
Many Spiders Make a Better Web
A Unified Web-Based Actor Framework

Florian Myter
Vrije Universiteit Brussel

Pleinlaan 2
Elsene, Belgium
fmyter@vub.ac.be

Christophe Scholliers
Universiteit Gent

281 S9, Krijgslaan
Gent, Belgium

christophe.scholliers@ugent.be

Wolfgang De Meuter
Vrije Universiteit Brussel

Pleinlaan 2
Elsene, Belgium

wdmeuter@vub.ac.be

Abstract
JavaScript is the predominant language when it comes to
developing applications for the web. Many of today’s web-
based systems are implemented solely in JavaScript due to
its applicability to both client and server-side development.
This use of JavaScript as a general purpose programming
language has sparked a number of efforts to provide pro-
grammers with the means to write parallel web applications.
For the most parts these efforts have based themselves on
actor-based parallelism, given the similarities between ac-
tors and the JavaScript runtime model. We argue that these
solutions are based on actor models which do not optimally
fit web development. Concretely, existing solutions fail to
provide programmers with an actor framework which em-
braces both parallelism and distribution. To this end we
present Spiders.js, an actor framework providing both high-
level parallelism and built-in distribution. In Spiders.js, pro-
grammers can easily specify the coarse-grained parallelism
needs of modern web applications. Moreover, Spiders.js’
built-in distribution features allow programmers to express
client/server, server/server and client/client distribution sim-
ply by using actors. We show the performance characteris-
tics of our approach by detailing Spiders.js’ results for the
Savina benchmark suite.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Concurrent programming struc-
tures; D.1.3 [Concurrent Programming]: Distributed Pro-
gramming

Keywords Actor Framework, Web, Distributed Program-
ming, Communicating Event Loops

1. Introduction
Roughly 94% of all websites use JavaScript [1]. Although it
was originally designed as a scripting language to be used
in web browsers, JavaScript has since evolved into a gen-
eral purpose language adopted in a range of contexts far
beyond client-side web applications (e.g. server-side appli-
cations [14], mobile applications [19], ...).
Similarly, the genre of applications written in JavaScript
evolved since its inception. Where the web used to be com-
prised of static HTML pages, it has now evolved into a
platform for full-fledged distributed applications. Google’s
Gmail and WebOS (a complete operating system built en-
tirely in JavaScript) are examples of such applications. To
enable this transition from the web 1.0 to the web 2.0, web
browsers have evolved from simple graphic displayers to in-
terpreters which execute complete JavaScript programs.
In order to maintain the responsiveness of these in-browser
applications, a lot of work has focused on optimising the ex-
ecution of JavaScript code. Examples of these optimisations
include just-in-time JavaScript compilers [6] and thread
level speculation [10]. Besides language or runtime-level
optimisations, JavaScript shows great promise to optimise
application-level code through the use of parallelisation [5].
JavaScript programmers are only able to fulfil this promise
through the use of two actor-based parallel constructs: web
workers for client-side JavaScript and child processes for
server-side technology (i.e. Node.js, which is the most
prominent server-side implementation of JavaScript). How-
ever, these constructs severely limit the programmer in three
ways:

Hierarchical Communication Message sends between ac-
tors (i.e. web workers or child processes) are natively
supported only between parent and child. Upon spawn-
ing an actor the spawning actor obtains a reference to
the newly spawned actor through which messages can be
sent. Similarly the spawned actor is able to reference the
spawning actor. However, such references cannot be ex-
changed between actors as this will result in a runtime
exception. This forces programmers to either adapt their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

AGERE’16, October 30, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4639-9/16/10...$15.00

http://dx.doi.org/10.1145/3001886.3001892

51



application to this hierarchy or circumvent it (e.g. using
web sockets or message channels).

Object Passing Only primitive data types (i.e. numbers,
strings, ...) passed between two actors are automatically
serialised. Other data types (e.g. functions, objects) must
be serialised manually by the programmer which quickly
leads to a number of error-prone situations. For example,
manual serialisation of objects forces the programmer to
take care of possible scoping issues (e.g. an object having
a method which refers to variables defined in its lexical
scope).

