
Recovering Binary Class Relationships:
Putting Icing on the UML Cake

Yann-Gaël Guéhéneuc
∗

Université de Montréal
Montréal, Québec, Canada

guehene@iro.umontreal.ca

Hervé Albin-Amiot
†

École des Mines de Nantes
Nantes, France

albin@emn.fr

ABSTRACT
A discontinuity exists between object-oriented modeling and
programming languages. This discontinuity arises from am-
biguous concepts in modeling languages and a lack of cor-
responding concepts in programming languages. It is par-
ticularly acute for binary class relationships—association,
aggregation, and composition. It hinders the traceability
between software implementation and design, thus hamper-
ing software analysis. We propose consensual definitions of
the binary class relationships with four minimal properties—
exclusivity, invocation site, lifetime, and multiplicity. We
describe algorithms to detect automatically these proper-
ties in source code and apply these on several frameworks.
Thus, we bridge the gap between implementation and design
for the binary class relationships, easing software analysis.

Categories and Subject Descriptors
D.1.5 [Programming techniques]: Object-oriented pro-
gramming; D.2.1 [Software engineering]: Requirements
and–or specifications—Languages; D.2.7 [Software engi-
neering]: Distribution, maintenance, and enhancement—
Restructuring, reverse engineering, and reengineering ;

General Terms
Design, standardisation, languages, theory.

Keywords
Design–implementation discontinuity, binary class relation-
ships, consensual definitions, formalisations, minimal prop-
erties, detection algorithms, UML, Java.

∗This work has been partly funded by IBM OTI Labs – 2670
Queensview Drive – Ottawa, Ontario, K2B 8K1 – Canada.
†This work is partly funded by Soft-Maint – 4, rue du

Chateau de l’Éraudière – 44 324 Nantes – France.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

1. INTRODUCTION
Design models, such as class diagrams, describe the ar-

chitecture of programs at a higher level of abstraction than
source code. These models are an invaluable help for soft-
ware engineers—both developers and maintainers—to anal-
yse programs architectures, design choices, behaviours, and
implementations.
However, design models produced during the design phase

are often forgotten during the implementation phase—under
time pressure usually—and thus present major discrepancies
with their actual implementation frequently. Such divergent
models are of little help to software engineers who must un-
derstand or analyse a program during its development and
after its release. A recurrent problem in the object-oriented
software (re)engineering community is the automated recov-
ery of design models from a program implementation.
Modeling and programming languages possess similar con-

cepts with similar semantics, such as class and inheritance,
guaranteeing a continuity between implementation and de-
sign. However, modeling languages aspire to provide higher-
level abstractions and thus include concepts absent from
programming languages, in particular binary class relation-
ships. The very existence of binary class relationships in
modeling languages brings a discontinuity in the transition
between implementation and design.
This discontinuity hinders the understanding of a pro-

gram implementation, limits the capabilities and efficiency
of automated reverse engineering tools, and impedes the
communication among software engineers. Definitions of
binary class relationships proposed by modeling languages
should answer the problem of discontinuity. However, most
definitions present ambiguities, as stated for example by
Henderson-Sellers and Barbier [26], and offer no operational
semantics, i.e., no implementation choices [11, 23]. It is
essential to bridge the gap between programming and mod-
eling languages for binary class relationships to build sound
foundations for understanding, round-tripping [9, page 517],
design pattern identification. . .
A first solution to bridge the gap is to design a new pro-

gramming language (or an extension to an existing one) in-
cluding binary class relationships, for examples [16, 24, 30].
However, this solution uses a non-standard programming
language and thus eliminates the benefits of standardisation
(debuggers, development environments, efficient compilers).
A second solution is to define binary class relationships at
implementation level, in terms of constructs of an existing
programming language. This solution relies on definitions

301

of the binary class relationships at design and implementa-
tion levels and on detection algorithms, which bring conti-
nuity between implementation and design. We apply this
second solution to the Java programming language with a
pragmatic study of UML association, aggregation, and com-
position relationships.
In section 2, we detail the problem and summarise previ-

ous work. In section 3, we propose consensual definitions of
the binary class relationships and discuss their properties at
implementation level. In section 4, we focus on four common
properties: Exclusivity, invocation site, lifetime, and multi-
plicity. In section 5, we formalise the definitions with the
properties and show that the properties form a minimal set.
In section 6, we propose algorithms to detect binary class
relationships using their properties. These algorithms bring
continuity between programming and modeling languages.
In sections 7, we introduce and validate implementations
of our algorithms on several frameworks. In section 8, we
conclude and present future work.

2. QUESTION AND PREVIOUS ANSWERS
We study definitions of binary class relationships at de-

sign and implementation levels to bridge the gap between
implementation and design. We consider only unidirectional
association, aggregation, and composition relationships be-
cause these relationships exist in common modeling lan-
guages, such as the UML, but are not explicit in standard
programming languages, such as Java. Moreover, bidirec-
tional relationships may be expressed as two unidirectional
relationships, as we further discuss in section 5.4, after the
formalisations of the relationships.
The UML class diagram in Figure 1(a) defines three classes

A, B, and C, an inheritance relationship from B to A, and an
aggregation relationship between B and C. Figure 1(b) shows
Java source code corresponding to the classes A, B, and C.
While we can identify easily the inheritance relationship in
Java (extends keyword), how would the aggregation rela-
tionship between class B and class C be expressed? As a
field? As a collection? How would the implementation re-
flect an aggregation or a composition relationship? More
generally: How to define binary class relationships so
we can detect them in implementation?

(a) A UML class di-
agram

public class A {
}
public class B extends A {

. . .
}
public class C {
}

(b) Possible implementation
for the UML class diagram
in Figure 1(a).

Figure 1: Illustration of the question.

A lot of work exists on binary class relationships. How-
ever, none of this work tackles the discontinuity between
implementation and design and answers the previous ques-
tion. We only present here four lines of work typifying main-
stream researches on binary class relationships. We further
detail work related to definitions of binary class relation-
ships when discussing their formalisations in section 5. The
interested reader may report to a previous work [21] for a
more complete depiction of the state of the art.
Some researchers studied binary class relationships with-

out linking their results to implementation-level constructs,
such as [10, 11, 14, 25, 26, 34]. For example, in their survey
of the UML relationships [26], Henderson-Sellers and Bar-
bier proposed a set of characteristics for whole–part relation-
ships. They showed that definitions of the aggregation and
composition relationships are incomplete, overlapping, and
contradictory, and proposed revised definitions. However,
they did not link their definitions with implementation.
Other researchers formalised object-oriented programming

languages without focusing on implementation issues [1, 4,
10, 32]. For example, Abadi and Cardelli “create a simple
model that is flexible enough to represent more complex no-
tions [of object classification and inheritance], but that does
not directly embody any particular one” [1, page 51]. They
developed a type calculus for object-oriented programming
languages, focusing on objects, classes, inheritance, and del-
egation. They did not consider more complex relationships.
Yet, some other researchers only considered subsets of

the binary class relationships and of their definitions at im-
plementation level, such as [12, 27, 29, 31]. For exam-
ple, Jackson and Waingold developed a tool, Womble, for
lightweight extraction of object-models from Java byte-codes
[27]. They proposed algorithms for detecting association re-
lationships between classes and heuristics to infer their mul-
tiplicity and mutability properties and to deal with container
classes. The authors limited their research to the association
relationship: They only mentioned aggregation relationships
and did not discuss detection of composition relationships.
Currently, industrial and open-source CASE tools, such as

Rational Rose and ArgoUML, do not clearly define binary
class relationships. They distinguish graphically the associ-
ation, aggregation, and composition relationships, but their
reverse engineering algorithms produce erroneous or incon-
sistent relationships. For example, the UML diagram in
Figure 2(a) represents two classes Example1 and A that an
aggregation relationship links together. We could implement
this diagram with the source code in Figure 2(b).
If we reverse-engineer with Rose v2002.05.00 the source

code in Figure 2(b), the original aggregation relationship is
not detected. The class diagram recovered from the source
code displays an association relationship between classes
Example1 and A, as shown in Figure 3.
We could replace the array by a collection from the Java

collection hierarchy, for example the List interface and its
ArrayList implementation, as in Figure 4(a). Figure 4(b)
shows the class diagram recovered using Rose for the alter-
nate implementation.
The aggregation relationship still does not exist, an associ-

ation relationship links the Example2 class and the collection
class, which is inconsistent with the expected class diagram.
An implementation detail—the use of a collection—erro-
neously changes the class diagram representing the program
design because of the lack of continuity between implemen-
tation and design for binary class relationships.

