
Use of Object-Oriented Programming in a Time Series Analysis System

R. K. Kerr* and D. B. Percivalf

Applied Physics Laboratory,
University of Washington, Seattle, WA 98105

f Applied physics Laboratory and Depaflment of Statistics,
University of Washington, Seattle, WA 98105

ABSTRACT
We describe the use of object-oriented programming (OOP) in the design and imple-
mentation of TSA, a system for interactive time series and spectral analysis. We
show how such features of OOP as inheritance, generic messages, and decomposi-
tion of the programming problem in terms of objects have contributed to our goal of
providing an extensible data analysis system. We discuss the strengths and limita-
tions of both OOP and the particular implementation we used (Flavors on a Symbol-
its Lisp Machine) for our particular problem.

1. Introduction

We describe here the role that object-oriented pro-
gramming (OOP) has played in the design and implemen-
tation of a system for interactive time series analysis.
This system, called TSA, is currently implemented on a
Symbolics Lisp Machine and is written in the OOP
language Flavors. Our report summarizes the rationale
for creating TSA (Section 2); the features of OOP that led
us to use it for implementing TSA (Section 3); a descrip-
tion of the overall design of the system and how it appears
to a user (Section 4); the use of OOP in an automatic pro-
gramming facility that is useful for extending the capabil-
ities of TSA (Section 5); and an evaluation of our experi-
ence to date with OOP (Section 6).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commerical advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinev. To copy otherwise. or to republish. requires a fee and/
or specific permission.

0 1987 ACM 0-89791-247-O/87/0010-0001 $I .50

2. Rationale for Creating TSA

Time series analysis is primarily concerned with the
characterization of dependencies in data (called a time
series) that are gathered over a period of time. It is
widely used in disciplines as diverse as economics (to
analyze, say, weekly values of a forward exchange rate)
and electrical engineering (to characterize the relationship
between the input and output to a speech enhancement
device).

Time series analysis is a rather complex field since
it embodies ideas from Fourier analysis, signal process-
ing, and statistics. Because of this inherent complexity, it
is also a field where interactive data analysis is the rule
rather than the exception. Interactive data analysis
involves human intervention and judgement. It should be
contrasted with production data analysis in which data is
fed into a well-tested computer program and final results
pop out. Interactive time series analysis typically
involves iterations of cycles in which the analyst performs
some operation on his or her time series (say, calculation
of an estimate of its spectrum); carefully considers the
results of this operation; and performs some new opera-
tion based upon the results of this examination (computa-
tion of a new estimate with different statistical proper-
ties). A key point to note here is that the next operation
might well be implementation of an entirely new form of

October 4-8, 1987 OOPSLA ‘87 Proceedings 1

analysis that is inspired by the time series at hand.

Our primary rationale for creating TSA was to
develop a computer system that would support interactive
time series analysis as fully as possible. There are a
number of recent developments in computer hardware
and software that, if properly harnessed, can lead to a
substantial improvement in the quality of interactive time
series analysis that an analyst can do. These develop-
ments include the emergence of affordable single-user
graphics workstations with high resolution and a fast
refresh rate; advances in the use of multiple windows and
pointing &vices (such as a mouse) to facilitate user
interaction with a computer; and integrated programming
environments.

powerful and portable enough so that students can carry it
with them and use it for actual data analysis later in their
careers. Hopefully TSA is a modest step in this direction.

Our design goals for TSA can be summarized as
follows.

How each of these developments can lead to better
quality interactive data analysis is spelled out in series of
recent articles by McDonald and Pedersen (1985a, 1985b,
1986). These authors note the close resemblance between
experimental programming and interactive data analysis:
both require the ability to make quick changes in software
in response to creative ideas for solving particular prob-
lems. They argue that the integrated programming
environments on specialized workstations such as Lisp
Machines that were developed to support experimental
programming are potentially good environments for doing
interactive data analysis. There are certain things that are
necessarily currently lacking in these environments, and
one of the motivations for TSA was to supply the missing
pieces for time series analysis.

[l] The system should be accessible to the novice, but
it should not hinder the experienced user in his or
her tasks. This requirement rules out a simple
nested menu scheme, since it would quickly drive
an expert to distraction.

[2] It should support the commonly used techniques of
time series analysis, but it should also be easily
extensible to handle user-defined analysis pro-
cedures. It is the lack of extensibility that is the
chief disadvantage of such batch-processing
oriented statistical systems as SPSS and BMDP.