Distribution JavaScript is a language used majoritarily in
a distributed context. However, the built-in parallelism
constructs provided by JavaScript fail to embrace this set-
ting in two ways. First, the APIs used for web workers
and child processes differ. This complicates code reuse
between the client and server tier. Second, message pass-
ing is only provided for local actors (i.e. a web worker
cannot natively send messages to a child process).

In this paper we argue the need for a re-design of the paral-
lelism constructs provided by JavaScript. To prove our point
we detail the design and implementation of an actor frame-
work called Spiders.js 1. Concretely, Spiders.js solves the
aforementioned issues with native JavaScript actors in the
following three ways:

• Actor references are first class. This entails that all actors
are able to exchange references between and send mes-
sages to each other. Moreover, Spiders.js offers a registry
mechanism allowing actors to look-up references to one
another.

• Programmers are freed from the burden of needing to
manually serialise objects. Objects are either passed be-
tween two actors by reference (e.g. a function object) or
by copy (e.g. a numeral value). In both cases the pro-
grammer is unaware of the underlying serialisation.

• Our actor framework exposes the same API and se-
mantics regardless of the tier (i.e. client or server) in
which it is used. Moreover, Spiders.js’ underlying mes-
sage passing system can handle both vertical as well
as horizontal distribution. The former allows for tradi-
tional client/server interaction while the latter allows for
server/server and client/client communication.

2. Problem Statement
Besides JavaScript’s built-in parallelism constructs, a num-
ber of other actor-based solutions have been proposed as
a way to parallelise web applications [13, 18]. Inherently,
JavaScript’s runtime (i.e. its event-loop) and the actor model
are akin to each other. Actors are parallel entities operating
under their own thread of control. In contrast to other paral-

1 The implementation is available at https://github.com/myter/

Spiders.js

lel models (e.g. threads), actors are unable to share state. In-
stead, actors coordinate through the exchange of messages.
A part of the issues with the way actors are currently con-
ceived in JavaScript stems from the kind of model they em-
ploy. According to [4] one can discern four actor models:

Original actor model This model is characterised by three
primitives : send, create and become. The first two primi-
tives are used to send messages between actors and create
actors respectively. Changes to the actor state are mod-
elled through become statements which effectively alter
the behaviour of the actor.
For the most part, this model has been implemented in
functional or procedural paradigms [2, 9, 15]. This func-
tional approach to actors is in sharp contrast with Java-
Script’s imperative and object-oriented programming
style.

Processes The processes model (e.g. Erlang [17]) defines
actors as single processes which execute an actor’s be-
haviour from start to finish. The difference with the pre-
vious model being that the process drives the execution
of the actor, rather than the messages received by the
actor. In order to deal with messages the model offers
primitives to synchronously await messages. After re-
ceival of the awaited message the process continues the
execution of the actor’s behaviour. Once the process has
run through the code the actor dies and is no longer able
to receive messages.
The synchronous message handling of the process model
conflicts with JavaScript’s inherent asynchrony. Java-
Script disallows the use of blocking primitives in order
to make sure that the underlying event loop remains re-
sponsive.

Active Objects The active objects model (e.g. Salsa [16])
can be seen as an object-oriented version of actors. Each
actor represents its behaviour as an object. The interface
of that object will become the actor’s interface, while
changes to the actor’s state are done by mutating the ac-
tive object’s instance variables. Objects which are passed
between actors (e.g. an object is contained within a mes-
sage to a certain actor) are automatically serialised.
In the case of JavaScript not all objects can easily be
copied between actors. For example, function objects
might retain pointers to their original lexical scope. One
would either need to impose restrictions on the kind of
function objects which can be passed between actors or
copy the function’s lexical scope as well.

