
An Algebraic Semantics of Subobjects

Jonathan G. Rossie, Jr. Daniel P. Friedman

Department of Computer Science, Indiana University

215 Lindley Hall, Bloomington, Indiana 47405
{jrossie,dfried}@cs.indiana.edu

Abstract

Existing formalisms of inheritance are not sufficient to
model the complexities of the kind of multiple inheri­
tance exemplified in C++. Any satisfactory formalism
must model the complicating effects of virtual and non­
virtual base classes as well as virtual and non-virtual
methods. By abstracting the implementational notion of
a subobject and formalizing subobject selection, we de­
velop a formalism to model this combination of features.
Not intended as a formal semantics of C++, the resulting
model should nevertheless provide an essential level of
understanding for language theorists and implementors
in their dealings with C++ and related languages.

1 Introduction

The style of multiple inheritance first proposed for Sim­
ula by Krogdahl[21] and later developed into the C++
multiple inheritance system by Stroustrup[35, 15] ex­
emplifies a particular kind of inheritance in which the
underlying imperative is to maintain the integrity of
subobjects. Subobjects are historically an implementa­
tional concept, consisting of the storage for any instance
variables introduced by a given class, along with some
header information. An instance has, in the simplest
case, one subobject for its own class and one for each an­
cestor class. Although the typical space-optimizing lay-

Both authors were partially supported by NSF grant
CCR-9302114.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that .
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

OOPSLA '95 Austin, TX, USA
© 1995 ACM 0-89791-703-0/95/0010 .. $3.50

out allows certain subobjects to share headers, they are
still semantically distinct subobjects.

Subobject integrity simply means that distinct stor­
age is maintained for every instance variable, even
when more than one share the same name. The term
is our own, but similar notions appear under different
names, including object integrity[27] and the indepen­
dence principle[?]. It has been vehemently argued that
such a condition is necessary for the adequate separation
of implementation and interface[32].

In Krogdahl's model, the effect is that all the method
functions inherited along a particular inheritance path
can be executed with respect to their own private set
of instance variable locations, and thus do not inadver­
tently interfere with the state-invariants of other classes.
Repeated inheritance from the same class along differ­
ent derivation paths is not permitted, since it is not clear
how many subobjects should be created or what should
be done about the name collisions if multiple subobjects
were created.

Stroustrup extends Krogdahl's model by allowing re­
peated inheritance, which may cause the instance to
have as many subobjects as there are distinct paths. So­
called virtual classes, which we shall refer to as shared

base classes, provide a needed modification by allowing
a program to express that certain occurrences of repeated
inheritance should not result in separate subobjects, but
must share a single subobject.

There remains the problem of name collision when
the repeated inheritance is not shared, and there is also
the problem of incidental sideways name collision be­
tween unrelated base classes. Because of subobject
integrity, two same-named instance variables inherited
along different paths can refer to different storage. Thus

187

instance variable references may be ambiguous. The
same problem arises in the case of methods in a slightly

different guise: same-named methods from different
paths are meant to be executed with respect to their own
subobjects; if the naming coincidence forced such meth­
ods to be combined, it would not always be clear which
subobject to use.

All of these issues contribute to the complexity of the
inheritance model. Cargi11[6] makes an ample case for
the complexity of the system; arguing against the intro­
duction of Stroustrup's multiple inheritance system into
C++, he observes (p.71) "Multiple inheritance in C++ is
complicated to learn, write and read." He is particularly
opposed to shared base classes, which he feels require
too much nonlocal information to understand. The com­

plexity is further evidenced by the observable inconsis­
tencies between C++ compilers.

1.1 Models of Inheritance

Most of these issues do not arise in single-inheritance
systems, such as Smalltalk[17], nor do they occur

in all multiple-inheritance systems. Some multiple­
inheritance designs make no effort to maintain the
integrity of subobjects. In CLOS[34] and related
systems[l, 23, 14], linearization of the inheritance hi­
erarchy results in a collapsing of same-named methods
and instance-variables; in some sense, they support only

shared base classes.
Formal semantic models of single-inheritance lan­

guages [19, 26, 10, 9] are so deeply reliant on there being
a single base class that they do not scale up into multiple
inheritance. Formal models of multiple inheritance have
arisen in the study of type systems for object-oriented
languages[3, 4, 5, 25, 8]. Because these models treat ob­

jects as records, an object may only associate a single
value with each name. Accordingly, such models do not
address subobject integrity.

Snyder's model of the C++ object system[33] is sim­

ilar to ours in that it deals with subobjects on some ab­
stract level (although not quite the same level), but it
does not include shared base classes, nor does it model
the effects of non-shared repeated inheritance of the

same class, which Snyder refers to as a corner case of

the language, distinctive to C++ multiple inheritance:
(p.lO) " . . . the extra complexity needed to handle this
case is not justified."

1.2 Three Questions

Having found no satisfying formal model of inheritance
that respects subobject integrity, we proceed to develop
our own. Rather than attempting to formalize the entire
language, or even the entire object system, we restrict
our formalism to the resolution of the three questions

that we feel are at the heart of understanding the com­
plexities introduced by subobject integrity.

Question 1 (subobjects) What is the set of subobjects
that comprises an instance of a given class?

Question 2 (instance variables) For an instance of a
given class and a specific instance-variable name, which

subobject will contain the value? (Or will it be ambigu­
ous?)

Question 3 (methods) Foran instance of a given class
and a specific method name, to which subobject will the
instance be cast as a result of the call? (Or will it be
ambiguous?)

