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ABSTRACT 
We describe the use of object-oriented programming (OOP) in the design and imple- 
mentation of TSA, a system for interactive time series and spectral analysis. We 
show how such features of OOP as inheritance, generic messages, and decomposi- 
tion of the programming problem in terms of objects have contributed to our goal of 
providing an extensible data analysis system. We discuss the strengths and limita- 
tions of both OOP and the particular implementation we used (Flavors on a Symbol- 
its Lisp Machine) for our particular problem. 

1. Introduction 

We describe here the role that object-oriented pro- 
gramming (OOP) has played in the design and implemen- 
tation of a system for interactive time series analysis. 
This system, called TSA, is currently implemented on a 
Symbolics Lisp Machine and is written in the OOP 
language Flavors. Our report summarizes the rationale 
for creating TSA (Section 2); the features of OOP that led 
us to use it for implementing TSA (Section 3); a descrip- 
tion of the overall design of the system and how it appears 
to a user (Section 4); the use of OOP in an automatic pro- 
gramming facility that is useful for extending the capabil- 
ities of TSA (Section 5); and an evaluation of our experi- 
ence to date with OOP (Section 6). 
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2. Rationale for Creating TSA 

Time series analysis is primarily concerned with the 
characterization of dependencies in data (called a time 
series) that are gathered over a period of time. It is 
widely used in disciplines as diverse as economics (to 
analyze, say, weekly values of a forward exchange rate) 
and electrical engineering (to characterize the relationship 
between the input and output to a speech enhancement 
device). 

Time series analysis is a rather complex field since 
it embodies ideas from Fourier analysis, signal process- 
ing, and statistics. Because of this inherent complexity, it 
is also a field where interactive data analysis is the rule 
rather than the exception. Interactive data analysis 
involves human intervention and judgement. It should be 
contrasted with production data analysis in which data is 
fed into a well-tested computer program and final results 
pop out. Interactive time series analysis typically 
involves iterations of cycles in which the analyst performs 
some operation on his or her time series (say, calculation 
of an estimate of its spectrum); carefully considers the 
results of this operation; and performs some new opera- 
tion based upon the results of this examination (computa- 
tion of a new estimate with different statistical proper- 
ties). A key point to note here is that the next operation 
might well be implementation of an entirely new form of 
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analysis that is inspired by the time series at hand. 

Our primary rationale for creating TSA was to 
develop a computer system that would support interactive 
time series analysis as fully as possible. There are a 
number of recent developments in computer hardware 
and software that, if properly harnessed, can lead to a 
substantial improvement in the quality of interactive time 
series analysis that an analyst can do. These develop- 
ments include the emergence of affordable single-user 
graphics workstations with high resolution and a fast 
refresh rate; advances in the use of multiple windows and 
pointing &vices (such as a mouse) to facilitate user 
interaction with a computer; and integrated programming 
environments. 

powerful and portable enough so that students can carry it 
with them and use it for actual data analysis later in their 
careers. Hopefully TSA is a modest step in this direction. 

Our design goals for TSA can be summarized as 
follows. 

How each of these developments can lead to better 
quality interactive data analysis is spelled out in series of 
recent articles by McDonald and Pedersen (1985a, 1985b, 
1986). These authors note the close resemblance between 
experimental programming and interactive data analysis: 
both require the ability to make quick changes in software 
in response to creative ideas for solving particular prob- 
lems. They argue that the integrated programming 
environments on specialized workstations such as Lisp 
Machines that were developed to support experimental 
programming are potentially good environments for doing 
interactive data analysis. There are certain things that are 
necessarily currently lacking in these environments, and 
one of the motivations for TSA was to supply the missing 
pieces for time series analysis. 

[l] The system should be accessible to the novice, but 
it should not hinder the experienced user in his or 
her tasks. This requirement rules out a simple 
nested menu scheme, since it would quickly drive 
an expert to distraction. 

[2] It should support the commonly used techniques of 
time series analysis, but it should also be easily 
extensible to handle user-defined analysis pro- 
cedures. It is the lack of extensibility that is the 
chief disadvantage of such batch-processing 
oriented statistical systems as SPSS and BMDP. 