302

(a) UML class diagram.

public class Example1 {
private A[] listOfAs = new A[10];
private int numberOfAs = 0;

public void addA(final A a) {
// Complete implementation not shown here.
this.listOfAs[numberOfAs++] = a;

}
public A getA(final int index) {

return this.listOfAs[index];
}
public void removeA(final A a) {

// Complete implementation not shown here.
}
public static void main(final String[] args) {

final Example1 example1 = new Example1();
example1.addA(new A());
// . . .

}
}

(b) Implementation of the diagram in Figure 2(a).

Figure 2: A simple case study.

Figure 3: Class diagram recovered from the source
code in Figure 2(b) using Rational Rose.

Thus, to our best knowledge, previous work focused on
different problems related to binary class relationships: Def-
initions and properties at design level, formalisations and
detections of a subset of the relationships. We build on this
work and further study the association, aggregation, and
composition relationships to bridge the gap between imple-
mentation and design.

3. DEFINITIONS OF THE BINARY CLASS
RELATIONSHIPS

We propose definitions of the association, aggregation,
and composition relationships at design and implementation
level. We advocate that these definitions are as consensual
as possible with the literature. Our approach requires that
one accepts our definitions, however, beyond the definitions,
our approach shows that it is possible to bridge software im-
plementation and design.

public class Example2 {
private List listOfAs = new ArrayList();

public void addA(final A a) {
this.listOfAs.add(a);

}
public A getA(final int index) {

return (A) this.listOfAs.get(index);
}
public void removeA(final A a) {

this.listOfAs.remove(a);
}
public static void main(final String[] args) {

final Example2 example2 = new Example2();
example2.addA(new A());
// . . .

}
}

(a) Alternate implementation of the case study.

(b) Class diagram recovered from the
source code in Figure 4(a) using Ratio-
nal Rose.

Figure 4: Other implementation of the case study.

3.1 Association Relationship
At design level, an association relationship is a concep-

tual link between two classes. Each class can have multiple
instances involved in the relationship.
At implementation level, most authors agree that an as-

sociation relationship involves instances of two classes, an
origin and a target. An association relationship is oriented,
irreflexive, anti-symmetric at instance and class level, and
asymmetric at instance level [26].
Thus, we propose that an association relationship between

classes A and B be the ability of an instance of A to send a
message to an instance of B. Nothing prevents other relation-
ships to link classes A and B: An association, an aggregation,
or a composition relationship may exist between A and B (as
well as between B and A).
The following source code represents two classes A and B

linked by an association relationship, through the void ope-

ration1(B) method.

303

public class AssociationExample1 {
public static void main(String[] args) {

A a = new A();
B b = new B();
a.operation1(b);
b.operation2();
. . .

}
}
public class A {

public void operation1(B b) {
b.operation2();

}
}
public class B {

public void operation2() {
}

}

An alternate implementation of the association relation-
ship between classes A and B could use a declaration of a
local variable in a method of class A, for example:

void operation3() {
B anotherB = new B();
anotherB.operation2();

}

3.2 Aggregation Relationship
At design level, an aggregation relationship is an associa-

tion between two classes, respectively whole and part.
At implementation level, we say that an aggregation rela-

tionship exists between classes A and B when the definition
of A, the whole, contains instances of B, its part.
The whole must define a field (“simple”, array, or collec-

tion) of the type of its part. Instances of the whole send
messages to instances of its part. Subclasses inherit aggre-
gation relationships, because subclasses inherit the structure
and behaviour of their superclasses, with respect to access-
control limitations [5].
The following source code represents two classes A and B

linked by an aggregation relationship. The aggregation re-
lationship exists through the field B b and the void opera-

tion1() method body.

public class AggregationExample1 {
public static void main(String[] args) {

B b = new B();
A a = new A(b);
a.operation1();
b.operation2();
. . .

}
}
public class A {

private B b;
public A(B b) {

this.b = b;
}
public void operation1() {

this.b.operation2();
}

}
public class B {

public void operation2() {
}

}

The aggregation relationship could be implemented also
using a collection of instances of class B, for example:

private List listOfBs;
public void operation3() {

((B) listOfBs.get(0)).operation2();
}

3.3 Composition Relationship
At design level, a composition relationship is an aggrega-

tion relationship which parts are destroyed when the whole
is destroyed. Parts might be instantiated before the whole is
instantiated and they can be exchanged during the lifetime
of the whole. All parts owned by a whole at the moment of
its destruction are also destroyed.
At implementation level, we define a composition rela-

tionship as an aggregation relationship with a constraint
between the lifetimes of the whole and of its part and a
constraint on the ownership of the part by the whole. In-
stances of the whole own the instances of its part. Instances
of the part might be instantiated before the whole is instan-
tiated, but they must not belong to any other whole. They
are exclusive to the instance of the whole. The definition
of the composition relationship allows only an association
relationship between part and whole, to ensure the lifetime
and ownership properties between whole and part.
The following code represents two classes A and B linked

by a composition relationship. The composition relationship
exists through the private field B b, the void operation1()

method, and the Java virtual machine garbage-collector.
The instance of class B is garbage-collected1 along with the
instance of class A. The privateness of field B b and the ab-
sence of methods returning a reference on this field partici-
pate in the lifetime dependency and in the exclusive owner-
ship between instances of A and B.

public class CompositionExample1 {
public static void main(String[] args) {

A a = new A();
a.operation1();
. . .

}
}
public class A {

private B b = new B();
public void operation1() {

this.b.operation2();
}

}
public class B {

public void operation2() {
}

}

As with an aggregation relationship, the composition re-
lationship could be implemented using a collection also.

3.4 Discussion of the Definitions
The definitions at implementation level of the binary class

relationships use four language-independent properties, sub-
set of all existing properties of the relationships. Association
and aggregation relationships allow multiple instances of A
and B to take part in the relationships, while the composition
relationship allows multiple instances of B to be in a rela-
tionship with one instance of A at a time. In an aggregation
relationship, instances of A access instances of B through a
particular invocation site: A field. In a composition rela-
tionship, instances of B are exclusive to their corresponding
instances of A and instances of A and B have related lifetimes.

1Garbage-collection of instances of class B happens actually
before or after the garbage-collection of instances of class A.

304

4. PROPERTIES OF THE BINARY CLASS
RELATIONSHIPS

We detail and discuss now the four properties of the binary
class relationships at implementation level.

4.1 Exclusivity Property
An instance of class B involved at a given time in a re-

lationship with an instance of class A can, or cannot, be in
another relationship at the same time. We name B the set
{true, false}. We define the exclusivity property as:

EX : Class × Class → B

Given A and B, two classes: EX(A, B) ∈ {true, false}.
Value true states that an instance of class B can take part
in another relationship with another instance of class A or
of another class. Value false indicates that it cannot. The
exclusivity property only holds at a given time and it does
not prevent possible transferals.
For example, in a Country–Language relationship, a Lan-

guage may be part of more than one Country: EX(Country,
Language) = false. In a Computer–Keyboard relationship,
a Keyboard is part of one and only one Computer at a given
time: EX(Computer, Keyboard) = true.

