithm is repeated. 
The first step colors actor B black, because it is an 
acquaintance of black actor A. The algorithm repeats itself 
once more, but no more colorings are done. At the 
termination, all actors except for actor H, which is the only 
garbage actor, are colored black. 

SECTION IV. COMPUTATIONAL COMPLEXITY 

This section compares the worst-case space and time 
complexity of the two algorithms presented in the previous 
section. 

Space Complexity 

The Push-Pull algorithm requires that each actor contain a 
color field or a link to other actors that are in the same color 
set. In either case, the size of the field is constant. 
Therefore, its space complexity is: 

Space Complexity = klN = Order(N) 

where N is the number of actors in the system and kl is the 
size of the color or link field. 

The Is-Black algorithm recursively does depth-fist searches, 
which require stack space. Each recursion requires a constant 
amount of stack space, and the worst-case number of 
recursions is the maximum of: 

1. Number of actors traversed until a cycle is reached. 

2. Number of actors traversed until an actor with no 
acquaintances is reached. 

Thus, the worst-case space complexity is: 

Space Complexity = klN = Order(N) 

where N is the number of actors in the system and kl is the 
size of a stack frame on recursion. 

Time Complexity 

Figure 6 shows an example of the worst case actor graph for 
the Push-Pull algorithm. The initialization phase colors 
actor E black and actors A, B, C, D white. Since the order in 
which the algorithms examines the actors is arbitrary, let us 
suppose that the Pusher always examines the actors in 
alphabetical order while the Puller always examines them in 
reverse alphabetical order. In pass 1, after having examined 
and taken no action for actors A,B and C, actor D is moved to 
the gray set . Similarly in pass 2, actor C is moved to the 
gray set and in pass 3, actor B is moved to the gray set. In 
each of these passes all actors between actor A and the actor 
eventually moved to the gray set are examined. In pass 4. 
actor A is colored black. During these first four passes the 
puller has taken no actions (since E has no acquaintances). In 
the next four passes the pusher takes no action, because the 
white set is now empty, while the puller examines all actor in 
the gray set and moves one of them on each pass into the 
black set. 

In general, the worst case time complexity for the Push-Pull 
algorithm is: 

Complexity = Number of passes + Number of actors 
considered on each pass 

Complexity = Order(Length) * Order(Length) 

Complexity = Order( Length2) 

= Order(N2) 

The worst-case situation occurs when all N actor form the 
chain shown in Figure 6. 

Length 

Figure 6. Worst Case for Push-Pull Algorithm 

132 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990 



Figure 7. Worst Case for Is-Black Algorithm 

Figure 7 showr, an example of the worst case for the Is-Black 
algorithm. Suppose that the algorithm considers the actors 
in this example in alphabetical order. The initialization 
phase colors actors A, B, C, D, E white and actor F black. 
First, a depth-l’irst search is done starting at actor A. It fails, 
so another depth-first search is started at actor C. It too fails. 
The next search is started at actor E. which succeeds. Actors E 
and D are now colored black. The next depth-first search is 
from actor A, which fails, but the next one, from actor C, 
succeeds. Acrors C and B are now colored black. The next 
search from actor A succeeds, so it too is colored black. 

The worst case complexity of the Is-Black algorithm, in 
terms of number of actors examined, is: 

Comp1exic.y = Passes * Number of searches * Number of 
actors searched 

Complexi4:y = (N/2) * (N) * 2 

Complexity = Order(N;?) 

Of the two algorithms, the Push-Pull algorithm has the lower 
space complexity. However, both algorithms have equal 
worst-case time complexities, although it is not possible to 
determine which is the most efficient in typical actor graphs. 

SECTION !‘. CONCLUSIONS AND EXTENSIONS 

In this paper we have presented a comprehensive definition of 
garbage in actor systems. Based on this definition a set of 
coloring rules were given for marking garbage actors. Two 
algorithms implementing the coloring rules were then 
presented. The space and time complexity of the algorithms 
were determined. 

The garbage collection algorithms presented in this paper are 
the first steps in achieving a practical garbage collector for 
actor systems. The weakness of these algorithms is that they 
assume that the actor system (the mutator) is halted while the 
marking and reclamation are performed. Forcing the mutator 
to halt during garbage collection is unacceptably restrictive 
for most applications. A series of extensions, fully presented 

in [Washabaugh 19901, allow the garbage collection to 
achieve the following goals: 

. concurrent mutator/collector: To allow for 
concurrent execution, the mutator and collector must 
cooperate in two ways. First, they must synchronize 
their access to shared implementation structures. This 
is easy. What is harder is the second form of 
cooperation: the collector must take a snapshot of the 
actor system on which it will work while allowing the 
mutator to migrate away from this snapshot state. 

l incremental collection: When the mutator and 
collector are executed on a single processor system, 
concurrent mutator/collector operation may imply that 
the mutator is interrupted for long periods of time. It 
is useful to minimize the length of this interruption by 
interleaving incremental actions of the collector into 
allocation operations of the mutator. This is not too 
difficult with the Push-Pull algorithm, because a “few” 
steps in the algorithm can be performed at each 
allocation. This is not possible with the Is-Black 
algorithm. 