[3] It should be built upon a modem integrated pro-
gramming environment and should itself be well
integrated into that environment. In particular, it
should make use of all of the tools of such an
environment such as inspectors, the ability to evalu-
ate expressions from within a text editor, etc.

[4] The overall structure of the program should be as
transparent as possible to users. This is important if
users are to be able to make the quick modifications
demanded by interactive data analysis.

3. Why OOP?

A secondary rationale for creating TSA was to When we started work on the TSA project in early
develop a system that is useful for helping students learn 1985, we made a quick prototype of the system using
time series analysis. The ability to do good time series procedure-oriented programming with Lisp functions. It
analysis is largely a matter of practice. The complexity of soon became apparent that OOP was a more appropriate
the field is such that students only really master the sub- language paradigm to use for several reasons. First, it
ject matter by applying textbook methods to many dif- made sense to use OOP since a major portion of the
ferent time series. It is only by experimentation that they software for the Lisp Machine was written in the OOP
learn the proper use of standard techniques. The package Flavors. One of our design goals was to
difficulty of teaching good data analysis is increasing as integrate TSA into the Lisp Machine programming
the complexity of the fields in which data analysis is environment so that all of the tools in that environment
important increases and as the number of tools available could be used for interactive data analysis when needed.
to an analyst increases. Indeed, John Tukey (1984), one As an example, an early goal of our project was to allow
of the founders of modem data analysis, has stated that users to interact with graphs of their data using the mouse
the key education problem today in data analysis is connected to the Lisp Machine. One desirable interaction
developing courses that ” * * - expose the innocent is to be able to identify points on a graph by depressing a
rapidly enough, without endangering whole subject- mouse button when the mouse cursor is close to the
matter fields by producing not half-educated users (of desired point. The way in which users make use of the
which there are too many today), but rather only quarter- mouse on the Lisp Machine is by receiving messages sent
educated ones.” The only bright hope that he sees for the from a process that controls the mouse. Handling the
future is the emergence of sophisticated computer mouse thus necessitates the use of OOP, as do all interac-
software dedicated to particular aspects of data analysis tions with the Lisp Machine window system, Since TSA
(such as time series analysis). Such software would aid makes considerable use of the mouse and the window
instructors in the teaching of data analysis, offer guidance system, it was desirable to use OOP for the sake of uni-
and help to students in learning course material, and be formity.

,

2 OOPSLA ‘87 Procefdngs October 4-8.1987

.

A second initial reason for choosing OOP was our
perception that the inheritance capabilities of Flavors
might prove useful. Our early ideas were mainly focused
on the creation of different types of graphs, some of
which would be rather simple variations on more basic
ones. In fact, inheritance has turned out to play a key role
in the design of extensibility features for TSA (see Sec-
tion 5).

Several other reasons for using OOP have emerged
a posteriori in the process of creating and extending the
capabilities of TSA over the past two years. First, the
object-oriented design of TSA allows us to give new users
a quick overview of its structure. This is important since
a user needs a working model of a computer system in
order to make efficient use of it. The main ideas behind
OOP (objects and message passing) are easily explained
to new users.

Second, the nature of interactive time series
analysis requires that analysts be able to implement new
ideas within TSA easily. There are several levels of
changes that need to be supported. On the lowest level,
certain “on the fly” changes are easy to make because of
the persistence of objects in the Lisp Machine. This type
of modification is usually accomplished by evaluating a
Lisp expression that causes one or more existing objects
to be manipulated by sending already defined messages to
them. On a slightly higher level, more substantial ideas
can be implemented, first, by defining new methods (or
modifying old ones) to handle the specific analysis prob-
lem at hand and, second, by evaluating Lisp expressions
to evoke these methods on existing objects. Finally, more
fundamental changes to TSA can be made using the user
extensibility features that are discussed in Section 5.
These latter two levels of changes are supported by
features in OOP such as inheritance and method combina-
tion (since these encourage incremental changes to exist-
ing software).

A third reason for using OOP that is now apparent
to us is that the conceptual decomposition of TSA into
objects has facilitated the organization of its software.
This has been particularly important since we have made
some rather radical changes to portions of TSA over the
past two years as our ideas about how best to construct
various parts of it have been refined (usually from insights
gained from demonstrations to colleagues and from
observing new users). Because OOP forced us to associ-
ate code with particular objects, we have been able to
make radical changes in one portion of TSA without wor-
rying unduly about their effects on other portions.