[3] It should be built upon a modem integrated pro- 
gramming environment and should itself be well 
integrated into that environment. In particular, it 
should make use of all of the tools of such an 
environment such as inspectors, the ability to evalu- 
ate expressions from within a text editor, etc. 

[4] The overall structure of the program should be as 
transparent as possible to users. This is important if 
users are to be able to make the quick modifications 
demanded by interactive data analysis. 

3. Why OOP? 

A secondary rationale for creating TSA was to When we started work on the TSA project in early 
develop a system that is useful for helping students learn 1985, we made a quick prototype of the system using 
time series analysis. The ability to do good time series procedure-oriented programming with Lisp functions. It 
analysis is largely a matter of practice. The complexity of soon became apparent that OOP was a more appropriate 
the field is such that students only really master the sub- language paradigm to use for several reasons. First, it 
ject matter by applying textbook methods to many dif- made sense to use OOP since a major portion of the 
ferent time series. It is only by experimentation that they software for the Lisp Machine was written in the OOP 
learn the proper use of standard techniques. The package Flavors. One of our design goals was to 
difficulty of teaching good data analysis is increasing as integrate TSA into the Lisp Machine programming 
the complexity of the fields in which data analysis is environment so that all of the tools in that environment 
important increases and as the number of tools available could be used for interactive data analysis when needed. 
to an analyst increases. Indeed, John Tukey (1984), one As an example, an early goal of our project was to allow 
of the founders of modem data analysis, has stated that users to interact with graphs of their data using the mouse 
the key education problem today in data analysis is connected to the Lisp Machine. One desirable interaction 
developing courses that ” * * - expose the innocent is to be able to identify points on a graph by depressing a 
rapidly enough, without endangering whole subject- mouse button when the mouse cursor is close to the 
matter fields by producing not half-educated users (of desired point. The way in which users make use of the 
which there are too many today), but rather only quarter- mouse on the Lisp Machine is by receiving messages sent 
educated ones.” The only bright hope that he sees for the from a process that controls the mouse. Handling the 
future is the emergence of sophisticated computer mouse thus necessitates the use of OOP, as do all interac- 
software dedicated to particular aspects of data analysis tions with the Lisp Machine window system, Since TSA 
(such as time series analysis). Such software would aid makes considerable use of the mouse and the window 
instructors in the teaching of data analysis, offer guidance system, it was desirable to use OOP for the sake of uni- 
and help to students in learning course material, and be formity. 

, 
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A second initial reason for choosing OOP was our 
perception that the inheritance capabilities of Flavors 
might prove useful. Our early ideas were mainly focused 
on the creation of different types of graphs, some of 
which would be rather simple variations on more basic 
ones. In fact, inheritance has turned out to play a key role 
in the design of extensibility features for TSA (see Sec- 
tion 5). 

Several other reasons for using OOP have emerged 
a posteriori in the process of creating and extending the 
capabilities of TSA over the past two years. First, the 
object-oriented design of TSA allows us to give new users 
a quick overview of its structure. This is important since 
a user needs a working model of a computer system in 
order to make efficient use of it. The main ideas behind 
OOP (objects and message passing) are easily explained 
to new users. 

Second, the nature of interactive time series 
analysis requires that analysts be able to implement new 
ideas within TSA easily. There are several levels of 
changes that need to be supported. On the lowest level, 
certain “on the fly” changes are easy to make because of 
the persistence of objects in the Lisp Machine. This type 
of modification is usually accomplished by evaluating a 
Lisp expression that causes one or more existing objects 
to be manipulated by sending already defined messages to 
them. On a slightly higher level, more substantial ideas 
can be implemented, first, by defining new methods (or 
modifying old ones) to handle the specific analysis prob- 
lem at hand and, second, by evaluating Lisp expressions 
to evoke these methods on existing objects. Finally, more 
fundamental changes to TSA can be made using the user 
extensibility features that are discussed in Section 5. 
These latter two levels of changes are supported by 
features in OOP such as inheritance and method combina- 
tion (since these encourage incremental changes to exist- 
ing software). 

