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Abstract 

Existing formalisms of inheritance are not sufficient to 
model the complexities of the kind of multiple inheri­
tance exemplified in C++. Any satisfactory formalism 
must model the complicating effects of virtual and non­
virtual base classes as well as virtual and non-virtual 
methods. By abstracting the implementational notion of 
a subobject and formalizing subobject selection, we de­
velop a formalism to model this combination of features. 
Not intended as a formal semantics of C++, the resulting 
model should nevertheless provide an essential level of 
understanding for language theorists and implementors 
in their dealings with C++ and related languages. 

1 Introduction 

The style of multiple inheritance first proposed for Sim­
ula by Krogdahl[21] and later developed into the C++ 
multiple inheritance system by Stroustrup[35, 15] ex­
emplifies a particular kind of inheritance in which the 
underlying imperative is to maintain the integrity of 
subobjects. Subobjects are historically an implementa­
tional concept, consisting of the storage for any instance 
variables introduced by a given class, along with some 
header information. An instance has, in the simplest 
case, one subobject for its own class and one for each an­
cestor class. Although the typical space-optimizing lay-
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out allows certain subobjects to share headers, they are 
still semantically distinct subobjects. 

Subobject integrity simply means that distinct stor­
age is maintained for every instance variable, even 
when more than one share the same name. The term 
is our own, but similar notions appear under different 
names, including object integrity[27] and the indepen­
dence principle[?]. It has been vehemently argued that 
such a condition is necessary for the adequate separation 
of implementation and interface[32]. 

In Krogdahl's model, the effect is that all the method 
functions inherited along a particular inheritance path 
can be executed with respect to their own private set 
of instance variable locations, and thus do not inadver­
tently interfere with the state-invariants of other classes. 
Repeated inheritance from the same class along differ­
ent derivation paths is not permitted, since it is not clear 
how many subobjects should be created or what should 
be done about the name collisions if multiple subobjects 
were created. 

Stroustrup extends Krogdahl's model by allowing re­
peated inheritance, which may cause the instance to 
have as many subobjects as there are distinct paths. So­
called virtual classes, which we shall refer to as shared 

base classes, provide a needed modification by allowing 
a program to express that certain occurrences of repeated 
inheritance should not result in separate subobjects, but 
must share a single subobject. 

There remains the problem of name collision when 
the repeated inheritance is not shared, and there is also 
the problem of incidental sideways name collision be­
tween unrelated base classes. Because of subobject 
integrity, two same-named instance variables inherited 
along different paths can refer to different storage. Thus 
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instance variable references may be ambiguous. The 
same problem arises in the case of methods in a slightly 

different guise: same-named methods from different 
paths are meant to be executed with respect to their own 
subobjects; if the naming coincidence forced such meth­
ods to be combined, it would not always be clear which 
subobject to use. 

All of these issues contribute to the complexity of the 
inheritance model. Cargi11[6] makes an ample case for 
the complexity of the system; arguing against the intro­
duction of Stroustrup's multiple inheritance system into 
C++, he observes (p.71) "Multiple inheritance in C++ is 
complicated to learn, write and read." He is particularly 
opposed to shared base classes, which he feels require 
too much nonlocal information to understand. The com­

plexity is further evidenced by the observable inconsis­
tencies between C++ compilers. 

1.1 Models of Inheritance 

Most of these issues do not arise in single-inheritance 
systems, such as Smalltalk[17], nor do they occur 

in all multiple-inheritance systems. Some multiple­
inheritance designs make no effort to maintain the 
integrity of subobjects. In CLOS[34] and related 
systems[l, 23, 14], linearization of the inheritance hi­
erarchy results in a collapsing of same-named methods 
and instance-variables; in some sense, they support only 

shared base classes. 
Formal semantic models of single-inheritance lan­

guages [ 19, 26, 10, 9] are so deeply reliant on there being 
a single base class that they do not scale up into multiple 
inheritance. Formal models of multiple inheritance have 
arisen in the study of type systems for object-oriented 
languages[3, 4, 5, 25, 8]. Because these models treat ob­

jects as records, an object may only associate a single 
value with each name. Accordingly, such models do not 
address subobject integrity. 

Snyder's model of the C++ object system[33] is sim­

ilar to ours in that it deals with subobjects on some ab­
stract level (although not quite the same level), but it 
does not include shared base classes, nor does it model 
the effects of non-shared repeated inheritance of the 

same class, which Snyder refers to as a corner case of 

the language, distinctive to C++ multiple inheritance: 
(p.lO) " . . . the extra complexity needed to handle this 
case is not justified." 

1.2 Three Questions 

Having found no satisfying formal model of inheritance 
that respects subobject integrity, we proceed to develop 
our own. Rather than attempting to formalize the entire 
language, or even the entire object system, we restrict 
our formalism to the resolution of the three questions 

that we feel are at the heart of understanding the com­
plexities introduced by subobject integrity. 