4.2 Invocation-Site Property
Instances of class A, involved in a relationship, send mes-

sages to instances of class B. We name any the set of all
possible invocation sites.

any = {field, array field, collection field,
parameter, array parameter, collection parameter,

local variable, local array, local collection}
We distinguish three levels of invocation sites: Fields, pa-

rameters, and local variables. Also, we distinguish “simple”
invocation sites, arrays, and collections because they imply
different sets of programming idioms for their declarations
and for their uses, which we need to individualise when de-
tecting the relationships, as we further discuss in section 6.
The set any of invocation sites is language-independent and
its elements map to source code constructs in class-based
programming languages, such as C++ (whether using point-
ers or not, as detailed in section 6.4), Java, and Smalltalk.
We define the invocation-site property as:

IS : Class × Class ⊆ any

Given A and B, two classes: IS(A, B) ⊆ any. Values of the
IS property describe the invocation sites for messages sent
from instances of class A to instances of class B. There can
be no message sent from class A to class B: IS(A, B) = Ø, or
messages can be sent from A through a field (respectively a
parameter, a local variable) of type B, an array field,
or a field of type collection.
For example, in a Figure–Line relationship, the Figure

propagates draw() messages to its composing lines using a
collection of instances of Line: IS(Figure, Line) = {col-
lection field}. A Line should not know its enclosing
Figure: IS(Line, Figure) = Ø [8]. If class Figure de-
clares a contains(Line[]) method (to check whether a fig-
ure encloses a set of lines), then IS(Line, Figure) = {array
parameter, collection field}.

4.3 Lifetime Property
The lifetime property constrains the lifetimes of all in-

stances of class B with respect to the lifetimes of all instances
of class A. It relates to the difference between the times of
destruction LTd of two instances of classes A and B [14]. The
time is in any convenient unit, in seconds, in CPU ticks.

LTd : Instance → N

In programming languages with garbage collection, LTd

matches the moment where an instance is ready to be col-
lected for garbage. We infer from LTd a relation between
the lifetimes of all instances of two classes A and B. We name
‖ the set {−,+}.

LT : Class × Class → ‖
Given A and B, two classes: LT (A, B) ∈ {−,+}. LT (A, B) =

+ if all instances of class B are destroyed before the cor-
responding instances of class A, LT (A, B) = − if destroyed
after. We shall write LT (A, B) ∈ ‖ if the times of destruction
of instances of classes A and B are unspecified: The property
does not state if instances of class B are destroyed before or
after instances of class A.
For example, in a Window–Button relationship, when the

Window closes and is ready for garbage collection, the Button
must also be ready for garbage collection: LT (Window, But-
ton) = +.

4.4 Multiplicity Property
The multiplicity property specifies the number of instances

of class B allowed in a relationship with class A. We express
this property as:

MU : Class × Class ⊂ N ∪ {+∞}
Given A and B, two classes: MU(A, B) ⊂ N ∪ {+∞}. For

the sake of simplicity, we use an interval of the minimum
and maximum numbers to represent multiplicity. We only
consider multiplicity at the target end of a relationship. The
interested reader may refer to Jackson and Waingold [27] for
a discussion on multiplicity at both ends of a relationship.
For example, in a Cell–DNACode relationship, a Cell pos-

sesses one and only one DNACode: MU(Cell, DNACode) =
[1, 1]. In a Car–Wheel relationship, a Car usually possesses
four Wheels but may have a fifth spare Wheel: MU(Car,
Wheel)= [4, 5].

4.5 Discussion of the Properties
The four properties, which we propose to define binary

class relationships, are orthogonal. However, the exclusiv-
ity and multiplicity properties are closely related with each
other. For example, in the Country–Language relationship:

• The multiplicity property states the number of instan-
ces of class Language that each instance of the Country
class possesses: MU(Country, Language) = [1,+∞].
(Canada possesses two official languages, English and
French, and several spoken languages: Inuktitut; Pun-
jabi; Portuguese...)

• The exclusivity property states if an instance of class
Language is shared among instances of class Country

or of other classes: EX(Country, Language) = false.
(French is spoken in France, in Canada...)

Also, we show that LT (A, B) = + ⇔ LT (B, A) = −, indeed
LT (A, B) = + ⇔ LTd(A) > LTd(B) ⇔ LT (B, A) = −.

305

5. FORMALISATIONS OF THE BINARY
CLASS RELATIONSHIPS

We formalise the binary class relationships at implemen-
tation level as three conjunctions of the four properties, re-
spectively AS, AG, and CO. We show examples and dis-
cuss characteristics of these formalisations, in particular the
minimality of the set of properties.
Formalisations of the binary class relationships are impor-

tant in two respects: First, they provide formal language-
independent definitions of the relationships for understand-
ing and communication among software engineers; Second,
they are the basis of the detection algorithms needed to
bridge the gap between implementation and design, as pre-
sented in section 6.

5.1 Association Relationship
We define an association relationship between classes A

and B, AS(A, B), as:

AS(A, B) =
(EX(A, B) ∈ B) ∧ (EX(B, A) ∈ B) ∧

(IS(A, B) = any) ∧ (IS(B, A) = Ø) ∧
(LT (A, B) ∈ ‖) ∧ (LT (B, A) ∈ ‖) ∧

(MU(A, B) = [0,+∞]) ∧ (MU(B, A) = [0,+∞])

We forbid message invocation from instances of class B to
instances of class A because we consider unidirectional rela-
tionships only. Bidirectional relationships may be expressed
as two unidirectional relationships, as we show in section 5.4.
For example, the following source code, incomplete as it

is, verifies the values of the properties of the association rela-
tionships. The naming of instances a and b precludes their
mutual exclusivity: They can be used later in the main()

method body. Possible uses of instances a and b also sug-
gests unrelated lifetimes.

public class AssociationExample2 {
public static void main(String[] args) {

A a = new A(); // EX(A, B) = EX(B, A) ∈ B

// because of the possible later use of a and b.
B b = new B(); // LT (A, B) = LT (B, A) ∈ ‖
a.operation1(b); // MU(A, B) = MU(B, A) = [0, +∞]
b.operation2();
. . .
// Possible uses of a and b.

}
}
public class A {

public void operation1(B b) {
b.operation2(); // IS(A, B) ⊂ any

}
}
public class B {

public void operation2() { // IS(B, A) = Ø
}

}

5.2 Aggregation Relationship
We define the aggregation relationship between classes A

and B, AG(A, B), as:

AG(A, B) =
(EX(A, B) ∈ B) ∧ (EX(B, A) ∈ B) ∧

(IS(A, B) ⊆ {field,array field,
collection field}) ∧

(IS(B, A) = Ø) ∧
(LT (A, B) ∈ ‖) ∧ (LT (B, A) ∈ ‖) ∧

(MU(A, B) = [0,+∞]) ∧ (MU(B, A) = [1,+∞])

The following source code illustrates an aggregation rela-
tionship between classes A and B. For example, the field B b

sets the lower bound of MU(A, B) to 1, possibility of other
field declarations sets the upper bound to +∞.

public class AggregationExample2 {
public static void main(String[] args) {

B b = new B(); // EX(A, B) ∈ B

A a = new A(b); //EX(B, A) ∈ B

a.operation1(); // LT (A, B) ∈ ‖
b.operation2(); // LT (B, A) ∈ ‖
. . .
// Possible uses and creations of instances of B.