It is necessary to explain the notion of casting in this
model. When a class C is instantiated as an instance i,
we say that C is the actual class of i. As long as i is
treated as an instance of C, we say its C subobject is also
its effective subobject and Cis its effective class. Using
i with a method inherited from an ancestor class A re­
quires that the associated subobject of i become its effec­
tive subobject, with A as the effective class, so that the
instance may be treated as an instance of A. This change
from one effective subobject to another is known as cast­

ing. The actual class of an instance never changes.
In answering just these three questions, each of which

deals with static properties of the hierarchy, we are able
to strip away an enormous amount of complication, in­
cluding access control, method values, instance-variable

values, and the physical layout of instances. We con­
sider it essential, however, that the features that gen­

uinely complicate the inheritance model-multiple in­
heritance, subobject integrity, shared and non-shared

188

A~~

C~D

(D,A) (B) (H,F,D,A)

.. #··
.. ~:~

•' .

·.. ..·· ;

I ·-._ ·· : (H,E,C) (D) (H,F,D) (C) (H,G,C) I ·······l I ~:. :
E.. F G

~I/
(H,E(,/ (H,F·;:::.:·:· (H,G)

~(l)~ H

Figure 1: A class-name DAG (left) and its derived subobject poset (right). The dotted and solid lines denote the
shared and proprietary inheritance relations. The class at the bottom of an arc inherits from that at the top.

classes, virtual and non-virtual methods, and ambigu­
ity analysis-are retained. Despite our formal simplifi­
cations, and partly thanks to them, we have found this
model to be an invaluable aid in our design and imple­
mentation of a mostly-static multiple inheritance object
system with first-class classes[16].

As Snyder suggests, modeling these features entails
a certain amount of complexity. It must be remembered
that the complexity is not artificially introduced by the
formalism, but that the formalism is only as complicated
as necessary to model its complex subject. Moreover,
we do not present a critique of the inheritance model;
rather, the aim is to find a formalism for the existing
model as we understand it.

The rest of this paper proceeds as follows: Section 2
lays the conceptual groundwork as it answers Ques­
tion 1. Questions 2 and 3 are answered in Section 3.
Section 4 gives a detailed account of the relation of this
model to C++, and Section 5 demonstrates the use of this
formalism as a basis for modifications to the inheritance
model. Sections 6 and 7 summarize our contribution in
relation to previous work. Finally, the appendix proves
a key lemma.

2 The Set of Subobjects

Our formalism is specified partly in terms of posets (par­
tially ordered sets). Certain conventions are used: a
poset may be described as (A; R) for a set A and an or­
der R, where R is reflexive, antisymmetric and transi­
tive; unless otherwise specified, a subset of a poset is a

poset with the same order restricted to the elements of
the subset. See, for example, Davey and Priestly[11].

Throughout our discussion, we shall make reference
to Figure 1, which shows both a class hierarchy (left)
and the derived poset of subobjects (right). In each case
x < y implies that x appears lower than y, and that x in­
herits from (is derived from) y. This class-name graph is
artificially complex in order that the reader may consider
the effects of unusual inheritance relations and attempt
to derive the subobject poset from our specification.

Finally, we use f[yjx] to indicate the functional ex­
tension of f such that x maps to y.

2.1 Subobject Intuitions

Let us first informally approach the. answer to Ques­
tion 1. We can think of each class as having a unique
name that denotes the class itself. Each class definition
includes the specification of a set of shared base classes
and a set of proprietary base classes. For example, in
Figure 1, F has one proprietary base class D and one
shared base class C.

For any class C we may readily construct a DAG
whose arcs are a subset of the disjoint union of the shared
and proprietary inheritance relations over the class hier­
archy; we call this the class-name graph for the class C.

Note that the shared or proprietary attribute is associated
with the arcs, not the nodes. Thus, Cis both shared (with
respect to F) and proprietary (with respect toE and G.)

Unfortunately, the class-name graph is not an espe­
cially useful way of understanding the results of the dif-

189

ferent kinds of inheritance. Specifically, the class-name

graph is not suitable for answering our three questions

about subobjects. For this purpose we derive the more

useful subobject poset.
Sakkinen, who also recognizes the need to distin­

guish between the class-name graph and his DAG equiv­

alent of the subobject poset, informally describes the

subobject graph [28](p.80): "The correspondence be­

tween paths in the two graphs is one-to-one. However,

a class in the inheritance graph may correspond to more

than one node in the subobject graph, depending on the

sharabilities." One of our goals is to model the effects

of such sharing.
To develop intuitions about the set of subobjects,

consider the following fixed-point algorithm for deter­

mining the set of subobjects for an instance of H in Fig­

ure 1. Let C be the set of class names in Figure 1.

1. Initialize the roots set to be {H}; initialize the de­
rived set to be {}.

2. For every element of the roots set, encode every

proprietary path that reaches any other class in C.

Paths are encoded as tuples of class names, such as

(H, F, D, A), where H is the root class-name and A is

the reached class-name. Add each such tuple to the

derived set.

3. Whenever a root class-name or a reached class­

name has a shared arc to another class name, that

other class name is added to the root set.

4. Repeat 2 & 3 until both the root set and the derived
set reach a fixed point. The final set of subobject la­

bels is given by the union of the derived set with the

set of singleton-tuples of the elements of the root
set.

In our example, H reaches C through two distinct pro­

prietary paths: (H, E, C) and (H, G, c). H also reaches F,

which has a shared arc to C. This gives us (c), another

subobject corresponding to C. These are encoded with

different labels to represent the fact that instances of H

will have three subobjects corresponding to c.
Thus we identify each subobject with the portion of

its path that uniquely specifies its derivation. To model

sharing, subobjects are distinguished only by the sub­

path of exclusively proprietary arcs from the reached

class down to either the instantiated class or the first

shared arc, as demonstrated above. It is this subpath that

constitutes a subobject label.
Finally, note that subobject labels are derived with

respect to the instantiation of a particular class. Again

referring to Figure 1, if the root set were initialized to

{E} instead of {H}, the set of subobject labels would be

{(E), (E,C), (D), (D,A), (B)}.