Question 1 (subobjects) What is the set of subobjects 
that comprises an instance of a given class? 

Question 2 (instance variables) For an instance of a 
given class and a specific instance-variable name, which 

subobject will contain the value? (Or will it be ambigu­
ous?) 

Question 3 (methods) Foran instance of a given class 
and a specific method name, to which subobject will the 
instance be cast as a result of the call? (Or will it be 
ambiguous?) 

It is necessary to explain the notion of casting in this 
model. When a class C is instantiated as an instance i, 
we say that C is the actual class of i. As long as i is 
treated as an instance of C, we say its C subobject is also 
its effective subobject and Cis its effective class. Using 
i with a method inherited from an ancestor class A re­
quires that the associated subobject of i become its effec­
tive subobject, with A as the effective class, so that the 
instance may be treated as an instance of A. This change 
from one effective subobject to another is known as cast­

ing. The actual class of an instance never changes. 
In answering just these three questions, each of which 

deals with static properties of the hierarchy, we are able 
to strip away an enormous amount of complication, in­
cluding access control, method values, instance-variable 

values, and the physical layout of instances. We con­
sider it essential, however, that the features that gen­

uinely complicate the inheritance model-multiple in­
heritance, subobject integrity, shared and non-shared 
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Figure 1: A class-name DAG (left) and its derived subobject poset (right). The dotted and solid lines denote the 
shared and proprietary inheritance relations. The class at the bottom of an arc inherits from that at the top. 

classes, virtual and non-virtual methods, and ambigu­
ity analysis-are retained. Despite our formal simplifi­
cations, and partly thanks to them, we have found this 
model to be an invaluable aid in our design and imple­
mentation of a mostly-static multiple inheritance object 
system with first-class classes[16]. 

As Snyder suggests, modeling these features entails 
a certain amount of complexity. It must be remembered 
that the complexity is not artificially introduced by the 
formalism, but that the formalism is only as complicated 
as necessary to model its complex subject. Moreover, 
we do not present a critique of the inheritance model; 
rather, the aim is to find a formalism for the existing 
model as we understand it. 

The rest of this paper proceeds as follows: Section 2 
lays the conceptual groundwork as it answers Ques­
tion 1. Questions 2 and 3 are answered in Section 3. 
Section 4 gives a detailed account of the relation of this 
model to C++, and Section 5 demonstrates the use of this 
formalism as a basis for modifications to the inheritance 
model. Sections 6 and 7 summarize our contribution in 
relation to previous work. Finally, the appendix proves 
a key lemma. 

2 The Set of Subobjects 

Our formalism is specified partly in terms of posets (par­
tially ordered sets). Certain conventions are used: a 
poset may be described as (A; R) for a set A and an or­
der R, where R is reflexive, antisymmetric and transi­
tive; unless otherwise specified, a subset of a poset is a 

poset with the same order restricted to the elements of 
the subset. See, for example, Davey and Priestly[11 ]. 

Throughout our discussion, we shall make reference 
to Figure 1, which shows both a class hierarchy (left) 
and the derived poset of subobjects (right). In each case 
x < y implies that x appears lower than y, and that x in­
herits from (is derived from) y. This class-name graph is 
artificially complex in order that the reader may consider 
the effects of unusual inheritance relations and attempt 
to derive the subobject poset from our specification. 

Finally, we use f[yjx] to indicate the functional ex­
tension of f such that x maps to y. 

2.1 Subobject Intuitions 

Let us first informally approach the. answer to Ques­
tion 1. We can think of each class as having a unique 
name that denotes the class itself. Each class definition 
includes the specification of a set of shared base classes 
and a set of proprietary base classes. For example, in 
Figure 1, F has one proprietary base class D and one 
shared base class C. 

For any class C we may readily construct a DAG 
whose arcs are a subset of the disjoint union of the shared 
and proprietary inheritance relations over the class hier­
archy; we call this the class-name graph for the class C. 

Note that the shared or proprietary attribute is associated 
with the arcs, not the nodes. Thus, Cis both shared (with 
respect to F) and proprietary (with respect toE and G.) 

Unfortunately, the class-name graph is not an espe­
cially useful way of understanding the results of the dif-
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ferent kinds of inheritance. Specifically, the class-name 

graph is not suitable for answering our three questions 

about subobjects. For this purpose we derive the more 

useful subobject poset. 
Sakkinen, who also recognizes the need to distin­

guish between the class-name graph and his DAG equiv­

alent of the subobject poset, informally describes the 

subobject graph [28](p.80): "The correspondence be­

tween paths in the two graphs is one-to-one. However, 

a class in the inheritance graph may correspond to more 

than one node in the subobject graph, depending on the 

sharabilities." One of our goals is to model the effects 

of such sharing. 
To develop intuitions about the set of subobjects, 

consider the following fixed-point algorithm for deter­

mining the set of subobjects for an instance of H in Fig­

ure 1. Let C be the set of class names in Figure 1. 