}
}
public class A {

private B b; // MU(A, B) = [1, +∞] ⊂ [0, +∞]
public A(B b) {

this.b = b; // MU(B, A) = [1, 1] ⊂ [1, +∞]
}
public void operation1() {

this.b.operation2(); // IS(A, B) = {field}
// ⊂ {field, array field, collection field}

}
. . .
// Possible declarations and uses of instances of B.

}
public class B {

public void operation2() { // IS(B, A) = Ø
}

}

5.3 Composition Relationship
We define the composition relationship between classes A

and B, CO(A, B), as:

CO(A, B) =
(EX(A, B) = true) ∧ (EX(B, A) = false) ∧

(IS(A, B) ⊆ {field,array field,
collection field}) ∧

(IS(B, A) = Ø) ∧
(LT (A, B) = +) ∧ (LT (B, A) = −) ∧

(MU(A, B) = [1,+∞]) ∧ (MU(B, A) = [1, 1])

The following code represents a composition relationship
between classes A and B. For example, the value of MU(A, B)
is [1, 1] because the instance of class B can belong to one and
only one instance of class A.

public class CompositionExample2 {
public static void main(String[] args) {

A a = new A(); // EX(B, A) = false
// because of the possible later creation
// and use of other instances of A.
a.operation1(); // (LT (A, B) = +) ∧ (LT (B, A) = −)
. . .
// Possible uses and creations of instances of A.

}
}
public class A {

private B b = new B(); // MU(A, B) = [1, 1] ⊂ [1, +∞]
public void operation1() { // MU(B, A) = [1, 1]

this.b.operation2(); // EX(A, B) = true
} // IS(A, B) = {field} ⊂ {field, array field,
// collection field}

}
public class B {

public void operation2() { // IS(B, A) = Ø
}

}

306

5.4 Discussion of the Formalisations
Interesting characteristics of the binary class relationships

stem from their formalisations: Minimality of the set of
properties; Order among the relationships; Decomposition
of the relationships in static and dynamic parts. Also, our
formalisations support common usages of binary class re-
lationships: Acquaintance and optimisations; Aggregation
and shared aggregation; Navigability; Qualification; Sym-
metrical relationships and backpointers.

Minimality of the Set of Properties.The four proper-
ties form a subset of all properties proposed in the litera-
ture, for examples in [14, 26]. We prove that this subset
P = {EX, IS, LT, MU} is minimal with respect to our for-
malisations and to other definitions in two steps.

First, we show that this subset is minimal with respect to
our formalisations: If we remove any property from P, then
some of our formalisations are undistinguishable.
Let us assume a composition relationship CO(A, B) be-

tween classes A and B. If we remove the EX property from
P, then we can no longer distinguish CO(A, B) from an ag-
gregation relationship, AG(A, B). Indeed, the values of the
properties for CO(A, B) minus EX satisfy the values of the
properties for AG(A, B):

(IS(A, B) ⊆ {...})CO = (IS(A, B) ⊆ {...})AG

(IS(B, A) = Ø)CO = (IS(B, A) = Ø)AG

(LT (A, B) = +)CO ∈ (LT (A, B) ∈ ‖)AG

(LT (B, A) = −)CO ∈ (LT (B, A) ∈ ‖)AG

(MU(A, B) = [1,+∞])CO ⊂ (MU(A, B) = [0,+∞])AG

(MU(B, A) = [1, 1])CO ⊂ (MU(B, A) = [1,+∞])AG

Now, let us assume an aggregation relationship AG(A, B)
between classes A and B. If we remove the IS property from
P, then we can no longer distinguish AG(A, B) from an as-
sociation relationship, AS(A, B). Indeed, the values of the
properties for AG(A, B) minus IS satisfy the values of the
properties for AS(A, B):

(EX(A, B) ∈ B)AG = (EX(A, B) ∈ B)AS

(EX(B, A) ∈ B)AG = (EX(B, A) ∈ B)AS

(LT (A, B) ∈ ‖)AG = (LT (A, B) ∈ ‖)AS

(LT (B, A) ∈ ‖)AG = (LT (B, A) ∈ ‖)AS

(MU(A, B) = [0,+∞])AG = (MU(A, B) = [0,+∞])AS

(MU(B, A) = [1,+∞])AG ⊂ (MU(B, A) = [0,+∞])AS

Likewise, let us assume a composition relationship be-
tween classes A and B,CO(A, B). If we remove the LT prop-
erty from P, then we can no longer distinguish CO(A, B)
from an aggregation relationship, AG(A, B). The values of
the IS and MU properties for CO(A, B) satisfy the values
of these properties for AG(A, B), as do the values of the EX
property:

(EX(A, B) = true)CO ∈ (EX(A, B) ∈ B)AG

(EX(B, A) = false)CO ∈ (EX(B, A) ∈ B)AG

Finally, let us assume an aggregation relationship AG(A, B)
between classes A and B. If we remove the MU property from
P, then we can no longer distinguish AG(A, B) from an asso-
ciation relationship, AS(A, B). The values of the EX and LT

properties for AG(A, B) satisfy the values of these properties
for AS(A, B), as do the values of the IS property:

(IS(A, B) ⊆ {...})AG ⊂ (IS(A, B) = any)AS

(IS(B, A) = Ø)AG = (IS(B, A) = Ø)AS

Thus, the four properties in P are all required to distin-
guish our formalisations of the association, aggregation, and
composition relationships: P forms a minimal subset of all
properties of binary class relationships with respect to our
definitions. We explain why the association and aggregation
relationships are distinguished by the IS and MU proper-
ties and the aggregation and composition relationships by
the EX and LT properties in a following discussion on the
static and dynamic parts of the relationships.

Second, we show that all properties in P appear in all def-
initions of binary class relationships in the literature. How-
ever, for lack of space, we cannot detail all definitions of bi-
nary class relationships in the literature. Indeed, we found
in a previous survey 26 definitions distributed in 5 cate-
gories [21]. Thus, we only present one example per category:

• Definitions in natural languages: 5 definitions. For
example, definitions of the association and aggrega-
tion relationships in the precursor book by Rumbaugh
et al. [33, sections 3.2, 4.1, and 15.6] states that: It
is sometimes necessary to check whether a part al-
ready belongs to a whole, which relates to exclusivity,
and the multiplicity of instances of classes involved;
Some operations of a whole apply to its part, using at-
tributes containing pointers to the part, which relates
to invocation site. The lifetime property is not ex-
plicitly mentioned, but memory management—object
deletion, dangling pointer, memory leak—is cited as
concern for implementation of the relationships.

• Formal definitions: 5 definitions. For example, inter-
pretation of association relationships in the Syntropy
methodology [7] explicitly mentions cardinality con-
straints, related to multiplicity and lifetime, as well as
lifetime constraints, related to exclusivity. Also, data
encapsulation (value attribute or reference attribute)
is described as a mean to implement association and
aggregation relationships, which relates to invocation
site, although the formalisation interprets “the asso-
ciation without any knowledge of the structure of the
object it associates” [7, page 8].

• Definitions with properties: 5 definitions. For exam-
ple, definitions of the aggregation and composition re-
lationships by Henderson-Sellers and Barbier [26, ta-
ble 4, page 356] use several characteristics, such as:
C1. Propagation of one or more operations and C5.
Propagation of destruction operation, related to invo-
cation site and lifetime; C2. Ownership, related to
exclusivity ; P1. Whole–part, related to multiplicity.

• Definitions embodied in programming languages: 3
definitions. For example, in the Troll programming
language [24], definitions of static aggregations, dy-
namic aggregations, and disjointed aggregations dis-
tinguish two kinds of complex objects: Non-disjoint

307

and disjoint, which relates to exclusivity. Complex ob-
jects may belong to one or several aggregations, which
relates to multiplicity. They possess attribute values
which they alter by local events (events are abstrac-
tions of methods), related to invocation site. They
have explicit life cycles, which relates to lifetime.

