
Security Oriented Program Transformations
(Or How to Add Security on Demand)

Munawar Hafiz
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
mhafiz@uiuc.edu

Abstract
Security requirements change. Many systems fail to cope
with the changing requirements because it is hard to re-
design. I show that security can be added by applying pro-
gram transformations. This improves traditional security en-
gineering approaches and keeps software secure in the face
of new security threats.
Categories and Subject Descriptors D.1.2 [Automatic Program-
ming]: Program transformation; D.2.11 [Software Engineering]:
Software Architectures—Patterns
General Terms Design, Security.

1. Introduction
Security is architectural; it is a property of the entire system,
not one part of it. Security cannot be added to a system by
adding a module, but it can be added in other ways.

I am interested in automated transformations that change
programs to eliminate security threats; they can be source to
source or binary to binary transformations. They improve the
security of systems, which means that they do not preserve
all types of behavior. They preserve expected behavior, but
should change a system’s response to security attacks.

2. Motivation
The use of program transformations revolutionizes tradi-
tional security engineering approaches. Traditional approach
relies on designing security from the ground up and writing
patches to fix new vulnerabilities. It recommends careful up-
front design because “security cannot be added on, it must
be designed from the beginning” [1]. However, software ar-
chitects cannot redesign every time security requirements
change. On the other hand, a patch fixes a vulnerability at
a fixed set of points; it does not globally remove the vul-
nerability. Moreover, patches are written hastily when a new
vulnerability is reported. This often leads to buggy patches.

Imagine a world where general purpose transformation
tools are available for developers. These would mostly be
written by a new brand of program transformation tool ven-
dors, but some transformations might require custom tools.

Software architects could use the tools to add security on
demand; at the same time they would be able to feasibly test

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

competing security solutions. On the other hand, software
maintainers could respond to a vulnerability report by using
a tool to create a security-upgraded program and distribute
it as a patch. I call these program transformation patches
to distinguish from ad hoc security patches. If a tool is not
available, a software vendor would release a security patch
same as before. At the same time, tool vendors would start
new tool development. Finally, a software vendor would
apply the tool and distribute a program transformation patch.

The new methodology overcomes the deficiencies of tra-
ditional approaches. Changing software, both during devel-
opment and maintenance, would be more feasible. Instead of
redesigning, software maintainers would be able to add secu-
rity solutions. A program transformation patch would not be
limited in scope; it would remove all instances of a security
vulnerability. Unlike patch writers, developers of program
transformation tools have less strict deadlines. Their tools
and the resultant patches could be tested thoroughly for the
absence of regression errors.

3. Program Transformations For Security
A security oriented program transformation takes an input
and a specification and automatically generates an output
augmented with the specified security protection.

My research attempts to answer three questions.
(1) Which security solutions can be described as program

transformations? Which can not?
(2) How are the program transformations automated?
(3) What are the issues that affect how program transfor-

mations are applied, and how they are composed?

4. Results
4.1 Comprehensive List of Security Solutions
Which security solutions can be automated? I have ap-
proached this problem from two perspectives: analyzing the
problem domain and the solution domain.

Security problems are captured by threat models. I have
analyzed threat models of many types of software and read
vulnerability trend reports. This analysis reveals that security
problems can be grouped into broad classes, e.g. injection
attacks, attacks on authentication etc. I have focused on
solutions for these classes of security problems.

To get a list of solutions, I have studied security patterns.
I am maintaining a comprehensive list containing ninety
patterns described in several books, catalogs and papers. I

927

have classified the patterns into disjoint groups of similar
patterns [3]. The classification shows that patterns in some
groups cannot be automated. This narrows down the initial
list to forty four security patterns that can be automated.

Which patterns cannot be automated? Patterns that de-
scribe asset evaluation and threat modeling require manual
presence and cannot be automated. Some solutions are very
context-specific. It is possible to automatically set up a fire-
wall, but the automation has little value because every sys-
tem is different and requires a customized firewall.

On the other hand, a security solution such as partition-
ing a monolithic process into multiple processes can be au-
tomated. The next section describes some examples.