A third reason for using OOP that is now apparent 
to us is that the conceptual decomposition of TSA into 
objects has facilitated the organization of its software. 
This has been particularly important since we have made 
some rather radical changes to portions of TSA over the 
past two years as our ideas about how best to construct 
various parts of it have been refined (usually from insights 
gained from demonstrations to colleagues and from 
observing new users). Because OOP forced us to associ- 
ate code with particular objects, we have been able to 
make radical changes in one portion of TSA without wor- 
rying unduly about their effects on other portions. 

4, Design of TSA 
Interactive time series analysis typically involves 

the manipulation of a time series with a signal processing 

or statistical algorithm. The result of this manipulation 
can often be summarized by one or more graphs. A prime 
example would be computing the discrete Fourier 
transform of the series and plotting the magnitude squared 
of the transform (when properly scaled, this is called the 
periodogram of the time series). Our design of TSA in 
terms of OOP thus makes use of three main types of 
objects (called flavors in the Symbolics OOP implementa- 
tion): a data object, which contains the time series and 
certain quantities related to it; frame objects, each of 
which corresponds to a particular algorithm for manipu- 
lating a time series (the use of the word “frame” here is a 
historical remnant of an earlier version of TSA and is 
unfortunate due to its definition in Lisp as a generalized 
property list); and graph objects, which contain informa- 
tion necessary to plot the results of a particular algorithm. 
We describe these flavors (classes of objects) in more 
detail and then proceed to discuss how they are tied 
together in TSA. 

4.1 Data Object 
The flavor data-object contains instance variables 

(slots) that specify the properties of a particular time 
series. These instance variables are (with one exception) 
set once and for all when a particular data object is instan- 
tiated. Examples of instance variables are: the actual 
values of the time series; the symbolic units for the time 
series values; and the network name of an ASCII file from 
which the values of the time series were read. If we 
ignore the one exception, instances of data objects in TSA 
are inviolate objects once they have been created. 

The one exception is an instance variable called 
stat-facts. Its value is an association list that is used to 
save various quantities related to the time series. Exam- 
ples are the sample autocovariance function for the time 
series and a list of autoregessive models that the user has 
fit to portions of the associated time series (each model in 
the list is in fact an instance of a model’object). The pur- 
pose of stat-facts is really to get around a problem with 
Symbolics’s old implementation of Flavors. When we 
first thought about the appropriate instance variables to 
include in the flavor data-object, it became clear that it 
would be hard to come up with a comprehensive set a 
priori. This presented a problem because the old imple- 
mentation of Flavors invalidates existing instances of a 
flavor if its definition is changed to introduce more 
instance variables. 

The use of srut-facrs allows us to simulate the addi- 
tion of instance variables. For example, suppose that we 
want effectively to add an instance variable called 
sampling-time. We can implement “get” and “set’ 
methods for it by defining methods xampling-time and 
:set-sampling-time for the flavor data-object. The 
method :sampIing-time would return either the element 
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associated with the key-word :sampling-time in the asso- 
ciation list pointed to by stat-facts or some default value 
(typically nil) if there is no sublist keyed by :sampling- 
time. The method :sampling-time would require a single 
argument and would place a sublist in ~tut-facts keyed by 
:sampling-time and with an associated value specified by 
the single argument. This scheme allows other portions 
of TSA to deal with sampling-time as if it were a true 
instance variable of data-object. 

Another use for stat-facts is to cache calculations 
that are rather expensive to repeat often. An example is 
calculation of the sample autocovariance function. This 
quantity is needed in a number of different frames in 
TSA. It is obtained for a particular instance of data- 
object by sending the instance the message :acvf. The 
method that handles this message looks in stat-facts for a 
sub-list keyed by :a&. If there is none, it causes calcula- 
tion of the sample autocovariance function to be carried 
out and saves the result in stat-facts (associated with the 
key-word :acvf) before returning it to the message sender. 
A second request for the sample autocovariance function 
would not require its recomputation. 