• Definitions at the implementation level: 8 definitions.
For example, in the tool Womble [27] for lightweight
extraction of object-models from Java byte-codes, an
association relationship may be annotated to show its
multiplicity and its mutability, which relates to ex-
clusivity. Heuristics infer multiplicity and mutability
properties and deal with container classes, which re-
late to invocation site. However, the tool does not
distinguish aggregation from association relationships
and does not consider composition relationships, al-
though the authors mention that lifetime-dependency
inference would be required.

Thus, with the two previous steps, we show that P is a
minimal subset of all properties of binary class relationships.

Order among the Binary Class Relationships.The for-
malisations of the relationships with their properties show
that an order exists among the association, aggregation, and
composition relationships. The values of the aggregation re-
lationship properties are more constraining than those of the
association relationship:

AG(A, B) =
AS(A, B) ∧
(IS(A, B) = {field,array field,

collection field}) ∧
(MU(B, A) = [1,+∞])

The values of the composition relationship properties are
more constraining than those of the aggregation relation-
ship. In particular, the exclusivity property is stronger for
the part in a composition relationship than in an aggrega-
tion relationship, because, in a composition relationship, the
part must not belong to any other aggregation or composi-
tion relationship:

CO(A, B) =
AG(A, B) ∧

(EX(A, B) = true) ∧ (EX(B, A) = false) ∧
(LT (A, B) = +) ∧ (LT (B, A) = −) ∧

(MU(A, B) = [1,+∞]) ∧ (MU(B, A) = [1, 1])

Static and Dynamic Parts.The formalisations of the bi-
nary class relationships decompose in two fundamental parts:
A static part corresponding to the MU and IS properties;
A dynamic part corresponding to the EX and LT proper-
ties. Association and aggregation relationships are inher-
ently static, thus their static parts are important for their
distinction and their detection. A composition relationship
is an aggregation relationship with additional constraints
on the behaviour of composed instances, thus its dynamic
parts are important for its distinction from an aggregation
relationship and its detection.

Acquaintance and Optimisation.For optimisation pur-
poses, a class A associated with a class B may declare a field
of type B to record a particular instance of B. According

to our definitions, the relationship between A and B then
evolves from an association to an aggregation relationship.
This is not a problem because we aim at bringing continu-
ity between design and implementation. We try to expose
consistently, not to interpret, software engineers’ intent.
For example, software designers specified an association

relationship between classes Person and Course. Software
engineers implemented this association relationship by de-
claring a field of type Course in class Person. If the recov-
ered relationship is an aggregation relationship, it provides
important data to software maintainers: First, maintainers
know that an aggregation relationship actually exists be-
tween classes Person and Course; Second, maintainers may
act about the discrepancy between the actual implementa-
tion and the desired design as appropriate.

Composition and Shared Composition.We only consider
non-shared composition relationships. The multiplicity of
the part for the composition relationship, MU(B, A) = [1, 1],
prevents a part to belong to more than one whole. This mul-
tiplicity ensures the lifetime property of a part with respect
to its whole for the composition relationship and consistency
between the definitions of the aggregation and composition
relationships.

Navigability. In the UML notation, navigability is spec-
ified with arrows on association ends (respectively aggre-
gation and composition ends). We choose to study only
unidirectional relationships because:

• A bidirectional relationship can be expressed as two
opposite unidirectional relationships with constraints
between them [28], if appropriate. For example, we
could express the UML class diagram in Figure (a)
using the class diagram in Figure (b). (In the UML
notation, no arrow is displayed when a relationship is
bidirectional.)

(a) Bidirectional aggrega-
tion relationship

(b) Unidirectional aggrega-
tion and association rela-
tionships

308

• In standard programming languages, bidirectional re-
lationships are actually implemented as two opposite
unidirectional relationships.

Thus, we think that it is adequate to express bidirec-
tional relationships as two opposite unidirectional relation-
ships. Software engineers may decide to fusion semantically-
related opposite unidirectional relationships at design level
after reverse-engineering.

Qualification. We do not qualify the formalisations of the
relationships with labels identifying the particular relation-
ships being specified. Indeed, the formalisations define the
association, aggregation, and composition relationships and
are characteristics that particular relationships may have.
For example, there may exist two associations relation-

ships, teaches and takes, between the classes Person and
Course. We would say that:

teaches verifies AS(Person, Course)
takes verifies AS(Person, Course)

Symmetrical Relationships and Backpointers.The pres-
ence of a binary class relationship between classes A and B

does not preclude the existence of other relationships. Thus,
relationships between classes A and B may induce a cycle.
Typically, there is a cycle when a backpointer records the
owner of an instance or when two classes possess fields of
each other’s type. In such cases, two symmetrical aggrega-
tion relationships would exist: AG(A, B) and AG(B, A).

6. DETECTION ALGORITHMS FOR THE
BINARY CLASS RELATIONSHIPS

We bring continuity between implementation and design
by defining detection algorithms for the previous proper-
ties and formalisations of the binary class relationships. We
introduce algorithms to compute the values of the four prop-
erties that we use to infer the existence of association, aggre-
gation, and composition relationships in Java source code.
For the sake of brevity, we describe the principles of the
algorithms only, the interested reader may refer to previ-
ous work for detailed explanations on static and dynamic
analyses for Java [21, 22]. The algorithms are independent
of the target programming language, because they rely on
language-independent properties only. However, the algo-
rithms take advantage of language-dependent programming
idioms as we show for the Java programming language.

6.1 Principles of the Detection Algorithms
Detection of association relationships requires collecting

the value of the IS property only. Detection of aggregation
relationships requires inferring the values of the IS and MU
properties. Detection of composition relationships requires
collecting the value of the IS and MU properties and of the
EX and LT properties. We collect values of the invocation
site, IS, and multiplicity, MU , properties using static anal-
yses. We infer values of the exclusivity, EX, and lifetime,
LT , properties using dynamic analyses.

6.2 Association, Aggregation Relationships
We use static analyses to compute values of the static

part—the MU and IS properties—of the association and
aggregation relationships. The Java programming language
uses an intermediate language made of byte-codes. We per-
form static analyses on this intermediate language, using
a byte-code analysis framework: IBM CFParse v1.21. We
choose to work with the intermediate language because class
files are always available, while source code may be unavail-
able when proprietary [35].

Computation ofIS. We iterate through the byte-codes of
each class, looking for byte-codes corresponding to method
invocations: InvokeInterface, InvokeStatic, InvokeSpe-
cial, and InvokeVirtual. Then, depending on invocation
sites (field, array field, collection field, parameter,
array parameter, collection parameter, local variable,
local array, local collection), we assign values to the
IS property and identify the target of the relationships.
A difficulty arises when invocation sites are collections,

collection field, collection parameter, local collec-

tion, because collections are typically un-typed. If we as-
sume that these kinds of collections are homogeneous (con-
taining instances with a common superclass different from
Object), it is possible to determine their types using well-
known Java programming idioms, such as pairs of add()–
remove() accessors [27].
Also, the algorithm are parameterised specifically to recog-

nise user-defined collections in addition to collections from
the standard Java class libraries, such as Map, List, and Set

and their implementations.

Computation ofMU . Detection of the values of the MU
property uses invocation sites also: We assign value [0, 1] to
the MU property if the invocation site is field, parameter,
local variable, value [0,+∞] if the invocation site is array
field, array parameter, local array, collection field,
collection parameter, or local collection.