1. Initialize the roots set to be {H}; initialize the de­
rived set to be {}. 

2. For every element of the roots set, encode every 

proprietary path that reaches any other class in C. 

Paths are encoded as tuples of class names, such as 

(H, F, D, A), where H is the root class-name and A is 

the reached class-name. Add each such tuple to the 

derived set. 

3. Whenever a root class-name or a reached class­

name has a shared arc to another class name, that 

other class name is added to the root set. 

4. Repeat 2 & 3 until both the root set and the derived 
set reach a fixed point. The final set of subobject la­

bels is given by the union of the derived set with the 

set of singleton-tuples of the elements of the root 
set. 

In our example, H reaches C through two distinct pro­

prietary paths: (H, E, C) and (H, G, c). H also reaches F, 

which has a shared arc to C. This gives us (c), another 

subobject corresponding to C. These are encoded with 

different labels to represent the fact that instances of H 

will have three subobjects corresponding to c. 
Thus we identify each subobject with the portion of 

its path that uniquely specifies its derivation. To model 

sharing, subobjects are distinguished only by the sub­

path of exclusively proprietary arcs from the reached 

class down to either the instantiated class or the first 

shared arc, as demonstrated above. It is this subpath that 

constitutes a subobject label. 
Finally, note that subobject labels are derived with 

respect to the instantiation of a particular class. Again 

referring to Figure 1, if the root set were initialized to 

{E} instead of {H}, the set of subobject labels would be 

{(E), (E,C), (D), (D,A), (B)}. 

2.2 Subobject Formalism 

The following formalism is specified in terms of two es­

sential constructs: the class context and the subobject. 
Both of these are defined over a domain of class names 

7f and a domain of member names .4/. 

Definition 2.1 (class context) A class context 1 is a 4-

tuple (C, v, -<s, -<p), such that 

C~<rf 

v E C ---7 2.4/ 

-<s, -<p ~ C XC 

where the reflexive and transitive closure of the union of 

-<s and -<p is antisymmetric. 

For each class context I· we define <s = ( -<s)+, 
~s = (-< 8 )*, <p = (-<p)+, and ~P = (-<p)*. Similarly, 

-<sp = ( -<s u -<p). <sp = ( -<sp)+' and ~sp = ( -<sp)*. 
As a notational convention, C, v, -< 8 , -<p (and the 

aforementioned transitive closures) will refer to the cor­

responding components of 1. when 1 is clear from con­

text. 

A class context 1 comprises the set of class names C, 
the function from class names to their member names 

v, the set of shared arcs -< 8 , and the set of proprietary 

arcs -<p· The antisymmetry of ~sp corresponds to the 

requirement that class-name graphs be acyclic. As a re­

sult, (C; ~sp) is a poset. 

Definition 2.2 (subobject) A subobject a- is a triple 

(!, C, (X, Y1, ... , Yn)) where "( is a class context, 
n ;::: 0, and 
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Condition 1 simply ensures that the class name C 
and the subobject label (X, Y1, ... , Yn) consist of names 

from the class-name graph. Condition 2 uses -<p to en­
sure that each class in the subpath is named in the label; 

for example, (H, D) is not a subobject label in Figure 1 

because it omits the intermediate F. The final condition 

specifies that if X is not C, it must be at the top of a 

shared arc whose bottom is an ancestor of C. 
A subobject (},then, consists of a class context"(, an 

actual class name C, and an effective subobject label of 

the form "'Z, where "' is a possibly empty sequence of 
class names. We call Z the effective class name of the 

subobject, which may also be referred to by eff((J). 
Now we may answer Question 1. We use :E to refer to 

the set of all subobjects over 'iff and Jit. Then :E["t] refers 

to that subset of :E restricted to the subobjects with "( as 

the first component, and :E["t, C] to that subset of :E["t] 
in which C is the second component. Thus, :E ["f, C] is 

the set of subobjects for C in"(. This replaces the intu­

itive fixed-point algorithm from Section 2.1. Whereas 

the fixed-point algorithm determined the correct subob­

ject labels, here we determine the correct subobjects. 

We call subobjects of the form ( "(, C, (C)) primary; 

all others are called dependent. The primary subobject 

corresponds to an uncast instance of C, while dependent 

subobjects correspond to cast instances. 

Definition 2.3 (Obj) Define Obj to be the subobject 

Obj = (({Root},0,0,0),Root, (Root)) 
def 

Obj is minimal in the following sense: a subobject 

must have at least one class in its subobject label-we 

choose Root. This class and the actual class must be de­

fined in the enclosed "f, and may be the same class-as 

in our case. Thus, the only restriction on "( is that Root 

be a member of C-our "(contains no other information. 