4.2 Frame Objects 

Instances of frame objects in TSA are responsible 
for retrieving information from instances of data-object, 
causing certain calculations to be carried out, and sending 
messages to instances of graph objects in order to display 
the results of these calculations. There are many different 
flavors of frame objects in TSA (see Figure lb for a menu 
of them). For example, an instance of the flavor 
periodogram-frame can be used to make a 
periodogram-based estimate of the spectrum of a time 
series associated with a particular instance of data- 
object. 

All flavor definitions for frame objects are built 
upon a component flavor called generic-frame. This 
component flavor contains methods and instance variables 
for integrating frames into TSA in a uniform fashion. In 
order to illustrate the role of generic-frame in providing 
this uniformity, it is helpful here to briefly describe how a 
particular frame is evoked by a user and how a frame 
responds to particular messages sent to it. 

The mouse on the Symbolics Lisp Machine has 
three buttons (referred to as the L, M, and R buttons). An 
R mouse button click over an active window that is part 
of TSA always causes the TSA Top Level -Menu to 
appear (Figure la). One of the items in this menu is 
“Frame Directory.” Selection of this menu item causes a 
second menu to appear (Figure lb). This is just a direc- 
tory of all the frames currently in TSA. If we select any 
one of the items in this menu (say, periodogram), the 
message Mart-up-the-frame is send to the value of a 

global variable (*periodogram-frame* in this case) that 
points to an instance of the flavor associated with the 
selected frame (here periodogram-frame). This message 
in turn causes other messages to be sent to the instance of 
periodogram-frame, including :get-choices-from-user 
and :do-your-thing. The former results in the exposure 
of a user-query menu that allows the user to specify 
exactly how the spectrum is to be estimated (see Figure 
lc), after which the latter message causes the 
periodogram-based estimate of the spectrum to be calcu- 
lated and plots of the estimated spectrum and of the 
corresponding time series to be drawn on the screen (Fig- 
ure Id). 

The flavor generic-frame and its associated 
methods are designed to handle certain messy details 
common to all frames. For example, the message :start- 
up-the-frame is defined for the generic-frame and han- 
dles deexposure of graphs, selection of the particular 
instance of data-object to work with, etc. Flavors such 
as periodogram-frame that are built upon generic- 
frame need only supply two things: instance variables 
that specify the way an analysis is to be carried out (these 
usually correspond to variables that can be set in a user- 
query menu such as the one shown in Figure lc); and 
methods to handle the particular analysis that the frame is 
designed to do. For the flavor periodogram-frame, this 
means &fining instance variables for all of the options 
shown in Figure lc and methods to handle the messages 
:get-choices-from-user and :do-your-thing. The first 
method supports the query-user menu, whereas the 
second provides an interface to a set of Fortran routines 
that do the required numerical computations. 

4.3 Graph Objects 

Instances of graph objects in TSA are used to pro- 
duce graphical output from calculations controlled by the 
various frames. Two examples of this output are shown 
in the two panes of Figure Id. The upper pane is a plot of 
a periodogram-based estimate of the spectrum of the asso- 
ciated time series, which is plotted in the bottom pane. 

The definition of the flavors associated with graphs 
is much more complex than those associated with frames. 
Whereas specific frame flavors are built upon the single 
flavor generic-frame, graph flavors are typically built 
upon a number of different flavors. We have attempted to 
keep the inheritance structure rather simple. Basic plot- 
ting capabilities (such as axis drawing, labelling the plot, 
etc.) are provided by the flavor basic-graph. The flavor 
log-linear-graph is built upon basic-graph and handles 
switching the scaling back and forth between log and 
linear. The flavor dynamic-graph is built upon log- 
linear-graph and supports the ability to rescale a graph 
by pointing with the mouse. In a similar fashion other 
flavors are defined one at a time until we get to the flavor 
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time-series-graph. This flavor supports a comprehensive 
set of graph operations and is the one upon which many 
other graph flavors are built. 