2.2 Subobject Formalism

The following formalism is specified in terms of two es­

sential constructs: the class context and the subobject.
Both of these are defined over a domain of class names

7f and a domain of member names .4/.

Definition 2.1 (class context) A class context 1 is a 4-

tuple (C, v, -<s, -<p), such that

C~<rf

v E C ---7 2.4/

-<s, -<p ~ C XC

where the reflexive and transitive closure of the union of

-<s and -<p is antisymmetric.

For each class context I· we define <s = (-<s)+,
~s = (-< 8)*, <p = (-<p)+, and ~P = (-<p)*. Similarly,

-<sp = (-<s u -<p). <sp = (-<sp)+' and ~sp = (-<sp)*.
As a notational convention, C, v, -< 8 , -<p (and the

aforementioned transitive closures) will refer to the cor­

responding components of 1. when 1 is clear from con­

text.

A class context 1 comprises the set of class names C,
the function from class names to their member names

v, the set of shared arcs -< 8 , and the set of proprietary

arcs -<p· The antisymmetry of ~sp corresponds to the

requirement that class-name graphs be acyclic. As a re­

sult, (C; ~sp) is a poset.

Definition 2.2 (subobject) A subobject a- is a triple

(!, C, (X, Y1, ... , Yn)) where "(is a class context,
n ;::: 0, and

190

(1) C,X,Yl, ... ,YnEC

(2) X -<p Y1, -<p .. · -<p Yn

(3) (C =X) V :3(Z E C)[C ~sp Z <s X]

Condition 1 simply ensures that the class name C
and the subobject label (X, Y1, ... , Yn) consist of names

from the class-name graph. Condition 2 uses -<p to en­
sure that each class in the subpath is named in the label;

for example, (H, D) is not a subobject label in Figure 1

because it omits the intermediate F. The final condition

specifies that if X is not C, it must be at the top of a

shared arc whose bottom is an ancestor of C.
A subobject (},then, consists of a class context"(, an

actual class name C, and an effective subobject label of

the form "'Z, where "' is a possibly empty sequence of
class names. We call Z the effective class name of the

subobject, which may also be referred to by eff((J).
Now we may answer Question 1. We use :E to refer to

the set of all subobjects over 'iff and Jit. Then :E["t] refers

to that subset of :E restricted to the subobjects with "(as

the first component, and :E["t, C] to that subset of :E["t]
in which C is the second component. Thus, :E ["f, C] is

the set of subobjects for C in"(. This replaces the intu­

itive fixed-point algorithm from Section 2.1. Whereas

the fixed-point algorithm determined the correct subob­

ject labels, here we determine the correct subobjects.

We call subobjects of the form ("(, C, (C)) primary;

all others are called dependent. The primary subobject

corresponds to an uncast instance of C, while dependent

subobjects correspond to cast instances.

Definition 2.3 (Obj) Define Obj to be the subobject

Obj = (({Root},0,0,0),Root, (Root))
def

Obj is minimal in the following sense: a subobject

must have at least one class in its subobject label-we

choose Root. This class and the actual class must be de­

fined in the enclosed "f, and may be the same class-as

in our case. Thus, the only restriction on "(is that Root

be a member of C-our "(contains no other information.

We now consider an operation for introducing class

definitions into existing hierarchies. As is the case for
most of the operations in this formalism, this operation

is a function from subobjects to subobjects. The inherit

operation introduces a fresh class into a class context and

returns its primary subobject.

Definition 2.4 (inherit) Let C E 'iff and N <;;:; J/t, and

letS,P <;;:; 'if?bedisjoint. Defineinherit(C,N,S,P) to

191

be the function cp such that, for any subobject (} E :E["t]
with Crt C,

cp((J) = ('y', C, (C))
def

where "(1 is the class context

(C U C, -<s U (C X S), -<p U (C X P), v[NjC])

As long as antisymmetry holds, "(1 is clearly a class

context. Antisymmetry is ensured because "(1 only in­
troduces arcs from C to elements of C, and C rt C. As a

result, ("(', C, (C)) is clearly a subobject in :E ["t', C].
The function cp extends (J's class context to include

the new class name C with its associated member names

N, shared bases S, and proprietary bases P. The result

is the primary subobject of C. Note that cp is a partial

function from subobjects to subobjects; it is undefined

when Cis already a class name in (J's class context.

3 Name Resolution

The answers to Questions 2 and 3 involve the member

names associated with various classes. We first show

how the subobject poset for a given class is derived from

the class-name graph. We then show how to determine

the family of subobjects associated with a given mem­

ber name. If the family is empty, the reference is invalid,

and no subobject is selected. If the family has a greatest

lower bound, that subobject is selected. Otherwise, the

reference is ambiguous, and no subobject is selected.

3.1 Intuitions for Subobject Selection

For illustration, let us add members to some of the

classes in Figure 1. In fact, let us define the class hierar­
chy from Figure 1 using inherit.

CfJH = inherit(H,0,0, {E,F,G})

o inherit(G, {q}, {o}, {c})

o inherit(F, {b }, { C }, {o})

o inherit(E, {p }, {o}, {c})

o inherit(D, 0, {B}, {A})

o inherit(c, {b }, 0, 0)

o inherit(B, {p}, 0, 0)

o inherit(A, 0, 0, 0)

where o indicates composition: (f o g)(x) = f(g(x)).