We now consider an operation for introducing class 

definitions into existing hierarchies. As is the case for 
most of the operations in this formalism, this operation 

is a function from subobjects to subobjects. The inherit 

operation introduces a fresh class into a class context and 

returns its primary subobject. 

Definition 2.4 (inherit) Let C E 'iff and N <;;:; J/t, and 

letS,P <;;:; 'if?bedisjoint. Defineinherit(C,N,S,P) to 

191 

be the function cp such that, for any subobject (} E :E["t] 
with Crt C, 

cp((J) = ('y', C, (C)) 
def 

where "(1 is the class context 

(C U C, -<s U (C X S), -<p U (C X P), v[NjC]) 

As long as antisymmetry holds, "(1 is clearly a class 

context. Antisymmetry is ensured because "(1 only in­
troduces arcs from C to elements of C, and C rt C. As a 

result, ("(', C, (C)) is clearly a subobject in :E ["t', C]. 
The function cp extends (J's class context to include 

the new class name C with its associated member names 

N, shared bases S, and proprietary bases P. The result 

is the primary subobject of C. Note that cp is a partial 

function from subobjects to subobjects; it is undefined 

when Cis already a class name in (J's class context. 

3 Name Resolution 

The answers to Questions 2 and 3 involve the member 

names associated with various classes. We first show 

how the subobject poset for a given class is derived from 

the class-name graph. We then show how to determine 

the family of subobjects associated with a given mem­

ber name. If the family is empty, the reference is invalid, 

and no subobject is selected. If the family has a greatest 

lower bound, that subobject is selected. Otherwise, the 

reference is ambiguous, and no subobject is selected. 

3.1 Intuitions for Subobject Selection 

For illustration, let us add members to some of the 

classes in Figure 1. In fact, let us define the class hierar­
chy from Figure 1 using inherit. 

CfJH = inherit(H,0,0, {E,F,G}) 

o inherit(G, {q}, {o}, {c}) 

o inherit(F, {b }, { C }, {o}) 

o inherit(E, {p }, {o}, {c}) 

o inherit(D, 0, {B}, {A}) 

o inherit(c, {b }, 0, 0) 

o inherit(B, {p}, 0, 0) 

o inherit(A, 0, 0, 0) 

where o indicates composition: (f o g)(x) = f(g(x)). 



In effect, the application CfJH(Obj) is analogous to in­
stantiating H in the specified hierarchy. If b is an inst­
ance variable, which subobject of an H instance pro­
vides the value when b is referenced? If p is a method 
name, which subobject of an H instance provides the 

value when p is called? 
Somewhat surprisingly, the formalism does not 

directly discriminate between instance variables and 
methods. The name resolution scheme for instance 
variables and non-virtual methods is identical. We call 
this static resolution, since it is determined relative to 
the effective class of 0', which is a static property of 
the instance when static types are available, as in C++. 
Name resolution for virtual methods depends on the 
actual class of the subobject-a dynamic property-so 
we call this dynamic resolution. Despite the dynamic 
nature of virtual methods, implementations are able to 
use static analysis to eliminate run-time searches; we 
detail such a strategy in Section 4. 

By grouping all member names into a single set, 
we eliminate any distinction based on the name itself. 

Rather, we provide two operations for referencing mem­
bers: dyn for dynamic (virtual) method references, and 

stat for the other (static) references. In both kinds of 
references, the dominance rule[15] is used to help dis­
ambiguate common inheritance situations that arise with 
shared base classes. Intuitively, when a shared base de­
fines a member that is later redefined along one path, but 
not along others, the derived class may unambiguously 
reference the member as if only the modified path ex­
isted. 

3.2 Formal Subobject Selection 

We begin by defining an order relation for the subobjects 
of any given class. This is used to derive the subobject 
poset from the class-name graph. 

Definition 3.1 (::;so) Let 0', 0'
1 E :E[1, CJ such that 0' = 

(!, C, K,) and 0'
1 = ("!, C, X K,1). Then 0' -<so 0'

1 iff either 
XK,' = K,Z for some Z E Cor eff(O') -<s X. Define 

::;so = (-<so)*· 

The first disjunct admits the case where the two sub­
objects correspond to classes joined by a proprietary arc, 
such as (H) and (H, F). The second disjunct admits the 

case where the corresponding classes are joined by a 
shared arc, such as (H, E) and (D). 

Lemma 3.2 (:E[1, CJ; ::;so) is a poset, called the subob­

ject poset of C in I· 
The proof is outlined in an appendix. 

3.2.1 Families 

Let us now return to our example, CfJH· Given the subob­
ject CfJH(Obj), which subobject is selected by p? As we 
alluded previously, this depends in part on whether the 
reference to p is static or dynamic, but we shall see that 
this distinction disappears in the case of a primary sub­
object, such as CfJH(Obj). Subobject selection is based 
on the different paths leading from CfJH(Obj) to a sub­
object whose effective class contains a definition of p. 