When a new type of graph is needed in TSA (see 
Section 5), a new graph flavor is usually defined by 
finding an existing flavor that is as close as possible to the 
desired new one. The new flavor is built upon the exist- 
ing one and typically extends its capabilities by defining 
new instance variables and new methods and/or modifies 
the existing flavor by redefining some of its methods. 

4.4 Main Control Loop and the Mouse Process 

The heart of TSA consists of a main control loop 
that looks for blips coming into a control buffer. All of 
the windows associated with TSA share this same control 
buffer. There is also a separate process associated with 
the mouse. When a mouse button is clicked, a blip is 
forced into the TSA control buffer, and the main control 
loop dispatches this blip based upon what the click was 
and where the mouse was when the click was made. The 
dispatching of this blip is uniform and takes advantage of 
the ability in OOP of a single message being interpreted 
in different ways by different objects. Thus, for L and M 
mouse clicks, the main control loop simply dispatches the 
message :handle-blip to the appropriate object that the 
mouse was over at the time (an R click is reserved for 
popping up the TSA top level menu). This uniformity is a 
clear advantage in keeping the control structure of TSA as 
simple as possible. 

5. Incorporation of User Extensibility into TSA 

Extensibility in the TSA system is focused on 
adding additional frames along with their associated 
graphs and data manipulation operations. In this section 
we discuss the facilities in TSA that aid in extensibility 
and how the object-oriented structure of the system has 
made the incremental development of these facilities pos- 
sible. The development of these facilities is being done in 
two stages. The first was to provide utilities for a pro- 
grammer with some familiarity with Lisp and the struc- 
ture of TSA. The second stage, which we are currently 
involved in, is to provide a higher level interface to the 
extension facilities so that users with only a casual under- 
standing can effectively add and customize their own 
frames and graphs. We don’t wish to claim that this work 
solves many of the general problems of automatic pro- 
gramming from high level specifications. For example, 
there are many natural constraints on a reasonable exten- 
sion to the TSA system that would not hold for other 
problems. 

We assume that the majority of users interested in 
extensibility have a Fortran 77 subroutine which they 
understand well enough to adequately describe the input 

and output parameters. The interface from TSA is con- 
structed with respect to this subroutine, although the sub- 
routine may itself call other Fortran subroutines and func- 
tions. 

The steps which involve user interaction in instal- 
ling a new frame are: 

PI 

PI 

131 

141 

PI 

161 

Name the new frame (hopefully based on the 
intended data transformation), and initialize con- 
struction of a new source file for it. 
Give the pathname of the Fortran subroutine and 
provide a description of the parameters in the 
declaration line. 
Describe pre-frame-invocation events (i.e. user- 
settable runtime parameters) and post-invocation 
events other than graph plotting. 
Select single or multiple graphs which are closest to 
the graphs the new frame will need from a library 
of graph types already known to TSA. This 
includes defining special titles, scales, units, etc. 
Add specialized methods for operating in a mean- 
ingful manner on the displayed data if it needs more 
than the standard operations provided for all 
graphs. 
Hook [l]-[5] together and choose whether to make 
the new frame and graphs a temporary or per- 
manent part of the system. 
The original implementation of frame extensibility 

was done in a monolithic manner that only tangentially 
utilized the object decomposition of the system. As might 
be expected, if the user made a mistake the errors quickly 
cascaded, and recovery by the naive user was improbable. 
While modifications to existing frame and graph classes 
were made relatively easily, hooking all of the necessary 
operations together became very messy. A second effort 
focused on the addition of “meta-level” objects which 
helped to keep track of the state of construction of new 
classes of TSA objects, i.e. a new frame, the graph for the 
frame, the invocation of message passing from the menu 
level, etc. This was accompanied by read-along text to 
provide the naive user with a description of .what was 
going on. Operations were added to monitor progress in 
constructing the new frame, recover from errors, and res- 
tart the process at any one of four particular phases. Gen- 
eric graphs were used, and any radical customization 
required competent Lisp programming skills. Suites of 
related operations were still bundled together, and there 
was no unified high-level interface. However, the user 
could couple in a new Fortran routine and get a reason- 
able graphic display of the output with only a modest 
level of understanding of TSA. 