4.2 Mechanism of Program Transformations
I have so far described twenty one security solutions as pro-
gram transformations. Most of these descriptions are short;
some only survey attempts to automate transformations,
while some are supported by proof-of-concept implementa-
tions. Developing a commercial quality tool is not my goal,
nor is my goal to cover a small group of program transforma-
tions. I want to cover the breadth by describing automation
mechanism for most security solutions.

Some program transformations that I have described are
partitioning a monolithic process into multiple processes,
running a process in a constrained environment, checking for
buffer bounds for every buffer write operation, and rectifying
inputs to prevent various types of injection attacks. Partition-
ing has been automated many times; I have reviewed the par-
titioning tools. I have provided a detailed description of how
to transform a program to run inside a chroot jail, which is
one way of running a process in a constrained environment.
I have written a proof-of-concept tool for replacing an un-
safe I/O function with a safe function, and have applied the
tool over existing programs to remove known buffer over-
flow vulnerabilities. I have also written an Eclipse plugin for
a new refactoring that applies policies to rectify inputs.

A security pattern provides a general description of how
a security solution should be like. It does not provide de-
tails of how to implement the solution, let alone hint the au-
tomation steps. For each of the forty four automation can-
didates, one has to map the general solution to concrete im-
plementation mechanisms and formulate steps to automate
them. For example, the general solution to prevent buffer
overflow is to check for buffer bounds for every write op-
eration, as described by ‘safe data buffer’ [2] pattern. There
are many techniques to prevent buffer overflow attacks fol-
lowing the general solution; the most prominent is using
safe functions that prevent write operations beyond buffer
bounds. Replacing all instances of unsafe functions in a
C/C++ program with safe functions prevents various types
of buffer overflow. I have written a proof-of-concept Perl
script that replaces instances of unsafe strcpy and strcat

functions with safe g strlcpy and g strlcat functions from
glib library. The script includes the library information in
makefiles and configuration files so that the modified pro-

gram compiles correctly. I have applied the script on gnu
viewer and zziplib, two open source programs with recently
reported buffer overflow vulnerabilities. On both occasions,
the output program does not have any buffer overflow vul-
nerabilities. Other examples are replacing gets with fgets,
memcpy with memcpy s, getenv with getenv s etc.

4.3 Applying Program Transformations
Security oriented program transformations raise issues that
affect how transformations are automated, how they are ap-
plied and how they are composed.
• Detail of Specification. The detail of manual specifica-

tion varies. An architectural transformation such as par-
titioning would require more specification than a trans-
formation that affects each part of the program (e.g. re-
placing string libraries).

• Specific Context. Each program transformation has
a specific context; it is applicable to a specific pro-
gram representation. Different programming languages
would have different sets of program transformations.
For example, a buffer overflow prevention transforma-
tion is relevant for a C-like language only.

• Defense in Depth. A system should have multiple lay-
ers of security tactics, instead of a single security strat-
egy [4]. Composing multiple transformations is hard.
Some transformations would be orthogonal, while oth-
ers might be useful only if applied in a specific way. A
transformation to partition a program should be applied
before a transformation to run a program inside a chroot
jail, otherwise it would make little sense. I have created
a pattern language for security patterns [3] that guides
the order of composing multiple transformations.

5. Broader Impact
My work would modify security engineering process and
activities of its role-players. Achieving security on demand
depends partly on research, partly on training application
developers, but mostly on the will of tool vendors. Building
a tool for a single application is usually not cost effective,
so it will need to be done by platform and tool vendors,
who can amortize the cost over many users. Once there are
good program transformations, application developers will
be eager to use them. Then they can make their systems more
secure to respond to new threats.

Acknowledgement
Thanks to my advisors Ralph Johnson, Carl Gunter, Sam Kamin and Darko
Marinov of UIUC and David Garlan of CMU, and to anonymous reviewers.

References
[1] James P. Anderson. Computer security technology planning study. Technical

report, ESD-TR-73-51, Oct 1972.
[2] Munawar Hafiz and Ralph Johnson. Evolution of the MTA architecture: The

impact of security. To be published in Software—Practice and Experience.
[3] Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson. Organizing security

patterns. IEEE Software, 24(4):52–60, July/August 2007.
[4] John Viega and Gary McGraw. Building Secure Software: How to Avoid Security

Problems The Right Way. Addison-Wesley, 2002.

928