From the definition of CfJH, we see that B and E provide 
definitions of p to H. Each of these classes yields one 
subobject in H: (B) and (H, E) respectively; thus we have 
only these two subobjects to choose from. Of these, 
(H, E) is selected because it is the greatest lower bound of 
the family {(B), (H, E)}. Intuitively, this is because there 

exists a path through (H, E) leading to (B). 

Definition 3.3 (fam) Let a E .41. 

fam(l, C, a) = { 0' E :E[1, C] I a E v(eff(O'))} 
def 

3.2.2 Dynamic References 

To achieve the dynamic behavior of virtual methods, we 
apply the jam operation to the actual class of the input 

subobject. If the resulting subobjects may be ordered by 
::;so to yield a least element, that subobject is unambigu­
ously selected. 

Definition 3.4 ( dyn) Let a E .41. Then dyn( a) is the 
partial function ¢from subobjects to subobjects such 
that, for any subobject 0' E :E[1, CJ, 

where 0'
1 = glb(fam(l, C, a)) whenever the greatest 

lower bound exists. 
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Thus, for example, if (T,H, (H)) = 'PH(Obj) then 
dyn(f)( (r, H, (D, A))) is still (H, E). Since the only dif­
ference between the primary and dependent subobjects 
is the effective subobject label, which plays no part in 

the resolution of dynamic references, every dependent 
subobject will give the same result as the primary sub-

object. 

3.2.3 Static References 

Whereas dynamic references are resolved with respect 
to the actual class, static references are resolved with re­

spect to the effective class. This is partly a matter of 
what information is provided to jam, and partly a matter 
of what is done with the result. It is straightforward, us­
ing/am, to determine a family of subobjects with respect 
to the effective class, but the resulting set will be a subset 

of the subobject poset of the effective class, whereas we 
ultimately require a subobject from the subobject poset 

of the actual class. 
Consider the case of resolving b with respect to H's 

(H, E) subobject. The effective class would be E, so Jam 
would yield {(c)}, E's (c) subobject. The problem is 
that this is isomorphic to H's (H, E, c) subobject, not its 
(c) subobject. 

Thus we must translate the selected subobject of the 
effective class into the corresponding subobject of the 
actual class. This is certainly possible, since the poset of 
the effective class is clearly isomorphic to a subset of the 
poset of the actual class by virtue of subobject integrity. 

Definition 3.5 (trans) Let CJ, CJ1 E I:['y] such that CJ = 

(/,C,K,) andCJ1 = (T,eff(CJ),XK,'). 

trans(CJ, CJ1
) = (1, C, K,

11 
K,

1
), where 

def 

ifeff(CJ) =X, 

otherwise. 

Lemma 3.6 The result of the trans operation is a sub­
object. 

This is easily shown by recognizing that the two cases 
for/'\," correspond to conditions 2 and 3 in Definition 2.2, 
respectively. 
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Definition 3.7 (stat) Let a E .4l. Then stat(a) is the 
partial function 'If; from subobjects to subobjects such 
that, for any CJ = I:[1], 

'ljJ(CJ) = trans(CJ, CJ1
) 

def 

where CJ1 = glb(fam(T, eff(CJ), a)) whenever the great­
est lower bound exists. 

Thus, for example, (stat(b) o dyn(p) o dyn(q) o 

'PH)(Obj) can be determined to select H's (H, E,C) 
subobject. The virtual method calls to q and then 
to p lead to the selection of the (H, E) subobject. 
From there, the reference to b yields the (H, E, c) 
subobject as discussed earlier. Note, however, that 

(stat(b) o 'PH)(Obj) is ambiguous, since the minima of 
{(H,E,C), (H,G,C), (C), (H,F)}-(H,E,C), (H,F), and 
(H, G, C)-are incomparable. 

4 Relation to C++ 

Since C++ is far and away the most widely-known ex­

emplar of this style of object-oriented programming lan­
guage, we consider how our model relates directly to 
C++. Due to the informal specification of C++, we at­
tempt no formal proof of this relationship. As Perlis 
notes, "One can't proceed from the informal to the for­
mal by formal means."[24]. 

A great deal of the complication in a C++ compiler 
concerns the management of virtual methods and virtual 
classes. Part of this relates to the determination of the 
layout of an instance of a given class; although we do 
not address the physical layout of an instance, we do pro­

vide the necessary set of subobjects for the instance. The 
greater complication is subobject selection as it relates 

to the resolution of method calls and instance-variable 
references; our formalism provides a useful model for 
resolving these questions. 

Of particular interest is the case of pointers or refer­
ences to objects, which are subject to subsumption, by 
which a variable declared as a pointer(reference) to in­
stances of one class may serve as a pointer(reference) to 
instances of any class for which it is an ancestor. Method 
inheritance is supported in this way by forcing the hid­
den method-parameter this to be such a pointer. 