We are now completing a final (hopefully) extensi- 
bility package, in which all operations are done through 
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graphical interfaces which connect screen representations 
of data objects, subroutine parameter lines, graph plots, 
and other objects of the TSA system with their underlying 
class templates. The description of steps [l] through 161 
above will be mainly with reference to these interfaces. 

When the user selects “Add A New Frame” from 
the TSA top level menu (see Figure la), the Iconic 
Foreign Function Interface appears in a form closely 
resembling Figure 2 (at this time the bottom two panes in 
the left column contain different information). Until the 
end of step [3] the user interacts only with this interface. 
The Iconic Foreign Function Interface graphically con- 
sists of a left hand column for displays and user type-in 
and a right hand column with various menus that control 
the current operations of the interfacing process. The top 
pane in the left column contains an iconic representation 
of a generic input data object. All of the relevant attri- 
butes are mouse-sensitive, so a user can click on any of 
them when indicating how each Possibly corresponds to 
some input parameter of his or her Fortran routine, the 
declaration line of which appears below in the Subroutine 
Declaration Line window. At the bottom of the left 
column is a User Interaction Pane which is used for 
prompts as well as user input. In the final version of the 
interface this pane may have Lisp evaluation capability 
along with user-directed mouse-sensitivity. 

The right hand column contains menus which com- 
plement normal control flow in adding a new frame or 
augmenting an existing one. For example, if the menu 
item “I know what I’m doing” is highlighted in the Inter- 
face Control Menu, many of the prompts are not given, 
and the user may control the selection and ordering of 
steps in the addition process. This frequently happens 
when an experienced statistician using TSA for explora- 
tory programming discovers a new display format or a 
new input or output parameter that would be useful. 

In step [l] the system queries the user to obtain the 
new frame name and documentation comments. Once 
these are obtained, they are substituted in the appropriate 
places in a text template that contains the skeletal struc- 
ture common to all frames. Although many Lisp imple- 
mentations offer elegant “grinder” functions which allow 
a user to generate a textual representation from internal 
Lisp forms, we found problems using these because the 
syntax of Flavors differs from that of the embedding 
language, Zetalisp. When object-oriented features are 
added to an existing language, it seems much more rea- 
sonable to preserve a uniform syntax. Hopefully, this will 
be done in the proposed standardized object-oriented 
extensions to Common Lisp (Bobrow et al. (1986)). 

Figure 2 
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The next two steps serve to integrate communica- 
tion between the Fortran and Lisp worlds, which coexist 
in the large linear address space. In the Symbolics imple- 
mentation of Fortran (see reference [ there are several 
special constructs which allow both the Lisp world and 
the Fortran world to share data space. Inputs to most For- 
tran subroutines used in statistics generally consist of one 
or more numerical arrays along with runtime-settable 
scalar “flags” that control inter-subroutine operations. 
Outputs are the transformed arrays along with scalars 
indicating error codes or other descriptors of the transfor- 
mation. Lisp macros provide a uniform way of &scribing 
storage allocation in the shared data space, and they are 
also used for passing the actual parameters when the sub- 
routine is invoked. 

In step [2] TSA queries the user for the pathname 
of the Fortran subroutine, reads the source file, and looks 
for the subroutine declaration line. The declaration line is 
displayed in the appropriate window, and the formal 
parameters are made mouse-sensitive, making it possible 
to connect them with their actual counterparts in the par- 
ticular instance of data-object that wilI be used for input 
at runtime (henceforth called the Current Data Object). 
Figure 2 depicts this point in the frame addition process. 
Many of the actual-to-formal parameter correspondences 
can be mapped between the iconic representation of the 
Current Data Object and the Fortran declaration line, but 
those that have no iconic counterpart must be moused on 
in the Input Parameters menu. User prompts appear when 
necessary to complete this process. For much of this 
specification process it is possible just to deal with the 
iconic representation of the parameter “objects”. Atai- 
butes are stored with each parameter object so that later it 
is possible to debug or query the new frame regarding the 
correspondences. This use of objects and their iconic 
representation spares the statistical anaIyst from the inai- 
cacies of low-level interface programming. 