In effect, the application CfJH(Obj) is analogous to in­
stantiating H in the specified hierarchy. If b is an inst­
ance variable, which subobject of an H instance pro­
vides the value when b is referenced? If p is a method
name, which subobject of an H instance provides the

value when p is called?
Somewhat surprisingly, the formalism does not

directly discriminate between instance variables and
methods. The name resolution scheme for instance
variables and non-virtual methods is identical. We call
this static resolution, since it is determined relative to
the effective class of 0', which is a static property of
the instance when static types are available, as in C++.
Name resolution for virtual methods depends on the
actual class of the subobject-a dynamic property-so
we call this dynamic resolution. Despite the dynamic
nature of virtual methods, implementations are able to
use static analysis to eliminate run-time searches; we
detail such a strategy in Section 4.

By grouping all member names into a single set,
we eliminate any distinction based on the name itself.

Rather, we provide two operations for referencing mem­
bers: dyn for dynamic (virtual) method references, and

stat for the other (static) references. In both kinds of
references, the dominance rule[15] is used to help dis­
ambiguate common inheritance situations that arise with
shared base classes. Intuitively, when a shared base de­
fines a member that is later redefined along one path, but
not along others, the derived class may unambiguously
reference the member as if only the modified path ex­
isted.

3.2 Formal Subobject Selection

We begin by defining an order relation for the subobjects
of any given class. This is used to derive the subobject
poset from the class-name graph.

Definition 3.1 (::;so) Let 0', 0'
1 E :E[1, CJ such that 0' =

(!, C, K,) and 0'
1 = ("!, C, X K,1). Then 0' -<so 0'

1 iff either
XK,' = K,Z for some Z E Cor eff(O') -<s X. Define

::;so = (-<so)*·

The first disjunct admits the case where the two sub­
objects correspond to classes joined by a proprietary arc,
such as (H) and (H, F). The second disjunct admits the

case where the corresponding classes are joined by a
shared arc, such as (H, E) and (D).

Lemma 3.2 (:E[1, CJ; ::;so) is a poset, called the subob­

ject poset of C in I·
The proof is outlined in an appendix.

3.2.1 Families

Let us now return to our example, CfJH· Given the subob­
ject CfJH(Obj), which subobject is selected by p? As we
alluded previously, this depends in part on whether the
reference to p is static or dynamic, but we shall see that
this distinction disappears in the case of a primary sub­
object, such as CfJH(Obj). Subobject selection is based
on the different paths leading from CfJH(Obj) to a sub­
object whose effective class contains a definition of p.

From the definition of CfJH, we see that B and E provide
definitions of p to H. Each of these classes yields one
subobject in H: (B) and (H, E) respectively; thus we have
only these two subobjects to choose from. Of these,
(H, E) is selected because it is the greatest lower bound of
the family {(B), (H, E)}. Intuitively, this is because there

exists a path through (H, E) leading to (B).

Definition 3.3 (fam) Let a E .41.

fam(l, C, a) = { 0' E :E[1, C] I a E v(eff(O'))}
def

3.2.2 Dynamic References

To achieve the dynamic behavior of virtual methods, we
apply the jam operation to the actual class of the input

subobject. If the resulting subobjects may be ordered by
::;so to yield a least element, that subobject is unambigu­
ously selected.

Definition 3.4 (dyn) Let a E .41. Then dyn(a) is the
partial function ¢from subobjects to subobjects such
that, for any subobject 0' E :E[1, CJ,

where 0'
1 = glb(fam(l, C, a)) whenever the greatest

lower bound exists.

192

Thus, for example, if (T,H, (H)) = 'PH(Obj) then
dyn(f)((r, H, (D, A))) is still (H, E). Since the only dif­
ference between the primary and dependent subobjects
is the effective subobject label, which plays no part in

the resolution of dynamic references, every dependent
subobject will give the same result as the primary sub-

object.

3.2.3 Static References

Whereas dynamic references are resolved with respect
to the actual class, static references are resolved with re­

spect to the effective class. This is partly a matter of
what information is provided to jam, and partly a matter
of what is done with the result. It is straightforward, us­
ing/am, to determine a family of subobjects with respect
to the effective class, but the resulting set will be a subset

of the subobject poset of the effective class, whereas we
ultimately require a subobject from the subobject poset

of the actual class.
Consider the case of resolving b with respect to H's

(H, E) subobject. The effective class would be E, so Jam
would yield {(c)}, E's (c) subobject. The problem is
that this is isomorphic to H's (H, E, c) subobject, not its
(c) subobject.

Thus we must translate the selected subobject of the
effective class into the corresponding subobject of the
actual class. This is certainly possible, since the poset of
the effective class is clearly isomorphic to a subset of the
poset of the actual class by virtue of subobject integrity.

Definition 3.5 (trans) Let CJ, CJ1 E I:['y] such that CJ =

(/,C,K,) andCJ1 = (T,eff(CJ),XK,').

trans(CJ, CJ1
) = (1, C, K,

11
K,

1
), where

def

ifeff(CJ) =X,

otherwise.

Lemma 3.6 The result of the trans operation is a sub­
object.

This is easily shown by recognizing that the two cases
for/'\," correspond to conditions 2 and 3 in Definition 2.2,
respectively.

193

Definition 3.7 (stat) Let a E .4l. Then stat(a) is the
partial function 'If; from subobjects to subobjects such
that, for any CJ = I:[1],

'ljJ(CJ) = trans(CJ, CJ1
)

def

where CJ1 = glb(fam(T, eff(CJ), a)) whenever the great­
est lower bound exists.

Thus, for example, (stat(b) o dyn(p) o dyn(q) o

'PH)(Obj) can be determined to select H's (H, E,C)
subobject. The virtual method calls to q and then
to p lead to the selection of the (H, E) subobject.
From there, the reference to b yields the (H, E, c)
subobject as discussed earlier. Note, however, that

(stat(b) o 'PH)(Obj) is ambiguous, since the minima of
{(H,E,C), (H,G,C), (C), (H,F)}-(H,E,C), (H,F), and
(H, G, C)-are incomparable.