Compiled code must not make broad assumptions 

about the layout of an instance when that instance is sub­

ject to subsumption. This becomes especially apparent 

in the case of multiple inheritance with virtual classes 

and virtual methods, where only a limited set of refer­

ences and method calls can be made without the aid of 

some indirection, either through a virtual method table 

(a vtbl) or a similar construct for virtual classes. 

We now consider in some detail the role of subob­
ject selection in the compilation of method calls and 

instance-variable references. In each case, the instance 

that is used for the reference can be thought of as a sub­
object in our model. The effective class of this subob­

ject is known at the call site (or reference site) at com­

pile time, but not the actual class (due to subsumption.) 

For simplicity, we assume the instance is reached by a 

pointer variable, i, although a reference variable would 

work similarly. In the following, let O" be the subobject 

denoted by i, and let C be the effective class of O". Also 
for simplicity, we assume instances are contiguous se­

quences of subobjects. 

4.1 C++ Static References 

References to instance variables i->a can be compiled 

to references into the given instance at a particular offset 
from either the start of the current subobject or the start 

of a shared base subobject. As specified in the stat oper­

ation, the effective class C of O" is used as the basis for 

a search that yields 0"
1

, a subobject of C with an unam­

biguous definition of a. Unless 0"
1 is a shared subobject 

of C. the value of a may be found at a fixed offset from 

the starting address of O". The compiled code accesses 
the dynamic instance at this fixed offset. 

If 0"
1 is a shared subobject of C, the offset to the mem­

ber is not fixed, since multiple inheritance cannot pre­

serve the ordering of shared subobjects. Rather, the ref­

erence must be indirect through a pointer or offset found 

at a fixed offset. For example: 

Color[r,g,b] 

I 
... ... ... ... ... ... .. 

Point[x,y] 
' 

ColorPoint[r,g,b ]4[x,y] Circle[r]2 [x,y] 

I~ 
ColorCircle[r,g,b]6[r]2[x,y] 

This is a class-name graph deriving a ColorCircle class. 

Each class is annotated with a depiction of its instances, 

with the square brackets marking the subobjects. Notice 

that, in order to support subsumption, none of the classes 

that inherit from the shared base class can assume the lo­
cation of the corresponding subobject. Rather, they as­

sume the location of an offset to the start of the subob­

ject. 

Thus, a site that references the x field of a ColorPoint is 

compiled to find an offset at index 3 of the current subob­

ject. That offset locates the address of the selected sub­
object, where the value of x is found at index 0. This 

same compiled code still works for a ColorCircle, even 

though the Point subobject is at a different relative ad­
dress. Similarly, a Circle instance must store the offset at 

index 1. Thus a ColorCircle that has been cast to its Circle 

subobject also has an offset at index 1. In this case, the 

offset is calculated from the beginning of the Circle sub­

object of the ColorCircle instance. 

Method calls i->a ( x1, ... , Xm) are quite similar 
when the method is not virtual. The subobject is deter­

mined exactly the same way. The starting address of 0"
1 

relative to the starting address of O" can be calculated and 

used to cast O" as it is passed to the function. The ad­

dress of the method function can be obtained statically 

as well: we presuppose the existence of a total function 

methfun: ( "{! x .41) -. methfuns. The method address is 

obtained by methfun(eff(O"'), a). 
In each case, the physical layout of each instance en­

sures that the subobject address calculated for the effec­

tive class yields the correct subobject for any derived­

class instance that is cast to the effective class. In the 

case of shared subobjects, this means arranging for the 

run-time indirection. 

4.2 C++ Dynamic References 

Dynamic references correspond to virtual methods in 

C++. Unlike a static method call. a virtual method call 

cannot be fully statically resolved. Due to subsumption, 

resolution of the call is based on the actual class of the 
instance rather than the effective class, but only the ef­

fective class is known at compile time. 
Resolution of the call i->a(x1, ..• ,xm) amounts 

to finding both the method function and the casting ad-
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dress with respect to a particular run-time value of i. 
This is accomplished without a run-time search by the 
use of indirection through a virtual method table (a vtbl) 

in the instance, which is shared by all instances of the 

same class. Subsumption is managed by arranging the 

vtbl of a derived class to have the same shape as that of 

the base class; that is, the dynamic method information 
for a method a is found at the same address in both vtbls. 

Because of multiple inheritance, the same inst­

ance may be cast and used in contexts that expect a 
differently-shaped vtbl. For example, given a class C 
derived multiply from A and B, if A's vtbl is ordered 

[f, g, h] and B's is ordered [g, f], how can C's vtbl con­

form to both? The solution is to associate a different vtbl 
with each subobject, corresponding in shape to the or­

dering of the effective class of the subobject. In our ex­

ample, C would have a [f, g, h] vtbl for its (C, A) sub­

object and a [g, f] vtbl for its (C, B) subobject. For the 

primary subobject, an arbitrary ordering may be used 

since no conformance is required. Typically, however, 

the (C) and ( C, A) vtbls would be shared as part of an 

overall subobject compression scheme, with C's new 

methods appended to the end. Semantically, this is just 
a special case of an arbitrary ordering. 