4, Design of TSA
Interactive time series analysis typically involves

the manipulation of a time series with a signal processing

or statistical algorithm. The result of this manipulation
can often be summarized by one or more graphs. A prime
example would be computing the discrete Fourier
transform of the series and plotting the magnitude squared
of the transform (when properly scaled, this is called the
periodogram of the time series). Our design of TSA in
terms of OOP thus makes use of three main types of
objects (called flavors in the Symbolics OOP implementa-
tion): a data object, which contains the time series and
certain quantities related to it; frame objects, each of
which corresponds to a particular algorithm for manipu-
lating a time series (the use of the word “frame” here is a
historical remnant of an earlier version of TSA and is
unfortunate due to its definition in Lisp as a generalized
property list); and graph objects, which contain informa-
tion necessary to plot the results of a particular algorithm.
We describe these flavors (classes of objects) in more
detail and then proceed to discuss how they are tied
together in TSA.

4.1 Data Object
The flavor data-object contains instance variables

(slots) that specify the properties of a particular time
series. These instance variables are (with one exception)
set once and for all when a particular data object is instan-
tiated. Examples of instance variables are: the actual
values of the time series; the symbolic units for the time
series values; and the network name of an ASCII file from
which the values of the time series were read. If we
ignore the one exception, instances of data objects in TSA
are inviolate objects once they have been created.

The one exception is an instance variable called
stat-facts. Its value is an association list that is used to
save various quantities related to the time series. Exam-
ples are the sample autocovariance function for the time
series and a list of autoregessive models that the user has
fit to portions of the associated time series (each model in
the list is in fact an instance of a model’object). The pur-
pose of stat-facts is really to get around a problem with
Symbolics’s old implementation of Flavors. When we
first thought about the appropriate instance variables to
include in the flavor data-object, it became clear that it
would be hard to come up with a comprehensive set a
priori. This presented a problem because the old imple-
mentation of Flavors invalidates existing instances of a
flavor if its definition is changed to introduce more
instance variables.

The use of srut-facrs allows us to simulate the addi-
tion of instance variables. For example, suppose that we
want effectively to add an instance variable called
sampling-time. We can implement “get” and “set’
methods for it by defining methods xampling-time and
:set-sampling-time for the flavor data-object. The
method :sampIing-time would return either the element

October 4-8, 1987 OOPSIA ‘87 Proceedings 3

Figure 1

(a)

\-I

TOP LEVEL MENL

X Frame Dlrecto
Folder

Add Comment
Toolbox

Load/Unload Working Set

Add A New Frame
Guldancs

EXIT SYSTEM

HELP

(or or•vious) ~a renctcrs.

Dostcolor rdf l stlnatc?: Y-No

data taper: nwm split cosine ball dPSS
tsper parmeter(e.e
restore pouct after tapering?: Yr No

lag uindou: nona truncated PWiOdOgrAm Butleft CEiiZ3 Tukey-Hamming
lag uindou paraneter: 1 t

I
frequency scale: hur log (db)
sdf cstinete scale: linear kg (8l1)
dcncan data?: Yes No

I astinste 0 Fourier frequency?: YsrWo
standard Fourier frequencies only?: YOSNCI

(b)

Frame Directory

Allan Vulancc
ARIMA Forecasting

AROMA Model Estimation
ARIMA SDF Display
ARIMA Simulation

rRlMA Stochastic Interpolatio
Autocovariance

Autarcgrcssivc SDF Estimate
Bootstrap Simulation

Diddle Data
Filteriry

Frequency Domain Simdatloa
Hesr

LIneu Regression

x ys%gg$
Q-Q Plot

Random Phase Scrambling
Reexpress Data

Scatter Plot
Taper Tester
Time Series

Transfer Function
Whlb Nolse Test

HELP

periodogren of log of Ulllanette River flou

0 1.J 3 4,s 6

-DC& log of Wlllanettc River flou 4-34

” 11.74

c
l2.z

5 P

5 10.02 x

z e

1.3 m
19Jl 19J9 1967 197s 1964

years 0

OOPSIA ‘87 Proceedings Ocbber 48,1987

associated with the key-word :sampling-time in the asso-
ciation list pointed to by stat-facts or some default value
(typically nil) if there is no sublist keyed by :sampling-
time. The method :sampling-time would require a single
argument and would place a sublist in ~tut-facts keyed by
:sampling-time and with an associated value specified by
the single argument. This scheme allows other portions
of TSA to deal with sampling-time as if it were a true
instance variable of data-object.