4 Relation to C++

Since C++ is far and away the most widely-known ex­

emplar of this style of object-oriented programming lan­
guage, we consider how our model relates directly to
C++. Due to the informal specification of C++, we at­
tempt no formal proof of this relationship. As Perlis
notes, "One can't proceed from the informal to the for­
mal by formal means."[24].

A great deal of the complication in a C++ compiler
concerns the management of virtual methods and virtual
classes. Part of this relates to the determination of the
layout of an instance of a given class; although we do
not address the physical layout of an instance, we do pro­

vide the necessary set of subobjects for the instance. The
greater complication is subobject selection as it relates

to the resolution of method calls and instance-variable
references; our formalism provides a useful model for
resolving these questions.

Of particular interest is the case of pointers or refer­
ences to objects, which are subject to subsumption, by
which a variable declared as a pointer(reference) to in­
stances of one class may serve as a pointer(reference) to
instances of any class for which it is an ancestor. Method
inheritance is supported in this way by forcing the hid­
den method-parameter this to be such a pointer.

Compiled code must not make broad assumptions

about the layout of an instance when that instance is sub­

ject to subsumption. This becomes especially apparent

in the case of multiple inheritance with virtual classes

and virtual methods, where only a limited set of refer­

ences and method calls can be made without the aid of

some indirection, either through a virtual method table

(a vtbl) or a similar construct for virtual classes.

We now consider in some detail the role of subob­
ject selection in the compilation of method calls and

instance-variable references. In each case, the instance

that is used for the reference can be thought of as a sub­
object in our model. The effective class of this subob­

ject is known at the call site (or reference site) at com­

pile time, but not the actual class (due to subsumption.)

For simplicity, we assume the instance is reached by a

pointer variable, i, although a reference variable would

work similarly. In the following, let O" be the subobject

denoted by i, and let C be the effective class of O". Also
for simplicity, we assume instances are contiguous se­

quences of subobjects.

4.1 C++ Static References

References to instance variables i->a can be compiled

to references into the given instance at a particular offset
from either the start of the current subobject or the start

of a shared base subobject. As specified in the stat oper­

ation, the effective class C of O" is used as the basis for

a search that yields 0"
1

, a subobject of C with an unam­

biguous definition of a. Unless 0"
1 is a shared subobject

of C. the value of a may be found at a fixed offset from

the starting address of O". The compiled code accesses
the dynamic instance at this fixed offset.

If 0"
1 is a shared subobject of C, the offset to the mem­

ber is not fixed, since multiple inheritance cannot pre­

serve the ordering of shared subobjects. Rather, the ref­

erence must be indirect through a pointer or offset found

at a fixed offset. For example:

Color[r,g,b]

I
...

Point[x,y]
'

ColorPoint[r,g,b]4[x,y] Circle[r]2 [x,y]

I~
ColorCircle[r,g,b]6[r]2[x,y]

This is a class-name graph deriving a ColorCircle class.

Each class is annotated with a depiction of its instances,

with the square brackets marking the subobjects. Notice

that, in order to support subsumption, none of the classes

that inherit from the shared base class can assume the lo­
cation of the corresponding subobject. Rather, they as­

sume the location of an offset to the start of the subob­

ject.

Thus, a site that references the x field of a ColorPoint is

compiled to find an offset at index 3 of the current subob­

ject. That offset locates the address of the selected sub­
object, where the value of x is found at index 0. This

same compiled code still works for a ColorCircle, even

though the Point subobject is at a different relative ad­
dress. Similarly, a Circle instance must store the offset at

index 1. Thus a ColorCircle that has been cast to its Circle

subobject also has an offset at index 1. In this case, the

offset is calculated from the beginning of the Circle sub­

object of the ColorCircle instance.

Method calls i->a (x1, ... , Xm) are quite similar
when the method is not virtual. The subobject is deter­

mined exactly the same way. The starting address of 0"
1

relative to the starting address of O" can be calculated and

used to cast O" as it is passed to the function. The ad­

dress of the method function can be obtained statically

as well: we presuppose the existence of a total function

methfun: ("{! x .41) -. methfuns. The method address is

obtained by methfun(eff(O"'), a).
In each case, the physical layout of each instance en­

sures that the subobject address calculated for the effec­

tive class yields the correct subobject for any derived­

class instance that is cast to the effective class. In the

case of shared subobjects, this means arranging for the

run-time indirection.

4.2 C++ Dynamic References

Dynamic references correspond to virtual methods in

C++. Unlike a static method call. a virtual method call

cannot be fully statically resolved. Due to subsumption,

resolution of the call is based on the actual class of the
instance rather than the effective class, but only the ef­

fective class is known at compile time.
Resolution of the call i->a(x1, ..• ,xm) amounts

to finding both the method function and the casting ad-

194

dress with respect to a particular run-time value of i.
This is accomplished without a run-time search by the
use of indirection through a virtual method table (a vtbl)

in the instance, which is shared by all instances of the

same class. Subsumption is managed by arranging the

vtbl of a derived class to have the same shape as that of

the base class; that is, the dynamic method information
for a method a is found at the same address in both vtbls.