. real-time collection: Not only should the 
collector work incrementally, but the period of time 
during which the mutator is interrupted must be strictly 
bounded. Furthermore, it must still be guaranteed that 
the entire reclamation process is completed before the 
mutator consumes all available memory. The 
incremental extension of the Push-Pull algorithm can 
be strictly bounded. 

l distributed collection: Collecting distributed 
garbage presents two major problems. First, the 
global collector must operate concurrently with the 
local collectorsjmutators and must synchronize 
properly with the local collector. This 
synchronization can be achieved again by using a 
snapshot approach and by “time-stamping” inter-node 
acquaintances. Second, the distributed pieces of the 
global collector must be able to determine when to 
terminate. The termination is complicated because a 
global collector at one node may finish all of its work 
only to be reawakened later by the action taken at 
another node. Agreement can be achieved by using a 

October 21-25, 1990 ECOOPIOOPSLA ‘90 Proceedings 133 



rotating token which, if it ever returns to its last 
“owner”, signals termination. 

ACKNOWLEDGEMENT 

The authors gained valuable insight into aspects of this 
garbage collection problem from discussion with Dr. Andrew 
Appel of Princeton University. We gratefully acknowledge 
his contribution to this work. 

REFERENCES 

[Agha 19861 Gul Agha, Actors: A Model of Concurrent 
Computation in Distributed Systems, M.I.T. Press, 
Cambridge, Massachusetts, 1986. 

[Athas 19871 W. Athas, “Fine Grain Concurrent 
Computations,” Technical Report 5242:TR:87, 
Computer Science Department, California Institute of 
Technology, 1987. 

[Baker 19771 Henry Baker and Carl Hewitt, “The Incremental 
Garbage Collection of Processes,” M.I.T. Artificial 
Intelligence Laboratory, Memo 454, December 1977. 

[Black 19871 Andrew Black, Norman Hutchinson, Eric Jul, 
Hemy Levy, and Larry Carter, “Distribution and Abstract 
Types in Emerald,” IEEE Transactions on Software 
Engineering, Vol. SE-13, No. 1, January 1987, pp.65- 
76. 

[Bloom 19871 Tony Bloom and Stanley Zdonick, “Issues in 
the Design of an Object-Oriented Database Programming 
Language,” OGPSLA’87, October 1987, pp.441-45 1. 

[Halstead 19781 Robert Halstead, “Multiple-Processor 
Implementations of Message Passing Systems,” M.I.T. 
Laboratory for Computer Science, Technical Report 198, 
April 1978. 

[Hudak 821 Paul Hudak and Robert Keller, “Garbage 
Collection and Task Deletion in Distributed Applicative 
Processing Systems,” Symposium on Lisp and Funtional 
Programming, 1982, pp.168-178. 

[Hudak 19831 Paul Hudak, “Distributed Task and Memory 
Management,” 2nd Annual ACM Symposium on 
Principles of Distributed Computing, 1983. pp.277- 
289. 

[Jul 19881 Eric Jul. Henry Levy, Norman Hutchinson and 
Andrew Black, “Fine-Grain Mobility in the Emerald 
System,” ACM Transactions on Commuter Svstems, Vol. 
6, No. 1, February 1988, pp.109-133. 

[Kafura 19881 Dennis Kafura, “Concurrent Object Oriented 
Real-Time Systems Research,” Technical Report 88-47, 
Department of Computer Science, Virginia Tech, 
Blacksburg, VA, 1988. 

[Kafura 19901 Dennis Kafura and Keung Lee, “ACT++: 
Building A Concurrent C++ With Actors,” Journal of 
Obiect-Oriented Programming, to appear, 1990, also 
Technical Report 89-18, Department of Computer 
Science, Virginia Tech, Blacksburg, VA. 

[Nelson 19891 Jeff Nelson, Automatic. Incremental, On-the- 
flv Garbaae Collection of Actors, M.S. 

Thesis,Department of Computer Science, Virginia Tech, 
Blacksburg, VA, February 1989. 

[Washabaugh 19901 Doug Washabaugh. Real-Time GarbaPe 
Collection of Actors in a Distributed System, M.S. 
Thesis, Department of Computer Science, Virginia Tech, 
Blacksburg, VA, February 1990. 

[Yonezawa 19871 A. Yonezawa, E. Shibayama, T. Takada, and 
Y. Honda, “Modelling and Programming in an Object- 
Oriented Concurrent Language, ABCL/l,” in Obiect- 
Oriented Concurrent Prozramming (A. Yonezawa and M. 
Tokoro, eds), pp.55-89, MIT Press, Cambridge, 
Massachusetts, 1987. 

134 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990 