Another use for stat-facts is to cache calculations
that are rather expensive to repeat often. An example is
calculation of the sample autocovariance function. This
quantity is needed in a number of different frames in
TSA. It is obtained for a particular instance of data-
object by sending the instance the message :acvf. The
method that handles this message looks in stat-facts for a
sub-list keyed by :a&. If there is none, it causes calcula-
tion of the sample autocovariance function to be carried
out and saves the result in stat-facts (associated with the
key-word :acvf) before returning it to the message sender.
A second request for the sample autocovariance function
would not require its recomputation.

4.2 Frame Objects

Instances of frame objects in TSA are responsible
for retrieving information from instances of data-object,
causing certain calculations to be carried out, and sending
messages to instances of graph objects in order to display
the results of these calculations. There are many different
flavors of frame objects in TSA (see Figure lb for a menu
of them). For example, an instance of the flavor
periodogram-frame can be used to make a
periodogram-based estimate of the spectrum of a time
series associated with a particular instance of data-
object.

All flavor definitions for frame objects are built
upon a component flavor called generic-frame. This
component flavor contains methods and instance variables
for integrating frames into TSA in a uniform fashion. In
order to illustrate the role of generic-frame in providing
this uniformity, it is helpful here to briefly describe how a
particular frame is evoked by a user and how a frame
responds to particular messages sent to it.

The mouse on the Symbolics Lisp Machine has
three buttons (referred to as the L, M, and R buttons). An
R mouse button click over an active window that is part
of TSA always causes the TSA Top Level -Menu to
appear (Figure la). One of the items in this menu is
“Frame Directory.” Selection of this menu item causes a
second menu to appear (Figure lb). This is just a direc-
tory of all the frames currently in TSA. If we select any
one of the items in this menu (say, periodogram), the
message Mart-up-the-frame is send to the value of a

global variable (*periodogram-frame* in this case) that
points to an instance of the flavor associated with the
selected frame (here periodogram-frame). This message
in turn causes other messages to be sent to the instance of
periodogram-frame, including :get-choices-from-user
and :do-your-thing. The former results in the exposure
of a user-query menu that allows the user to specify
exactly how the spectrum is to be estimated (see Figure
lc), after which the latter message causes the
periodogram-based estimate of the spectrum to be calcu-
lated and plots of the estimated spectrum and of the
corresponding time series to be drawn on the screen (Fig-
ure Id).

The flavor generic-frame and its associated
methods are designed to handle certain messy details
common to all frames. For example, the message :start-
up-the-frame is defined for the generic-frame and han-
dles deexposure of graphs, selection of the particular
instance of data-object to work with, etc. Flavors such
as periodogram-frame that are built upon generic-
frame need only supply two things: instance variables
that specify the way an analysis is to be carried out (these
usually correspond to variables that can be set in a user-
query menu such as the one shown in Figure lc); and
methods to handle the particular analysis that the frame is
designed to do. For the flavor periodogram-frame, this
means &fining instance variables for all of the options
shown in Figure lc and methods to handle the messages
:get-choices-from-user and :do-your-thing. The first
method supports the query-user menu, whereas the
second provides an interface to a set of Fortran routines
that do the required numerical computations.

4.3 Graph Objects

Instances of graph objects in TSA are used to pro-
duce graphical output from calculations controlled by the
various frames. Two examples of this output are shown
in the two panes of Figure Id. The upper pane is a plot of
a periodogram-based estimate of the spectrum of the asso-
ciated time series, which is plotted in the bottom pane.

The definition of the flavors associated with graphs
is much more complex than those associated with frames.
Whereas specific frame flavors are built upon the single
flavor generic-frame, graph flavors are typically built
upon a number of different flavors. We have attempted to
keep the inheritance structure rather simple. Basic plot-
ting capabilities (such as axis drawing, labelling the plot,
etc.) are provided by the flavor basic-graph. The flavor
log-linear-graph is built upon basic-graph and handles
switching the scaling back and forth between log and
linear. The flavor dynamic-graph is built upon log-
linear-graph and supports the ability to rescale a graph
by pointing with the mouse. In a similar fashion other
flavors are defined one at a time until we get to the flavor

October 4-8,1987 OOPSIA ‘87 Proceedings 5

time-series-graph. This flavor supports a comprehensive
set of graph operations and is the one upon which many
other graph flavors are built.

When a new type of graph is needed in TSA (see
Section 5), a new graph flavor is usually defined by
finding an existing flavor that is as close as possible to the
desired new one. The new flavor is built upon the exist-
ing one and typically extends its capabilities by defining
new instance variables and new methods and/or modifies
the existing flavor by redefining some of its methods.