Because of multiple inheritance, the same inst­

ance may be cast and used in contexts that expect a
differently-shaped vtbl. For example, given a class C
derived multiply from A and B, if A's vtbl is ordered

[f, g, h] and B's is ordered [g, f], how can C's vtbl con­

form to both? The solution is to associate a different vtbl
with each subobject, corresponding in shape to the or­

dering of the effective class of the subobject. In our ex­

ample, C would have a [f, g, h] vtbl for its (C, A) sub­

object and a [g, f] vtbl for its (C, B) subobject. For the

primary subobject, an arbitrary ordering may be used

since no conformance is required. Typically, however,

the (C) and (C, A) vtbls would be shared as part of an

overall subobject compression scheme, with C's new

methods appended to the end. Semantically, this is just
a special case of an arbitrary ordering.

Using this technology, we must answer two questions
regarding virtual methods: how is the call site compiled,

and how are the vtbls arranged? For simplicity, assume

all a E .41 are virtual method names, and each redefini­

tion of a method a is fully congruent (identical in its for­
mal parameter types and return type) with the version(s)

it supersedes. This ensures that every method definition
is either the original definition of a virtual method or a

safe overriding definition.

We associate an ordering of methods with each class,

corresponding to the shape of the vtbl of its primary sub­

object. First we identify the set of method names asso­

ciated with the class.

Definition 4.1 (reach) Given a class context 1 with

C E C.

reach(/, C) =
def u

DE{C I C~spC}

v(D)

Then we define the (arbitrary) ordering of these

names for the primary subobject.

Definition 4.2 (pri) Let R =reach(/, C) and let n be
its cardinality. Then

pri(/, C) = (a1, ... , an)
def

where a1, ... , an E R.

4.2.1 Virtual Method Tables

We next associate a vtbl with each subobject. The

function vtbl maps subobjects to their associated virtual
method tables.

Definition 4.3 (vtbl) Let (a1 , ... , an) = pri(/, eff(cr)),
where a E :E[1, C]. Then for 1 ::; i ::; n,

CTi = dyn(cr)(ai)

J.Li = methfun(eff(cri), ai)

b:..i = &ai - &a

Then vtbl(cr) = ((J.LI, 1:11), ... , (J.Ln, b:..n)).
def

Similar to the C++ usage, we use & to denote the ad­

dress of a subobject. Note that the use of dyn guarantees
the actual class of a is used to find the casting informa­

tion, while the use of eff(a) ensures that the ordering of

the vtbl conforms to the effective class. As a result, the
same method name maps to the same virtual-method in­

formation in every vtbl of every subobject of the same

class. The different method tables of the same instance

differ only in the subset of the methods that they define
and the order in which they are represented. Note, also,
that ambiguities are detected at vtbl-creation time, not at

run time.

4.2.2 Virtual Method Call Sites

At the call site, i->a (x 1, ... , Xm) , the vtbl ordering is

known to be pri(!, C) = (a1 , ... , an). for some 'Y· If
there exists a k ::; n such that a = ak, the method is
reachable and the static vtbl-index is k. Otherwise the

call is statically determined to be invalid.

A valid call-site is compiled so that, at run time, a

(J.Lk, b:..k) pair is extracted from the vtbl of the dynamic
instance. A new instance-pointer is cast from i using

b:..k. Then the method function J.Lk is invoked using this
pointer and the x1, ... , Xm arguments.

195

4.3 Dominance

In the simplest view of ambiguity, a member is ambigu­
ous whenever two distinct subobjects exists that both de­
fine the member such that a path exists to one subob­
ject that does not pass through the other. The dominance
rule modifies this view, providing a useful disambigua­
tion for a common name-conflict in multiple-inheritance
systems.

When a shared base class results in a subobject that is
reached by more than one path, it is possible that one or
more of these paths may contain overriding definitions
of a member of the shared subobject. According to the
dominance rule, a member is not ambiguous simply be­
cause an overridden definition is also accessible along a
path that does not contain an overriding definition.

Since we organize subobjects into a poset rather than
a DAG, we do not have a formal notion of a path. In fact,
certain path information is lost in the transformation of
a DAG to a poset. Even worse, it almost appears to be
exactly the kind of information that is required to model
dominance. Consider the example:

cp = inherit(C, {A, B}, 0, 0)
o inherit(B, 0, {x}, {A})

o inherit(A, 0, {x}, 0)

Here, the subobject graph would be isomorphic to the
class-name graph, preserving the fact that C reaches
A by two paths-directly, and through B. The sub­
object poset, however, records only the fact that
(c) :Sso(C,B) :Sso(A). The information that C reaches A
directly has been lost.

Rather than causing a problem, however, this loss of
information fortunately corresponds to the dominance
rule. It is exactly this missing path that would have
caused an ambiguity in accessing x, and that the dom­
inance rule requires us to ignore. Since this is just a spe­
cial case of our requirement that there be a least subob­
ject, there is no need to add an explicit dominance rule
to our model. Rather than being a separate case, domi­
nance is just the natural behavior of name resolution.

5 Modifications

An important implication of any abstraction is that it
provides a coherent basis for the exploration of related

196

systems. This is true of our formalism as well. As an ex­
tension, for example, we might consider a naive privati­
zation mechanism such that privatized members are not
visible to derived classes. If we change inherit to split
the v field into two fields, Ve (external public names)
and Vi (internal private names), we may redefine vari­
able references by changing the definition of Jam.

Definition 5.1 (fam (revised)) Let a E .41.

fam("y, C, a) =
def

{ u E E[7, C]
a E ve(eff(cr)) or }

eff(cr) = C & a E vi(C)

This redefinition applies protection attributes as
a visibility mask, unlike C++ but as suggested by
Sakkinen[28]. As an example, consider a modified 'PH

in which all the existing members were made public
except the b member of C. Then b would no longer
be ambiguous in H since the only reachable definition
would be in (H, F).