In addition to parameters that are actually part of 
the data to be transformed, there are frequently parameter 
“flags” that indicate to the Fortran routine that the normal 
operation of the routine should be modified. In typical 
Fortran programs these flags are just integers, and it is 
therefore easy to get confused about what conditions are 
in effect at runtime. Step [3] remedies this by allowing 
the person adding the new routine to specify that a user- 
query menu with a selection of all possible runtime 
modifications be presented so that a later user of the new 
addition will be aware of not only what modificationsare 
available, but also what their implications might be for 
the transformed data. It is possible to construct simple 
versions of this runtime menu now, again by starting with 
an appropriate menu object as the class template. Short 
English descriptions of the modification are typed in the 
Interaction Pane, and TSA uses these to write out a 

specific menu for the new frame. (Figure lc shows the 
runtime choices for Periodogram Frame.) 

At this point (end of step [3]) the frame file for the 
new routine is almost ready to be written, compiled, and 
included in the TSA system. However, the new frame has 
only taken care of getting the data from the Current Data 
object to the Fortran routine. Typically it is desired that 
one or more graphs be displayed that summarize the cal- 
culations done by the Fortran routine. To accomplish 
this, the person adding the new routine must describe one 
or more appropriate. graphic displays. The most important 
structural concept in extending the TSA system has been 
the ability to use and modify existing flavors to produce a 
flavor that specifies a new type of object. This procedure 
is also used to construct new types of graphs in step [4]. 

In order to achieve this, TSA keeps a library of all 
its graph types. When it comes time to “Describe a Cus- 
tom Graph,” a pop-up menu appears with all types listed. 
The person adding the new routine may click through 
them selecting the one that is closest to what he or she has 
in mind. As the number of graph types known to TSA 
grows this approach may become tedious. We will need 
to devise a better system of selecting a starting point for 
customization. A basic “time series graph type” is avail- 
able as a default if the user just wants a quick and uncom- 
plicated display. 

Once the nearest graph type is selected, many of its 
components are made mouse-sensitive and it is iconically 
displayed. Titles, scaling factors, etc. are directly typed 
on the iconic representation. Then the output parameters 
(results) of the transformation are connected to the graph 
type in the same way that the input parameters were con- 
nected to the iconic representation of the Current Data 
Object. In many cases more than one graph is needed, 
and we assume that the output arrays contain the required 
numerical data for all displays. In the case that a statisti- 
cian is “exploring” with a new routine, he or she may 
wish to add another graph and display a slightly modified 
form of the data which is already being displayed in pre- 
vious graphs he or she has chosen. Presently this 
demands that either a little Lisp hacking or recoding part 
of the Fortran subroutine be done. 

For most graphs many of the operations icons at the 
top and right hand side of the graphical displays are 
appropriate. Most likely, however, the new addition will 
require some graph operations which are unique to the 
particular type of transformation that is being displayed. 
Thus far we have not tried to add any of these using just 
the high-level interface. There is a great deal of similarity 
in the structure of these methods, and it is possible that 
we will discover a general scheme which permits us to 
use a generic method type and allow the user to modify it 
correctly to a newly created graph operation. We believe 
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this will work for many displays, but not for all. The only 
part of this section (step [51) that works automatically 
now allows to user to go into the icon editor and design 
the appropriate icon for the graph operation. This is then 
made mouse-sensitive and becomes a part of the new 
graphic display. 

viding that flexibility. 

After all the various graphs and methods needed for 
the new routine are described, the user then blocks out the 
display layout with a few mouse clicks. The graphs are 
created and displayed (without data) just to be sure that 
everything fits on the screen. If the person making the 
addition is not satisfied, he or she iterates through the 
graph design section until pleased with the results. The 
new frame and.its graphs are now fully described. All 
source code not yet written is constructed (step [63), the 
files are compiled and relinked (this takes little time with 
the Lisp machine’s dynamic linking), and the new routine 
is ready for testing. 