4.4 Main Control Loop and the Mouse Process

The heart of TSA consists of a main control loop
that looks for blips coming into a control buffer. All of
the windows associated with TSA share this same control
buffer. There is also a separate process associated with
the mouse. When a mouse button is clicked, a blip is
forced into the TSA control buffer, and the main control
loop dispatches this blip based upon what the click was
and where the mouse was when the click was made. The
dispatching of this blip is uniform and takes advantage of
the ability in OOP of a single message being interpreted
in different ways by different objects. Thus, for L and M
mouse clicks, the main control loop simply dispatches the
message :handle-blip to the appropriate object that the
mouse was over at the time (an R click is reserved for
popping up the TSA top level menu). This uniformity is a
clear advantage in keeping the control structure of TSA as
simple as possible.

5. Incorporation of User Extensibility into TSA

Extensibility in the TSA system is focused on
adding additional frames along with their associated
graphs and data manipulation operations. In this section
we discuss the facilities in TSA that aid in extensibility
and how the object-oriented structure of the system has
made the incremental development of these facilities pos-
sible. The development of these facilities is being done in
two stages. The first was to provide utilities for a pro-
grammer with some familiarity with Lisp and the struc-
ture of TSA. The second stage, which we are currently
involved in, is to provide a higher level interface to the
extension facilities so that users with only a casual under-
standing can effectively add and customize their own
frames and graphs. We don’t wish to claim that this work
solves many of the general problems of automatic pro-
gramming from high level specifications. For example,
there are many natural constraints on a reasonable exten-
sion to the TSA system that would not hold for other
problems.

We assume that the majority of users interested in
extensibility have a Fortran 77 subroutine which they
understand well enough to adequately describe the input

and output parameters. The interface from TSA is con-
structed with respect to this subroutine, although the sub-
routine may itself call other Fortran subroutines and func-
tions.

The steps which involve user interaction in instal-
ling a new frame are:

PI

PI

131

141

PI

161

Name the new frame (hopefully based on the
intended data transformation), and initialize con-
struction of a new source file for it.
Give the pathname of the Fortran subroutine and
provide a description of the parameters in the
declaration line.
Describe pre-frame-invocation events (i.e. user-
settable runtime parameters) and post-invocation
events other than graph plotting.
Select single or multiple graphs which are closest to
the graphs the new frame will need from a library
of graph types already known to TSA. This
includes defining special titles, scales, units, etc.
Add specialized methods for operating in a mean-
ingful manner on the displayed data if it needs more
than the standard operations provided for all
graphs.
Hook [l]-[5] together and choose whether to make
the new frame and graphs a temporary or per-
manent part of the system.
The original implementation of frame extensibility

was done in a monolithic manner that only tangentially
utilized the object decomposition of the system. As might
be expected, if the user made a mistake the errors quickly
cascaded, and recovery by the naive user was improbable.
While modifications to existing frame and graph classes
were made relatively easily, hooking all of the necessary
operations together became very messy. A second effort
focused on the addition of “meta-level” objects which
helped to keep track of the state of construction of new
classes of TSA objects, i.e. a new frame, the graph for the
frame, the invocation of message passing from the menu
level, etc. This was accompanied by read-along text to
provide the naive user with a description of .what was
going on. Operations were added to monitor progress in
constructing the new frame, recover from errors, and res-
tart the process at any one of four particular phases. Gen-
eric graphs were used, and any radical customization
required competent Lisp programming skills. Suites of
related operations were still bundled together, and there
was no unified high-level interface. However, the user
could couple in a new Fortran routine and get a reason-
able graphic display of the output with only a modest
level of understanding of TSA.

We are now completing a final (hopefully) extensi-
bility package, in which all operations are done through

6 GOPSLA ‘87 Proceedings October 4-8, 1987

graphical interfaces which connect screen representations
of data objects, subroutine parameter lines, graph plots,
and other objects of the TSA system with their underlying
class templates. The description of steps [l] through 161
above will be mainly with reference to these interfaces.

When the user selects “Add A New Frame” from
the TSA top level menu (see Figure la), the Iconic
Foreign Function Interface appears in a form closely
resembling Figure 2 (at this time the bottom two panes in
the left column contain different information). Until the
end of step [3] the user interacts only with this interface.
The Iconic Foreign Function Interface graphically con-
sists of a left hand column for displays and user type-in
and a right hand column with various menus that control
the current operations of the interfacing process. The top
pane in the left column contains an iconic representation
of a generic input data object. All of the relevant attri-
butes are mouse-sensitive, so a user can click on any of
them when indicating how each Possibly corresponds to
some input parameter of his or her Fortran routine, the
declaration line of which appears below in the Subroutine
Declaration Line window. At the bottom of the left
column is a User Interaction Pane which is used for
prompts as well as user input. In the final version of the
interface this pane may have Lisp evaluation capability
along with user-directed mouse-sensitivity.