6 Related Work

The problem of combining multiple hierarchies has
been dealt with in many ways. Snyder[32] divides
these into linear and graph-oriented approaches. Lin­
ear approaches, such as [1, 23, 12, 13, 14], do not
model subobject integrity. Graph-oriented approaches,
all of which are capable of supporting subobject in­
tegrity in some way, include extended Smalltalk[2],
Trellis/Owl[29], Common0bjects[31], ROME[?], and
the Krogdahl/Stroustrup model discussed here.

Some formal models of graph-oriented multiple in­
heritance systems[20, 36] have been based on class­
name posets rather than class-name graphs. As dis­
cussed earlier, the transition from graph to poset can lead

to information loss. At the class-name level, this loss of
path information leads to the collapsing of some distinct
subobjects, and is insufficient to model the kind of inher­
itance we have formalized.

Cardelli's model of multiple inheritance[3, 5, 4] is
closely tied to a record representation of objects, and
does not attempt to maintain subobject integrity; simi­
larly with Compagnoni and Pierce[25, 8]. In effect, the

same may be said for Eiffel[18, 22]: distinct storage is

maintained only if the programmer renames all mem­
bers ro protect against conflicts. The only difference is
that Eiffel forces the renaming, while a record semantics

tends to allow collapsing.
Snyder's model of the C++ object model[33] offers a

more comprehensive modeling of the C++ object system
in general. but in doing so it explicitly ignores a number
of complications that we treat here. especially the prob­
lem of repeated inheritance. Seligman[30] presents an­

other formal semantics of C++, but makes no attempt to
deal with multiple inheritance. Wallace's semantics of
C++[37] includes multiple inheritance, but with virtu­
ally no concern for compile-time issues such as subob­
jects, subobject selection, and ambiguity analysis.

7 Conclusion

Our new formal model provides an implementation­
independent means of understanding the complex inter­
action of features in a particular variety of multiple in­

heritance. Natural-language descriptions, buried among
the other details of a specific language, lack the rigor

and accessibility of a formal specification. For example,
an implementation can never be provably correct with
respect to an informally specified semantics. A model
such as ours provides a more precise reference for both
implementors and language theorists.

Using our formalism, sample hierarchies may be con­
structed and formally analyzed for certain properties,
such as the effects of arbitrary sequences of method in­
vocations and the reachability or ambiguity of specific
instance variables or methods. This, in tum, opens the

door to automated static analysis tools. Moreover our
model forms the basis for an extended formal study of
related inheritance systems so that modifications may be
evaluated in the absence of implementations.

8 Acknowledgment

The ideas that led to this paper were greatly shaped by
our conversations with Michael Ashley, Shinnder Lee,
Anurag Mendhekar, and Jonathan Sobel, all of whose
continuing input has been invaluable. Thanks, also,
to Markku Sakkinen for his thought-provoking sugges-

tions for improvements of two drafts. We also thank
Mitch Wand for his insightful critique. Finally, we
thank the anonymous OOPSLA reviewers, whose help­
ful comments had a great influence on the final form of
this paper.

197

References

[1] BOBROW, D. G., KAHN, K., KICZALES, G.,
MASINTER, L., STEFIK, M., AND ZDYBEL, F.
CommonLoops: Merging Lisp and object-oriented
programming. In Proceedings OOPSI.A '86, ACM
SIGPI.AN Notices (1986), pp. 17-29.

[2] BORNING, A., AND INGALLS, D. Multiple inher­
itance in Smalltalk-80. In Proceedings AAAI '82

(1982), pp. 234-237.

[3] CARDELL!, L. A semantics for multiple inher­

itance. In Semantics of Data Types, G. Kahn,
D. B. MacQueen, and G. Plotkin, Eds., LNCS 173.

Springer-Verlag, New York, 1984, pp. 51-67.

[4] CARDELL!, L. A semantics of multiple inheri­
tance. Information and Computation 76 (1988),
138-164. Special issue devoted to Symp. on Se­
mantics of Data Types, Sophia-Antipolis (France),
1984.

[5] CARDELL!, L., AND WEGNER, P. On understand­

ing types, data abstraction, and polymorphism.
Computing Surveys 17,4 (1985), 471-522.

[6] CARGILL, T. A. Controversy: The case against

multiple inheritance in C++. Computing Systems
4, 1 (1991), 69-82.

[7] CARRE, B., AND GEIB, J.-M. The point of

view notion for multiple inheritance. In Proceed­
ings OOPSI.A-ECOOP '90, ACM SIGPI.AN No­
tices (1990), pp. 312-321.

(8] COMPAGNONI, A. B., AND PIERCE, B. C. Mul­
tiple inheritance via intersection types. Tech.
Rep. ECS-LFCS-93-275, University of Edinburgh,
1993. Also Technical Report 93-18, C.S. Depart­
ment, Catholic University Nijmegen.

[9] COOK, W., AND PALSBERG, J. A denotational se­

mantics of inheritance and its correctness. In Pro­
ceedings OOPSLA '89, ACM SIGPLAN Notices
(1989), pp. 433-443.

[10] COOK, W. R. A Denotational Semantics of Inher­

itance. PhD thesis, Brown University, 1989. Tech­

nical Report CS-89-33.

[11] DAVEY, B. A., AND PRIESTLY, H. A. Introduc­
tion to Lattices and Order. Cambridge University

Press, 1990.

[12] DUCOURNAU, R., AND HABIB, M. On some al­

gorithms for multiple inheritance in object oriented
programming. In Proceedings ECOO P '87 (1987),

LNCS 276, Springer-Verlag, pp. 243-252.

[13) DUCOURNAU, R., HABIB, M., HUCHARD, M.,

AND MUGNIER, M. L. Monotonic conflict resolu­

tion mechanisms for multiple inheritance. In Pro­

ceedings OOPSLA '92, ACM SIGPLAN Notices
(1992), pp. 16-24.