6.3 Composition Relationships
The dynamic part—the EX and LT properties—of the

composition relationship is difficult to detect. We propose
a solution using a trace-analysis technique [22]. A composi-
tion relationship is an aggregation relationship with specific
values for the exclusivity and lifetime properties. Thus, we
use the trace-analysis technique to compute, for each ag-
gregation relationship, values of the exclusivity and lifetime
properties and, if the values match, to change it to a com-
position relationship.

Model. We model a program execution as a trace: A se-
quence of execution events. There are three kinds of events,
represented as Prolog terms: Assignment events emitted ev-
ery time a field of an instance of class A is assigned with an
instance of class B; Finalise events emitted when the Java
virtual machine garbage-collects an instance2; A program-
end event that is emitted when the program terminates. We
generate and analyse on the fly the trace of a program exe-
cution using Prolog predicates. Then, we infer the existence
of composition relationships from computed values of the
exclusivity and lifetime properties.

2We assume our tool emits a finalise event as soon as an
instance becomes ready for garbage collection.

309

Computation ofLT . We assess the lifetime property of ag-
gregation relationships using a Prolog predicate, checkLT-
Property/3 [21]. This predicate builds a list of terms ab-
stracting sequences of events in the execution trace depend-
ing on the order in which assignations, finalisations, and
program-end happen. The checkLTProperty/3 builds and
maintains a list of pendingAssignation and of lifetime-
Property terms:

• pendingAssignation terms are added to the list upon
assignation of an instance of class B to a field (re-
spectively, array field, collection field) of an in-
stance of class A.

• pendingAssignation terms are converted into life-

timeProperty terms upon finalisation of instances of
classes A and B if appropriate, i.e., finalisations of in-
stances of class A occur after finalisations of all corre-
sponding instances of class B (LTd(A) > LTd(B)).

• pendingAssignation terms are converted into life-

timeProperty terms when the program terminates.

Computation ofEX. Following the same principle, we de-
fine a predicate to check the exclusivity property of aggre-
gation relationships, checkEXProperty/3 [21], which builds
and maintains a list of exclusivityProperty terms, accord-
ing to assignations and program-termination events.

Finally, the terms in the lists represent values of the exclu-
sivity and lifetime properties between instances of classes A
and B. We infer values of the exclusivity and lifetime prop-
erties of the two classes by conjunctions (and operator) of
the values between their corresponding instances.

6.4 Discussion of the Detection Algorithms
The set of invocation sites map to Java source code di-

rectly. With other programming languages such as C++, it
is necessary to adapt the static analyses to handle pointers
and structures, for example. However, the set of invocation
sites does not change with different class-based program-
ming languages, it is language independent.
Our detection algorithms suffer from two main limitations

which impedes their correctness and completeness.

• We base the detection of aggregation relationships on
static analyses and on heuristics expressing common
programming idioms, i.e., a collection is generally ac-
cess through specific accessors, to infer the type of
stored instances. However, developers may not have
followed the common programming idioms, which leads
to a decreased precision of the algorithms, as shown in
the following validations, in section 7.1.

• We base the detection of composition relationships on
dynamic analyses, which have well-known limitations,
such as code coverage, statistical significance of the
runs, and dependency of the overall results on the and
operator used to combine results from runs. These
limitations decrease the precision and usability of the
detection algorithms, as shown in section 7.2.

We could replace our heuristics and dynamic analyses
with alias analyses but their benefits are yet unclear with
respect to simplicity and performance of the algorithms.

7. VALIDATIONS OF THE DETECTION
ALGORITHMS

We have adapted the static analysis algorithms from our
previous tool PatternsBox [3] in Ptidej, a tool to reverse-
engineer Java programs, and we implemented the dynamic
analysis algorithms using Caffeine [22], a tool for the dy-
namic analysis of Java programs. We have tested our im-
plementations on: Java AWT v1.2.2 [37], JHotDraw v5.1
[18], and JUnit v3.7 [17].

7.1 Association, Aggregation Relationships
The association relationship is the simplest relationship to

detect and provides an overwhelming number of hits: There
are respectively 2, 784+1, 505+636 = 4, 925 association rela-
tionships for the 583 classes of the three frameworks. Thus,
aggregation relationships are the most informative with re-
spect to static analyses. Static analyses of the three frame-
works take respectively 18.66, 7.81, and 7.11 seconds on a
Pentium II 600 Mhz.
Table 1 shows the results of detection of aggregation re-

lationships for the different frameworks. It details the num-
ber: Of classes per framework; Of relationships (multiplicity
+∞) found ; Of relationships (multiplicity +∞) detected by
a manual analysis; And, of false hits. The results do not
include aggregation relationships of multiplicity 1, because
detection of these relationships is not an issue and would in-
accurately increase the precision3. Their detection requires
only static analyses of classes to find “simple” fields, such
as private B b;, which multiplicity and target are obvi-
ous. Also, the results involve only aggregation relationships
that are homogeneous4, and that do neither involve prim-
itive types, nor wrapper types, nor the String type, nor
listeners5. Such homogeneous aggregation relationships are
typically described using collection classes implementing the
List interface, such as the Vector class.
We performed a manual analysis to check the accuracy

of our algorithms. We do not obtain a precision of 100%
because developers of the three frameworks did not respect
some of the Java idioms assumed by our detection algo-
rithms. Developers implemented add() methods without
the corresponding remove() or get() methods, or pairs of
add()–remove()methods with different argument types. For
example, the Component class of Java AWT declares meth-
ods add(PopupMenu) and remove(MenuComponent) to add
and to remove popup menus from a component.
However, this lack of precision actually helps in under-

standing programs and in identifying potential problems
through the enforcement of programming standards. Thus,
the absence of aggregation relationship between classes Com-
ponent and PopupMenu highlights the discrepancy between
methods add(PopupMenu) and remove(MenuComponent).

3For example, on JHotDraw v5.1, the precision is 98%
for 151 existing aggregation relationships, multiplicity 1 and
+∞, to compare with a precision of 75% for 8 existing ag-
gregation relationships, multiplicity +∞ only.
4We say that an aggregation relationship is homogeneous
if it involves instances of classes with a common superclass
different from Object.
5The detection of aggregation relationships with primitive
types, wrappers, String, or listeners does not provide help-
ful information to bridge the gap between implementa-
tion and design, because primitive types are not instances
of classes while wrappers, String, and listeners are not
application-specific classes.

310

Aggregation relationships with multiplicity +∞
Frameworks Classes Found Manual False hits
Java AWT v1.2.2 367 17 20 1
JHotDraw v5.1 171 6 8 0
JUnit v3.7 45 1 4 0
Total 583 24 32 1

Precision: 0.75 (Found
Manual) Recall: 0.96 (Found

Found+False hits)

Table 1: Results of static analyses for aggregation
relationships with multiplicity +∞.

7.2 Composition Relationships
Table 2 presents the results of detecting composition rela-

tionships in the JUnit v3.7 framework, using dynamic anal-
yses on the junit.samples.money.MoneyTest test case with
three different user interfaces (UI). We did not perform dy-
namic analyses on the JHotDraw v5.1 framework, because
it requires user-interaction, nor on the Java AWT v1.2.2
framework because it is not runnable.
We perform the analyses based on previously found aggre-

gation relationships, because composition relationships are
aggregation relationships with stronger dynamic properties.
A complete analysis of the program would be too costly in
time and would not provide more results.
Some aggregation relationships reveal themselves as com-

position relationships upon dynamic analyses of the Money-
Test test case with the different UI: Properties of lifetime
and of exclusivity hold. We performed a manual analysis to
check the accuracy of our dynamic analyses and we obtain a
precision of 100% and a recall of 100% for the given condi-
tions of execution (multiple runs of the MoneyTest test case
with the different UI).
However, the results are subject to caution because they

correspond to a subset of all possible execution paths: De-
pending on the execution path, the inferred relationships
may vary. For example, there is no composition relationship
between classes TestSuite and Test [21] with the AWT-
based UI while there is one with the text-based UI. Code
coverage analyses [6, 15] are being considered to increase
confidence on the dynamic analyses.