At each refinement of the extensibility module both 
the capability and organization were dramatically 
improved as we relied more heavily on the object- 
oriented structure of both TSA and the Symbolics 
environment. On one level we could add new classes in 
the inheritance lattice based on individual refinement of 
existing ones. On another level we could construct meta- 
level machinery to carry out this refinement process while 
also integrating it with existing Symbolics tools like the 
flavor examiner (browser). The uniformity of the object- 
oriented paradigm has added a level of consistency and 
reduced the apparent complexity in a large and continu- 
ally evolving system. 

Another strong feature that was provided by the 
inheritance structure of OOP was that as we tested, aug- 
mented, and revised various modules of the system we 
could distill out a great deal of commonality that was not 
apparent in earlier implementations. We could then go 
back and encapsulate more primitive ideas in more basic 
classes (flavors) and thus reduce the level of complexity 
visible in the most advanced classes. We realize that this 
programming technique doesn’t fit with “top down 
design” practices, but in our case we were trying to build 
a system from a conceptual model of time series analysis, 
not a formal program design specification. Since TSA is 
focused, and therefore purposely constrained, to opera- 
tional data transformations and graphical representation, 
inheritance also played a key role in the high-level exten- 
sibility of the system. Much of the basic functionality of 
transformational or graphical classes could be provided to 
a person modifying the system, allowing them to only be 
concerned with tailoring things for their specific operation 
(usually with high-level views of previously constructed 
classes and methods which implicitly suggested new pos- 
sibilities). 

6. Evaluation of the Object-Oriented Approach 

We conclude this description of our use of an 

On the other hand, there are several situations in 
which a more procedural interpretation of data manipula- 
tion seems to be more natural. That conceptual model is 
no doubt influenced by historical Fortran roots, but it does 
emphasize the fact that language paradigms should not be 
taken as absolute specifications. We must continually 
examine both old and new paradigms, and use them when 
it seems appropriate. An example of this occurred in the 
incorporation of “access-oriented” ideas, where evalua- 
tion was computationally costly. No evaluation takes 
place, unless a message passer specifically requests it. 

object-oriented methodology in constructing the TSA sys- We also found a small but potentially dangerous 
tem with a few brief remarks on the suitability of the inconvenience associated with the incorporation of both 
paradigm in the context of time series analysis. Some of encapsulation and data abstraction together with inheri- 
these observations mirror a slight discomfort with every- tance. In a more basic class (Ravor), the implementation 
thing being dealt with as objects (although we freely of instance variables is hidden from the outside. But what 
made the choice to do so), and others strongly support the is the status of this implementation when the basic class is 
use of that approach. There are many theories in cogni- incorporated as a component in a more complex class? If 
tive psychology regarding the refinement of conceptual a method in the more complex class needs to access an 
structures as one’s understanding of a subject progresses instance variable of the more basic class we have relied 
from naive to expert. We believe that the object structure on knowing about that implementation. For instance, in 
helped greatly in providing a bridge between various lev- 
els of conceptual modeling. It allowed both naive and 

the case of an instance variable in the basic class being 
implemented as an array, we access it with arefs and asets 

experienced statisticians to quickly understand the TSA (the access functions for arrays in Zetalisp). On the one 
system structure, yet rearrange the possibilities of its use hand we argue that this is all right because the natural 
to fit the level of statistical sophistication. Beginners mental model of a statistician is that it should be an array, 
could follow along a prescribed analysis path, asking for and that hiding this would necessitate writing seemingly 
help when needed; yet experts could quickly flip to superfluous access methods in the basic class. On the 
selected parts of the system to make modifications sug- other hand, the benefits of information hiding break down 
gested by exploratory data analysis. We think the modular if for some reason we later decide to implement the 
structure of objects and message passing helped in pro- instance variable in the basic class as a list instead of an 
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array. Generic access functions like the setf of Common 
Lisp may help, but we think the problem is more complex 
than this. 

All in all, though, we are very pleased with the 
object-oriented framework of the TSA system. It pro- 
vided not only guidelines for good programming style and 
maintainability as the system grew, but it also helped us 
to clarify a conceptual model of data analysis that we 
have found suitable for a large range of users. 
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