The right hand column contains menus which com-
plement normal control flow in adding a new frame or
augmenting an existing one. For example, if the menu
item “I know what I’m doing” is highlighted in the Inter-
face Control Menu, many of the prompts are not given,
and the user may control the selection and ordering of
steps in the addition process. This frequently happens
when an experienced statistician using TSA for explora-
tory programming discovers a new display format or a
new input or output parameter that would be useful.

In step [l] the system queries the user to obtain the
new frame name and documentation comments. Once
these are obtained, they are substituted in the appropriate
places in a text template that contains the skeletal struc-
ture common to all frames. Although many Lisp imple-
mentations offer elegant “grinder” functions which allow
a user to generate a textual representation from internal
Lisp forms, we found problems using these because the
syntax of Flavors differs from that of the embedding
language, Zetalisp. When object-oriented features are
added to an existing language, it seems much more rea-
sonable to preserve a uniform syntax. Hopefully, this will
be done in the proposed standardized object-oriented
extensions to Common Lisp (Bobrow et al. (1986)).

Figure 2

ICONIC FOREIGN FUNCTION INTERFACE NTERFRCE CONTROL

ICONIC DATA OBJECT

Y nax

Y nil-l

c

’ H ntn
<---- X ARRRY ---->

Srbmmtine Dcclarati*n Line
lbnwtin@ l cunper= has the following formal parameters:

I(new

to n dclt CP frcq nf rata otc zflg

eflg crrflg

nnand: Your subroutine declaration line ~111 be Drinted above.

cr Interaction Pane

Erase Everything
Lxtract Parameter Declaratior

.ocat.-e Data Object Parameier
Construct a USER QUERY Menu

Construct a Custom Graph
Modify an Existing Frame
Modify an Existing Graph

I Know What I’m Doing
lielp
Exit

NPUT PFIRRMETERS

Documentation Line
X Array Length
Y Array Length

Number of Dimensions
Source

ARIMA Model Specification
Sampling Time

Type of Time Series

JTPUT PRRRMFTERS

Documentation Line
X Array Length
y fczYALg;”

Source
ARIMA Model Specification

October 4-8,1987 OOPSLA ‘87 Proceedings

The next two steps serve to integrate communica-
tion between the Fortran and Lisp worlds, which coexist
in the large linear address space. In the Symbolics imple-
mentation of Fortran (see reference [there are several
special constructs which allow both the Lisp world and
the Fortran world to share data space. Inputs to most For-
tran subroutines used in statistics generally consist of one
or more numerical arrays along with runtime-settable
scalar “flags” that control inter-subroutine operations.
Outputs are the transformed arrays along with scalars
indicating error codes or other descriptors of the transfor-
mation. Lisp macros provide a uniform way of &scribing
storage allocation in the shared data space, and they are
also used for passing the actual parameters when the sub-
routine is invoked.

In step [2] TSA queries the user for the pathname
of the Fortran subroutine, reads the source file, and looks
for the subroutine declaration line. The declaration line is
displayed in the appropriate window, and the formal
parameters are made mouse-sensitive, making it possible
to connect them with their actual counterparts in the par-
ticular instance of data-object that wilI be used for input
at runtime (henceforth called the Current Data Object).
Figure 2 depicts this point in the frame addition process.
Many of the actual-to-formal parameter correspondences
can be mapped between the iconic representation of the
Current Data Object and the Fortran declaration line, but
those that have no iconic counterpart must be moused on
in the Input Parameters menu. User prompts appear when
necessary to complete this process. For much of this
specification process it is possible just to deal with the
iconic representation of the parameter “objects”. Atai-
butes are stored with each parameter object so that later it
is possible to debug or query the new frame regarding the
correspondences. This use of objects and their iconic
representation spares the statistical anaIyst from the inai-
cacies of low-level interface programming.