Using this technology, we must answer two questions 
regarding virtual methods: how is the call site compiled, 

and how are the vtbls arranged? For simplicity, assume 

all a E .41 are virtual method names, and each redefini­

tion of a method a is fully congruent (identical in its for­
mal parameter types and return type) with the version(s) 

it supersedes. This ensures that every method definition 
is either the original definition of a virtual method or a 

safe overriding definition. 

We associate an ordering of methods with each class, 

corresponding to the shape of the vtbl of its primary sub­

object. First we identify the set of method names asso­

ciated with the class. 

Definition 4.1 (reach) Given a class context 1 with 

C E C. 

reach(/, C) = 
def u 

DE{C I C~spC} 

v(D) 

Then we define the (arbitrary) ordering of these 

names for the primary subobject. 

Definition 4.2 (pri) Let R =reach(/, C) and let n be 
its cardinality. Then 

pri(/, C) = (a1, ... , an) 
def 

where a1, ... , an E R. 

4.2.1 Virtual Method Tables 

We next associate a vtbl with each subobject. The 

function vtbl maps subobjects to their associated virtual 
method tables. 

Definition 4.3 (vtbl) Let (a1 , ... , an) = pri(/, eff(cr)), 
where a E :E[1, C]. Then for 1 ::; i ::; n, 

CTi = dyn(cr)(ai) 

J.Li = methfun(eff(cri), ai) 

b:..i = &ai - &a 

Then vtbl(cr) = ((J.LI, 1:11), ... , (J.Ln, b:..n)). 
def 

Similar to the C++ usage, we use & to denote the ad­

dress of a subobject. Note that the use of dyn guarantees 
the actual class of a is used to find the casting informa­

tion, while the use of eff( a) ensures that the ordering of 

the vtbl conforms to the effective class. As a result, the 
same method name maps to the same virtual-method in­

formation in every vtbl of every subobject of the same 

class. The different method tables of the same instance 

differ only in the subset of the methods that they define 
and the order in which they are represented. Note, also, 
that ambiguities are detected at vtbl-creation time, not at 

run time. 

4.2.2 Virtual Method Call Sites 

At the call site, i->a ( x 1, ... , Xm) , the vtbl ordering is 

known to be pri(!, C) = (a1 , ... , an). for some 'Y· If 
there exists a k ::; n such that a = ak, the method is 
reachable and the static vtbl-index is k. Otherwise the 

call is statically determined to be invalid. 

A valid call-site is compiled so that, at run time, a 

(J.Lk, b:..k) pair is extracted from the vtbl of the dynamic 
instance. A new instance-pointer is cast from i using 

b:..k. Then the method function J.Lk is invoked using this 
pointer and the x1, ... , Xm arguments. 
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4.3 Dominance 

In the simplest view of ambiguity, a member is ambigu­
ous whenever two distinct subobjects exists that both de­
fine the member such that a path exists to one subob­
ject that does not pass through the other. The dominance 
rule modifies this view, providing a useful disambigua­
tion for a common name-conflict in multiple-inheritance 
systems. 

When a shared base class results in a subobject that is 
reached by more than one path, it is possible that one or 
more of these paths may contain overriding definitions 
of a member of the shared subobject. According to the 
dominance rule, a member is not ambiguous simply be­
cause an overridden definition is also accessible along a 
path that does not contain an overriding definition. 

Since we organize subobjects into a poset rather than 
a DAG, we do not have a formal notion of a path. In fact, 
certain path information is lost in the transformation of 
a DAG to a poset. Even worse, it almost appears to be 
exactly the kind of information that is required to model 
dominance. Consider the example: 

cp = inherit(C, {A, B}, 0, 0) 
o inherit(B, 0, {x}, {A}) 

o inherit(A, 0, {x}, 0) 

Here, the subobject graph would be isomorphic to the 
class-name graph, preserving the fact that C reaches 
A by two paths-directly, and through B. The sub­
object poset, however, records only the fact that 
(c) :Sso(C,B) :Sso(A). The information that C reaches A 
directly has been lost. 

Rather than causing a problem, however, this loss of 
information fortunately corresponds to the dominance 
rule. It is exactly this missing path that would have 
caused an ambiguity in accessing x, and that the dom­
inance rule requires us to ignore. Since this is just a spe­
cial case of our requirement that there be a least subob­
ject, there is no need to add an explicit dominance rule 
to our model. Rather than being a separate case, domi­
nance is just the natural behavior of name resolution. 