7.3 Discussion of the Validations

Quantitative and Qualitative.Preceding results are inter-
esting in two respects:

• Quantitatively, we can compute metrics based on de-
tected relationships. These metrics further enhance
the understanding that software engineers have of a
program using other metrics, such as Chidamber and
Kemerer’s metrics [13].

• Qualitatively, we can assess the quality of a design us-
ing the number of detected relationships, the presence
of opposite relationships. We can also compare de-
tected relationships and relationships defined during
design, identify design anomalies, highlight implemen-
tation discrepancies and bugs [27].

Practicality. Results of the static analyses have a precision
of 75% and a recall of 96%. They show that our algorithms,
although neither complete nor correct, are good enough in
practice to detect aggregation relationships and, by exten-
sion, composition relationships correctly. It is possible to

take in consideration more Java idioms, however, the cur-
rent versions of our algorithms represent acceptable compro-
mises between computation time, complexity, and precision.
The dynamic part of the composition relationship is subject
to caution because of the limitations of dynamic analyses
between executions. Also, dynamic analyses are time con-
suming: Our dynamic analysis tool, Caffeine, slows down
program executions up to a factor of 5,000 [22]. Thus, detec-
tion of composition relationships should only be performed
to answer specific questions from software engineers [36].

Comparisons.Validations of our definitions and of results
from our algorithms against third-party definitions and tools
is a very difficult task. We would like to apply our algo-
rithms on documented frameworks and to compare results
with the documentation of these frameworks or analyses of
other tools. However, developers mainly use modeling lan-
guage with little operational semantics when designing their
software, such as the UML, and thus do not consider differ-
ences among the association, aggregation, and composition
relationships. Also, we were unable to find a framework
both publicly available and of reference in which the de-
velopers explicitly distinguished the three binary class rela-
tionships. For example, the authors of JHotDraw v5.1 use
the notation proposed by Gamma et al. [19]. This notation
offers the association relationship, called acquaintance rela-
tionship, and a generic aggregation relationship, called the
part-of relationship. The notation defines the implementa-
tion of acquaintance and of part-of relationships only loosely
and does not mention the composition relationship.

Consequences.Detection of the binary class relationships
in the Java AWT, JHotDraw, and JUnit frameworks re-
duces the gap between implementation and design.
Indeed, software maintainers have a better understanding

of both the inner working and of the design of the frame-
works through the knowledge of the relationships among
classes. They can check desired designs against actual imple-
mentations and identify possible design defects or erroneous
relationship implementations. They can also identify design
patterns more easily, thus developing their understanding of
the frameworks one step further [2].
Finally, software engineers could use the knowledge of

the relationships to translate the frameworks to other class-
based object-oriented programming languages. Indeed, they
can translate the relationships among classes from one pro-
gramming language to another accurately using their lan-
guage-independent properties.

8. CONCLUSION AND FUTURE WORK
We tackled the problem of discontinuity between program-

ming and modeling languages in the specific case of three bi-
nary class relationships: Association, aggregation, and com-
position. We answered the question: “How to define binary
class relationships so we can detect them in implementa-
tion?” We proposed and formalised definitions of the rela-
tionships with a minimal set of four language-independent
properties at implementation level. We presented detection
algorithms based on the properties and sketched their im-
plementations. We validated the algorithms on well-known
frameworks with respect to our definitions. These defini-
tions and algorithms bring continuity in the transition be-
tween a program implementation and its design. We in-
tegrated implementations of our algorithms in two reverse-

311

Composition relationships with multiplicity +∞
User interfaces Found Manual False hits Classes in the relationships
Text 3 3 0 TestResult–TestFailure (×2), TestSuite–Test
Java AWT 3 3 0 TestResult–TestFailure (×2),

junit.awtui.TestRunner–Throwable
Java Swing 3 3 0 TestResult–TestFailure (×2),

junit.swingui.TestRunner–TestRunView
Total 3 3 0

Precision: 1.00 (Found
Manual) Recall: 1.00 (Found

Found+False hits)

Table 2: Results of dynamic analyses for composition relationships with multiplicity +∞ in the JUnit v3.7
framework (MoneyTest class).

engineering tools for Java programs, Ptidej and Caffeine.
These tools ensure consistent continuity and traceability be-
tween implementation and design, which is a major improve-
ment over existing industrial and academic software and–or
reverse engineering tools.
Currently, we enhance and use our reverse engineering

tools to study on firm foundations the identification of micro-
architectures similar to solutions of design-patterns in Java
programs and of detect design defects [2, 20]. We also work
on improving static and dynamic analyses for the C++ and
Smalltalk programming languages.

Future work includes:

• To assess the benefits of full-fledge alias analyses and
their implementations to improve the detection of the
relationships.

• To implement code coverage analyses to increase the
confidence in the dynamic analyses.

• To develop a set of criteria to assess the quality of
reverse-engineered class diagrams, to compare reverse-
engineering tools objectively.

• To verify that our definitions are really consensual with
respect to developers’ intent when designing software.

• To apply our reverse engineering tools, Ptidej and
Caffeine, on real-life programs and to validate their
results with the programs developers.

• To apply our approach on other programming lan-
guages. For instance, we could use an abstract-syntax
tree for the static analyses of C++ programs, and
destructor-related events for dynamic analyses.

• To develop our approach with more flavours of binary
class relationships, such as the use, shared-aggregation,
and container relationships.

• To express our formal definitions with OCL, the con-
straint language supplied with UML, to allow seamless
integration with UML tools.

• To improve the precision of the detection by consid-
ering alternate implementations of the algorithms and
alternate definitions of the relationships.

ACKNOWLEDGMENTS
We gratefully thank Rémi Douence, Pierre Cointe, Houari
Sahraoui, and the anonymous reviewers for their valuable
help and comments on previous versions of this paper.

REFERENCES
[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects.

Monographs in Computer Science. Springer-Verlag,
second edition, 1998.

[2] Hervé Albin-Amiot, Pierre Cointe, Yann-Gaël
Guéhéneuc, and Narendra Jussien. Instantiating and
detecting design patterns: Putting bits and pieces
together. In Debra Richardson, Martin Feather, and
Michael Goedicke, editors, proceedings of the 16th

conference on Automated Software Engineering, pages
166–173. IEEE Computer Society Press, November
2001.

[3] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc.
Meta-modeling design patterns: Application to
pattern detection and code synthesis. In Bedir
Tekinerdogan, Pim Van Den Broek, Motoshi Saeki,
Pavel Hruby, and Gerson Sunyé, editors, proceedings
of the 1st ECOOP workshop on Automating
Object-Oriented Software Development Methods.
Centre for Telematics and Information Technology,
University of Twente, October 2001. TR-CTIT-01-35.

[4] Pascal André, Annya Romanczuk, Jean-Claude Royer,
and Aline Vasconcelos. An algebraic view of UML
class diagrams. In Christophe Dony and Houari
Sahraoui, editors, proceedings of the 6th colloquium on
Languages and Models with Objects, pages 261–276.
Hermès Science Publications, January 2000.

[5] Gilles Ardourel and Marriane Huchard. AGATE:
Access Graph bAsed Tools for handling
Encapsulation. In proceedings of the 16th conference
on Automated Software Engineering, pages 311–314.
IEEE Computer Society Press, November 2001. Short
paper.

[6] Boris Bezier. Software Testing Techniques. Van
Nostrand Rheinhold Company, New York, 1990.