In addition to parameters that are actually part of
the data to be transformed, there are frequently parameter
“flags” that indicate to the Fortran routine that the normal
operation of the routine should be modified. In typical
Fortran programs these flags are just integers, and it is
therefore easy to get confused about what conditions are
in effect at runtime. Step [3] remedies this by allowing
the person adding the new routine to specify that a user-
query menu with a selection of all possible runtime
modifications be presented so that a later user of the new
addition will be aware of not only what modificationsare
available, but also what their implications might be for
the transformed data. It is possible to construct simple
versions of this runtime menu now, again by starting with
an appropriate menu object as the class template. Short
English descriptions of the modification are typed in the
Interaction Pane, and TSA uses these to write out a

specific menu for the new frame. (Figure lc shows the
runtime choices for Periodogram Frame.)

At this point (end of step [3]) the frame file for the
new routine is almost ready to be written, compiled, and
included in the TSA system. However, the new frame has
only taken care of getting the data from the Current Data
object to the Fortran routine. Typically it is desired that
one or more graphs be displayed that summarize the cal-
culations done by the Fortran routine. To accomplish
this, the person adding the new routine must describe one
or more appropriate. graphic displays. The most important
structural concept in extending the TSA system has been
the ability to use and modify existing flavors to produce a
flavor that specifies a new type of object. This procedure
is also used to construct new types of graphs in step [4].

In order to achieve this, TSA keeps a library of all
its graph types. When it comes time to “Describe a Cus-
tom Graph,” a pop-up menu appears with all types listed.
The person adding the new routine may click through
them selecting the one that is closest to what he or she has
in mind. As the number of graph types known to TSA
grows this approach may become tedious. We will need
to devise a better system of selecting a starting point for
customization. A basic “time series graph type” is avail-
able as a default if the user just wants a quick and uncom-
plicated display.

Once the nearest graph type is selected, many of its
components are made mouse-sensitive and it is iconically
displayed. Titles, scaling factors, etc. are directly typed
on the iconic representation. Then the output parameters
(results) of the transformation are connected to the graph
type in the same way that the input parameters were con-
nected to the iconic representation of the Current Data
Object. In many cases more than one graph is needed,
and we assume that the output arrays contain the required
numerical data for all displays. In the case that a statisti-
cian is “exploring” with a new routine, he or she may
wish to add another graph and display a slightly modified
form of the data which is already being displayed in pre-
vious graphs he or she has chosen. Presently this
demands that either a little Lisp hacking or recoding part
of the Fortran subroutine be done.

For most graphs many of the operations icons at the
top and right hand side of the graphical displays are
appropriate. Most likely, however, the new addition will
require some graph operations which are unique to the
particular type of transformation that is being displayed.
Thus far we have not tried to add any of these using just
the high-level interface. There is a great deal of similarity
in the structure of these methods, and it is possible that
we will discover a general scheme which permits us to
use a generic method type and allow the user to modify it
correctly to a newly created graph operation. We believe

8 OOPSIA ‘87 Proceedings October 4-8, 1987

this will work for many displays, but not for all. The only
part of this section (step [51) that works automatically
now allows to user to go into the icon editor and design
the appropriate icon for the graph operation. This is then
made mouse-sensitive and becomes a part of the new
graphic display.

viding that flexibility.

After all the various graphs and methods needed for
the new routine are described, the user then blocks out the
display layout with a few mouse clicks. The graphs are
created and displayed (without data) just to be sure that
everything fits on the screen. If the person making the
addition is not satisfied, he or she iterates through the
graph design section until pleased with the results. The
new frame and.its graphs are now fully described. All
source code not yet written is constructed (step [63), the
files are compiled and relinked (this takes little time with
the Lisp machine’s dynamic linking), and the new routine
is ready for testing.

At each refinement of the extensibility module both
the capability and organization were dramatically
improved as we relied more heavily on the object-
oriented structure of both TSA and the Symbolics
environment. On one level we could add new classes in
the inheritance lattice based on individual refinement of
existing ones. On another level we could construct meta-
level machinery to carry out this refinement process while
also integrating it with existing Symbolics tools like the
flavor examiner (browser). The uniformity of the object-
oriented paradigm has added a level of consistency and
reduced the apparent complexity in a large and continu-
ally evolving system.

Another strong feature that was provided by the
inheritance structure of OOP was that as we tested, aug-
mented, and revised various modules of the system we
could distill out a great deal of commonality that was not
apparent in earlier implementations. We could then go
back and encapsulate more primitive ideas in more basic
classes (flavors) and thus reduce the level of complexity
visible in the most advanced classes. We realize that this
programming technique doesn’t fit with “top down
design” practices, but in our case we were trying to build
a system from a conceptual model of time series analysis,
not a formal program design specification. Since TSA is
focused, and therefore purposely constrained, to opera-
tional data transformations and graphical representation,
inheritance also played a key role in the high-level exten-
sibility of the system. Much of the basic functionality of
transformational or graphical classes could be provided to
a person modifying the system, allowing them to only be
concerned with tailoring things for their specific operation
(usually with high-level views of previously constructed
classes and methods which implicitly suggested new pos-
sibilities).