[14] DUCOURNAU, R., HABIB, M., HUCHARD, M.,

AND MUGNIER, M. L. Proposal for a monotonic

multiple inheritance linearization. In Proceed­
ings OOPSLA '94, ACM SIGPLAN Notices (1994),

pp. 164-175.

[15] ELLIS, M. A., AND STROUSTRUP, B. The An­

notated C++ Reference Manual. Addison-Wesley,

1990.

[16) FRIEDMAN, D. P., HAYNES, C. T., MEND­

HEKAR, A., AND ROSSIE, JR., J. G. Scheme++:
A Static Object-Oriented Scheme Extension with
Multiple Inheritance, vi.O. Indiana University

Dept. of Computer Science, 1995. Work in

Progress.

[17] GOLDBERG, A., AND ROBSON, D. Smalltalk-80:
The Language and its Implementation. Addison­

Wesley, Reading, MA, 1983.

[18) INTERACTIVE SOFTWARE ENGINEERING, INC.

Eif.fel Reference Manual, August 1989. Technical

Report TR-EI-17/RM (version 2.2).

[19] KAMIN, S. Inheritance in SMALLTALK-80: A de­

notational definition. In Proceedings POPL '88
(1988), pp. 80-87.

[20] KNUDSEN, J. L. Name collision in multiple clas­

sification hierarchies. In Proceedings ECOOP '88
(1988), LNCS 322, Springer-Verlag, pp. 93-108.

[21] KROGDAHL, S. Multiple inheritance in Simula­

like languages. BIT 25 (1984), 318-326.

[22] MEYER, B. Eif.fel: The Language. Prentice Hall,

1992.

[23] MOON, D. A. Object-oriented programming with

Flavors. In Proceedings OOPSLA '86, ACM SIG­
PLAN Notices (1986), pp. 1-8.

[24] PERLIS, A. J. Epigrams on programming. SIG­
PLAN Notices I7, 9 (September 1982), 7-13.

[25] PIERCE, B. C. Programming with Intersection
Types and Bounded Polymorphism. PhD thesis,

Carnegie-Mellon University, Pittsburgh, PA, De­

cember 1991.

198

[26] REDDY, U. Objects as closures: Abstract seman­

tics of object-oriented languages. In Conf on LISP
and Functional Programming (1988).

[27] SAKKINEN, M. Disciplined inheritance. In Pro­
ceedings ECOOP '89 (1989), The British Com­

puter Society Workshop Series, Cambridge Uni­

versity Press. pp. 39-56.

[28] SAKKINEN, M. A critique of the inheritance prin­

ciples of C++. Computing Systems 5, 1 (1992), 69-

110.

[29] SCHAFFERT, C., COOPER, T., BULLIS, B., KIL­

LIAN, M., AND WILPOLT, C. An introduction to

Trellis/Owl. In Proceedings OOPSLA '86, ACM
SIGPLAN Notices (Nov. 1986), pp. 9-16. Pub­

lished as Proceedings OOPS LA '86, ACM SIG­

PLAN Notices, volume 21, number 11.

[30] SELIGMAN, A. FACTS: A formal analysis of

C++: Type rules and semantics. B.A. Honors The­

sis, Williams College, May 1995.

[31] SNYDER, A. CommonObjects: An overview.
ACM SIGPIAN Notices 21, 10 (October 1986),

19-28.

[321 SNYDER, A. Inheritance and the development
of encapsulated software components. In Re­

search Directions in Object-Oriented Program­

ming, B. Shriver and P. Wegner, Eds. MIT Press,

1987, pp. 165-188.

[33] SNYDER, A. Modeling the C++ object model,
an application of an abstract object model. In

Proceedings ECOOP '91 (1991), LNCS 512,

Springer-Verlag, pp. 1-20.

[34] STEELE JR., G. L. Common Lisp: The Language,

2nd ed. Digital Press, 1990.

[35] STROUSTRUP, B. Multiple inheritance for C++.

Computing Systems 2, 4 (1989).

[36] TOURETZKY, D. S. The Mathematics of Inheri­

tance Systems. Research Notes in Artificial Intel­

ligence. Pitman, 1986.

[37] WALLACE, C. The semantics of the C++ program­

ming language. In Specification and Validation

Methods for Programming Languages, E. Boerger,
Ed. Clarendon Press, Oxford, 1995, pp. 131-163.

199

Appendix

Lemma 3.2: (:E[!, C]; :Sso) is a poset, called the sub­
object poset ofC in I·

(1) 1. :Sso is a reflexive, antisymmetric and transitive
closure over 2::[/, C].

(2) 1. It suffices to show that :Sso is antisymmetric,
since it is defined by reflexive and transitive
closure.

(2) 2. (]" :Sso (]"1 and (]"1 :Sso (]" implies (]" = (]"1
•

LET:(]"= (!,C,Xt\,Z) and(]"'= (!,C,X't\,'Z').
ASSUME: (]" :Sso (]"1 and (]"1 :Sso (]" but(]" =f. (]"1

•

PROVE: False.

(3) 1. :Ssp is antisymmetric, by Def (2.1).

(3)2. (]" :Sso (]" 1 and(]" =f. (]"1 implies Z <sp Z'.
CASE: X/'\, is a proper prefix of X' K,

1
•

(4)1. Z <p Z' by the antisymmetry of -<p.

CASE: :l(Y E C)[Z :Ssp Y -<s X']
(4)2. Z <sp Z', since X' <p Z'.
(4)3. Q.E.D.

(3)3. (]"1 :Sso (]"and(]" =/= (]" 1 implies Z' <sp Z.
(Proof as above.)

(3)4. Contradiction.
(3)5. Q.E.D.

(2)3. Q.E.D.

(1)2. Q.E.D.

	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199