[7] Juan C. Bicarregui, Kevin C. Lano, and Tom S. E.
Maibuam. Objects, associations and subsystems: A
hierarchical approach to encapsulation. In Mehmet
Aksit and Satoshi Matsuoka, editors, proceedings of
11th European Conference on Object-Oriented
Programming, pages 324–343. Springer-Verlag, June
1997.

[8] Edwin Blake and Steve Cook. On including part
hierarchies in object-oriented languages, with an
implementation in Smalltalk. In Jean Bézivin,
Jean-Marie Hullot, Pierre Cointe, and Henry
Lieberman, editors, proceedings of the 1st European
Conference on Object-Oriented Programming, pages
41–50. Springer-Verlag, June 1987.

312

[9] Grady Booch. Object-Oriented Design with
Applications. The Benjamin/Cummings Publishing
Company, Inc., 2nd edition, September 1993.

[10] Ruth Breu, Ursula Hinkel, Christoph Hofmann, Cornel
Klein, Barbara Paech, Bernhard Rumpe, and Veronika
Thurner. Towards a formalization of the unifed
modeling language. In Mehmet Aksit and Satoshi
Matsuoka, editors, proceedings of the 11th European
Conference for Object-Oriented Programming, pages
344–366. Springer-Verlag, June 1997.

[11] Jean-Michel Bruel, Brian Henderson-Sellers, Franck
Barbier, Annig Le Parc, and Robert B. France.
Improving the UML metamodel to rigorously specify
aggregation and composition. In Shushma Patel,
Yingxu Wang, and Ronald H. Johnston, editors,
proceedings of the 7th international conference on
Object-Oriented Information Systems, pages 5–14.
Springer-Verlag, August 2001.

[12] M. Ajmal Chaumun, Hind Kabaili, Rudolf K. Keller,
François Lustman, and Guy Saint-Denis. Design
properties and object-oriented software changeability.
In Jürgen Ebert and Chris Verhoef, editors,
proceedings of the 4th Conference on Software
Maintenance and Reengineering, pages 45–54. IEEE
Computer Society Press, February 2000.

[13] Shyam R. Chidamber and Chris F. Kemerer. A
metrics suite for object-oriented design. Technical
Report E53-315, MIT Sloan School of Management,
December 1993.

[14] Franco Civello. Roles for composite objects in
object-oriented analysis and design. In Andreas
Paepcke, editor, proceedings of the 8th conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 376–393. ACM Press,
September 1993.

[15] Lori A. Clarke, Andy Podgurski, Debra J. Richardson,
and Steven J. Zeil. A formal evaluation of data flow
path selection criteria. IEEE Transaction on Software
Engineering, 15(11):1318–1332, November 1989.

[16] Stéphane Ducasse, Mireille Blay-Fornarino, and
Anne-Marie Pinna-Dery. A reflective model for first
class dependencies. In Frank Manola, editor,
proceedings of 10th conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 265–280. ACM Press, October 1995.

[17] Erich Gamma and Kent Beck. Test infected:
Programmers love writing tests. Java Report,
3(7):37–50, July 1998.

[18] Erich Gamma and Thomas Eggenschwiler. JHotDraw.
Web site, 1998.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns – Elements of
Reusable Object-Oriented Software. Addison-Wesley,
1st edition, 1994.

[20] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using
design patterns and constraints to automate the
detection and correction of inter-class design defects.
In Quioyun Li, Richard Riehle, Gilda Pour, and
Bertrand Meyer, editors, proceedings of the 39th

conference on the Technology of Object-Oriented
Languages and Systems, pages 296–305. IEEE
Computer Society Press, July 2001.

[21] Yann-Gaël Guéhéneuc, Hervé Albin-Amiot, Rémi
Douence, and Pierre Cointe. Bridging the gap between
modeling and programming languages. Technical
Report 02/09/INFO, Computer Science Department,

École des Mines de Nantes, July 2002.

[22] Yann-Gaël Guéhéneuc, Rémi Douence, and Narendra
Jussien. No Java without Caffeine – A tool for
dynamic analysis of Java programs. In Wolfgang
Emmerich and Dave Wile, editors, proceedings of the
17th conference on Automated Software Engineering,
pages 117–126. IEEE Computer Society Press,
September 2002.

[23] William Harrison, Charles Barton, and Mukund
Raghavachari. Mapping UML designs to Java. In
Doug Lea, editor, proceedings of the 15th conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 178–188. ACM
Press, October 2000.

[24] Thorsten Hartmann, Ralf Jungclaus, and Gunter
Saake. Aggregation in a behavior oriented object
model. In Ole Lehrmann Madsen, editor, proceedings
of 6th European Conference for Object-Oriented
Programming, pages 57–77. Springer-Verlag,
June–July 1992.

[25] Brian Henderson-Sellers. Some problems with the
UML v1.3 metamodel. In Ralph H. Sprague Jr.,
editor, proceedings of the 34th annual Hawaii
International Conference on System Sciences, pages
3052–3064. IEEE Computer Society Press, January
2001.

[26] Brian Henderson-Sellers and Franck Barbier. A survey
of the UML’s aggregation and composition
relationships. L’objet : Logiciel, Base de données,
Réseaux, 5(3/4):339–366, December 1999.

[27] Daniel Jackson and Allison Waingold. Lightweight
extraction of object models from bytecode. In David
Garlan and Jeff Kramer, editors, proceedings of the
21st International Conference on Software
Engineering, pages 194–202. ACM Press, May 1999.

[28] Ralf Kollmann and Martin Gogolla. Application of
UML associations and their adornments in design
recovery. In Elizabeth Burd and Peter Aiken, editors,
proceedings of the 8th Working Conference on Reverse
Engineering, pages 81–91. IEEE Computer Society
Press, October 2001.

[29] Christian Krämer and Lutz Prechelt. Design recovery
by automated search for structural design patterns in
object-oriented software. In Linda M. Wills and Ira
Baxter, editors, proceedings of the 3rd Working
Conference on Reverse Engineering, pages 208–215.
IEEE Computer Society Press, November 1996.

[30] Bent Bruun Kristensen. Complex associations:
Abstractions in object-oriented modeling. In
J. Eliot B. Moss, editor, proceedings of the 9th

conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 272–283. ACM
Press, October 1994.

[31] Esperanza Marcos, Belen Vela, José M. Cavero, and
Paloma Cáceres. Aggregation and composition in
object-Relational database design. In Albertas
Caplinskas and Johann Eder, editors, proceedings of
the 5th east-european conference on Advances in

313

Databases and Information Systems, pages 195–209.
Springer-Verlag, September 2001.

[32] James Noble and John Grundy. Explicit relationships
in object-oriented development. In Bertrand Meyer,
editor, proceedings of the 18th conference on the
Technology of Object-Oriented Languages and Systems,
pages 211–226. Prentice-Hall, November 1995.

[33] James Rumbaugh, Michael Blaha, William
Premerlani, Frederick Eddy, and William Lorenson.
Object-Oriented Modeling and Design. Prentice Hall,
Inc., 1st edition, October 1991.

[34] Monika Saksena, Robert B. France, and Maria M.
Larrondo-Petrie. A characterization of aggregation. In
Colette Rolland, editor, proceedings of the 5th

international conference on Object-Oriented
Information Systems, pages 363–372. Springer-Verlag,
September 1998.

[35] Pamela Samuelson. Reverse engineering under siege.
Communications of the ACM, 45(10):15–20, October
2002.

[36] Elliot Soloway, Jeannine Pinto, Stanley Letovsky,
David Littman, and Robin Lampert. Designing
documentation to compensate for delocalized plans.
Communication of the ACM, 31(11):1259–1267,
November 1988.

[37] Sun Microsystems, Inc. Java Abstract Window
Toolkit, May 2000.

314