5 Modifications 

An important implication of any abstraction is that it 
provides a coherent basis for the exploration of related 
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systems. This is true of our formalism as well. As an ex­
tension, for example, we might consider a naive privati­
zation mechanism such that privatized members are not 
visible to derived classes. If we change inherit to split 
the v field into two fields, Ve (external public names) 
and Vi (internal private names), we may redefine vari­
able references by changing the definition of Jam. 

Definition 5.1 (fam (revised)) Let a E .41. 

fam("y, C, a) = 
def 

{ u E E[7, C] 
a E ve(eff(cr)) or } 

eff(cr) = C & a E vi(C) 

This redefinition applies protection attributes as 
a visibility mask, unlike C++ but as suggested by 
Sakkinen[28]. As an example, consider a modified 'PH 

in which all the existing members were made public 
except the b member of C. Then b would no longer 
be ambiguous in H since the only reachable definition 
would be in (H, F). 

6 Related Work 

The problem of combining multiple hierarchies has 
been dealt with in many ways. Snyder[32] divides 
these into linear and graph-oriented approaches. Lin­
ear approaches, such as [1, 23, 12, 13, 14], do not 
model subobject integrity. Graph-oriented approaches, 
all of which are capable of supporting subobject in­
tegrity in some way, include extended Smalltalk[2], 
Trellis/Owl[29], Common0bjects[31], ROME[?], and 
the Krogdahl/Stroustrup model discussed here. 

Some formal models of graph-oriented multiple in­
heritance systems[20, 36] have been based on class­
name posets rather than class-name graphs. As dis­
cussed earlier, the transition from graph to poset can lead 

to information loss. At the class-name level, this loss of 
path information leads to the collapsing of some distinct 
subobjects, and is insufficient to model the kind of inher­
itance we have formalized. 

Cardelli's model of multiple inheritance[3, 5, 4] is 
closely tied to a record representation of objects, and 
does not attempt to maintain subobject integrity; simi­
larly with Compagnoni and Pierce[25, 8]. In effect, the 



same may be said for Eiffel[18, 22]: distinct storage is 

maintained only if the programmer renames all mem­
bers ro protect against conflicts. The only difference is 
that Eiffel forces the renaming, while a record semantics 

tends to allow collapsing. 
Snyder's model of the C++ object model[33] offers a 

more comprehensive modeling of the C++ object system 
in general. but in doing so it explicitly ignores a number 
of complications that we treat here. especially the prob­
lem of repeated inheritance. Seligman[30] presents an­

other formal semantics of C++, but makes no attempt to 
deal with multiple inheritance. Wallace's semantics of 
C++[37] includes multiple inheritance, but with virtu­
ally no concern for compile-time issues such as subob­
jects, subobject selection, and ambiguity analysis. 

7 Conclusion 

Our new formal model provides an implementation­
independent means of understanding the complex inter­
action of features in a particular variety of multiple in­

heritance. Natural-language descriptions, buried among 
the other details of a specific language, lack the rigor 

and accessibility of a formal specification. For example, 
an implementation can never be provably correct with 
respect to an informally specified semantics. A model 
such as ours provides a more precise reference for both 
implementors and language theorists. 

Using our formalism, sample hierarchies may be con­
structed and formally analyzed for certain properties, 
such as the effects of arbitrary sequences of method in­
vocations and the reachability or ambiguity of specific 
instance variables or methods. This, in tum, opens the 

door to automated static analysis tools. Moreover our 
model forms the basis for an extended formal study of 
related inheritance systems so that modifications may be 
evaluated in the absence of implementations. 
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Appendix 

Lemma 3.2: (:E[!, C]; :Sso) is a poset, called the sub­
object poset ofC in I· 

(1) 1. :Sso is a reflexive, antisymmetric and transitive 
closure over 2::[/, C]. 

(2) 1. It suffices to show that :Sso is antisymmetric, 
since it is defined by reflexive and transitive 
closure. 

(2) 2. (]" :Sso (]"1 and (]"1 :Sso (]" implies (]" = (]"1
• 

LET:(]"= (!,C,Xt\,Z) and(]"'= (!,C,X't\,'Z'). 
ASSUME: (]" :Sso (]"1 and (]"1 :Sso (]" but(]" =f. (]"1

• 

PROVE: False. 

(3) 1. :Ssp is antisymmetric, by Def (2.1). 

(3)2. (]" :Sso (]" 1 and(]" =f. (]"1 implies Z <sp Z'. 
CASE: X/'\, is a proper prefix of X' K,

1
• 

(4)1. Z <p Z' by the antisymmetry of -<p. 

CASE: :l(Y E C)[Z :Ssp Y -<s X'] 
(4)2. Z <sp Z', since X' <p Z'. 
(4)3. Q.E.D. 

(3)3. (]"1 :Sso (]"and(]" =/= (]" 1 implies Z' <sp Z. 
(Proof as above.) 

(3)4. Contradiction. 
(3)5. Q.E.D. 

(2)3. Q.E.D. 

(1)2. Q.E.D. 
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