6. Evaluation of the Object-Oriented Approach

We conclude this description of our use of an

On the other hand, there are several situations in
which a more procedural interpretation of data manipula-
tion seems to be more natural. That conceptual model is
no doubt influenced by historical Fortran roots, but it does
emphasize the fact that language paradigms should not be
taken as absolute specifications. We must continually
examine both old and new paradigms, and use them when
it seems appropriate. An example of this occurred in the
incorporation of “access-oriented” ideas, where evalua-
tion was computationally costly. No evaluation takes
place, unless a message passer specifically requests it.

object-oriented methodology in constructing the TSA sys- We also found a small but potentially dangerous
tem with a few brief remarks on the suitability of the inconvenience associated with the incorporation of both
paradigm in the context of time series analysis. Some of encapsulation and data abstraction together with inheri-
these observations mirror a slight discomfort with every- tance. In a more basic class (Ravor), the implementation
thing being dealt with as objects (although we freely of instance variables is hidden from the outside. But what
made the choice to do so), and others strongly support the is the status of this implementation when the basic class is
use of that approach. There are many theories in cogni- incorporated as a component in a more complex class? If
tive psychology regarding the refinement of conceptual a method in the more complex class needs to access an
structures as one’s understanding of a subject progresses instance variable of the more basic class we have relied
from naive to expert. We believe that the object structure on knowing about that implementation. For instance, in
helped greatly in providing a bridge between various lev-
els of conceptual modeling. It allowed both naive and

the case of an instance variable in the basic class being
implemented as an array, we access it with arefs and asets

experienced statisticians to quickly understand the TSA (the access functions for arrays in Zetalisp). On the one
system structure, yet rearrange the possibilities of its use hand we argue that this is all right because the natural
to fit the level of statistical sophistication. Beginners mental model of a statistician is that it should be an array,
could follow along a prescribed analysis path, asking for and that hiding this would necessitate writing seemingly
help when needed; yet experts could quickly flip to superfluous access methods in the basic class. On the
selected parts of the system to make modifications sug- other hand, the benefits of information hiding break down
gested by exploratory data analysis. We think the modular if for some reason we later decide to implement the
structure of objects and message passing helped in pro- instance variable in the basic class as a list instead of an

October 4-8,1987 OOPSLA ‘87 Proceedings 9

array. Generic access functions like the setf of Common
Lisp may help, but we think the problem is more complex
than this.

All in all, though, we are very pleased with the
object-oriented framework of the TSA system. It pro-
vided not only guidelines for good programming style and
maintainability as the system grew, but it also helped us
to clarify a conceptual model of data analysis that we
have found suitable for a large range of users.

7. Acknowledgement

This work was funded by the Office of Naval
Research.

8. References

[l] Bobrow, D. G., Kahn, K., Kiczales, G., Masinter,
L., Stefik, M., and Zdybel, F. (1986), “Common-
Loops: Merging Lisp and Object-Oriented Pro-
gramming,” in OOPSLA ‘86 Conjierence Proceed-
ings (special issue of SIGP,!,AZV Notices, 21(11)),
edited by N. Meyrowitz, Association for Comput-
ing Machinery, pp. 17-29.

[23 McDonald, J. A., and Pedersen, J. 0. (1985a),
“Computing Environments for Data Analysis, Part
I. Introduction,” SIAM J. Scientific and Statistical
Computing, 6(4), pp. 1004- 1012.

[3] McDonald, J. A., and Pedersen, J. 0. (1985b),
“Computing Environments for Data Analysis, Part
II. Hardware,” SZAM J. Scientific and Statistical
Computing, 6(4), pp. 1013-1021.

[4] McDonald, J. A., and Pedersen, J. 0. (1986),
“Computing Environments for Data Analysis, Part
III. Programming Environments,” Technical Report
No. 82, Department of Statistics, University of
Washington, Seattle, WA.

[S] Tukey, J. W. (1984), “Data Analysis: History and
Prospects,” in Statistics: An Appraisal, edited by H.
A. David and H. T. David, Iowa State University
Press, pp. 183-202.

[6] User’s Guide to the FORTRAN 77 Tool Kit (March
1985), Symbolics Corporation, Cambridge, MA.

10 OOPSLA ‘87 Proceedings October 4-8, 1987