Communicating Event-loops The CEL model (e.g. E [12])
differs from the previous actor models in three ways.
First, actors do not provide a single interface to other ac-
tors (e.g. a single active object). Rather, actors encompass
a multitude of objects to which other actors can obtain
references. Second, all objects are no longer passed be-
tween actors by copy. Rather, actors obtain far references

52

https://github.com/myter/Spiders.js
https://github.com/myter/Spiders.js


Figure 1. Actors as communicating event loops [4]

to objects owned by other actors. Exceptions are made
for primitive objects (e.g. numbers, strings) which are
copied between actors. Third, all previous models were
designed and implemented with fine-grained parallelism
in mind. The CEL model, on the other hand, is more
coarse-grained in its parallelism approach.

As far as we know, all implementations of actors in Java-
Script have thus far focussed on the active objects model
(e.g. web workers and child processes, generic workers [18])
or a hybrid between the original model and the active ob-
jects model (e.g. Akka.js [13], Syndicate.js [7]). However,
the CEL model better fits JavaScript for three reasons. First,
parallelism in JavaScript is inherently coarse-grained. Most
browsers rigorously limit the amount of web workers one
can spawn in a single page in order to keep all open pages
responsive. Unlike other models, the CEL model employs
a coarse-grained parallelism scheme. Second, some objects
in JavaScript cannot be copied (e.g. sockets) while copying
others cannot be done automatically (e.g. function objects).
The CEL model differentiates between objects which must
be passed between actors by reference and those that can be
passed by copy. Third, JavaScript is mostly employed in a
distributed context relying on asynchronous event handling.
The CEL model tightly fits this context by solely provid-
ing non-blocking (i.e. asynchronous) primitives. Moreover,
the way CEL actors handle events closely resembles Java-
Script’s internal event-loop model.

3. Communicating Event Loops
We first provide a more in-depth explanation of the CEL
model before detailing our approach. Readers already famil-
iar with the workings of this model may skip this section.
Figure 1 gives an overview of the CEL model. Each actors
is an independent entity supported by its own thread of con-
trol and contains a heap of objects (i.e. actors are conceived
as vats). Each actor encompasses a number of objects (the
circles in the figure). Moreover, each actor contains an event
loop and a message queue. Each message is the result of
an invocation on an object by another actor. The event loop
continuously picks the first message from the queue and per-
forms the invocation the message contains.
The CEL model specifies two kinds of references: local ref-
erences and far references. As Figure 1 shows, the reference
that O1 holds to O2 is a local one since both objects are
owned by Actor A. This entails that all invocations of meth-
ods by O1 on O2 happen in a standard sequential fashion.
On the other hand, the reference which O1 holds to O3 is a

1 uiActor ({
2 h i g h l i g h t e r : nul l ,
3 i n i t : f u n c t i o n ( ) {
4 var f u t = t h i s . getRef ( ” h i g h l i g h t e r ” )
5 t h i s . onResolve ( f u t , f u n c t i o n ( r e f ){
6 t h i s . h i g h l i g h t e r = r e f
7 })
8 } ,
9 newCode : f u n c t i o n ( code ){

10 var f u t = h i g h l i g h t e r . h i g h l i g h t ( code )
11 t h i s . onResolve ( f u t , f u n c t i o n ( h i g h l i g h t e d ){
12 g u i . upda teCode ( h i g h l i g h t e d )
13 })
14 }
15 })
16

17 a c t o r ({
18 i m p o r t s : [ ’ . / h i g h l i g h t L i b . j s ’ ] ,
19 h i g h l i g h t : f u n c t i o n ( code ){
20 re turn t h i s . h i g h l i g h t L i b . h i g h l i g h t ( code )
21 }
22 } , ” h i g h l i g h t e r ” )

Listing 1. Spawning client-side actors in Spiders.js

far reference since O3 resides in Actor B. When O1 invokes
a method or accesses a field of O3 this invocation is trans-
lated in a message sent asynchronously to Actor B (i.e. the
message is queued in Actor B’s message queue). Eventually
Actor B’s event loop will dequeue the message and the invo-
cation will be executed.

4. Spiders.js by Example
In order to showcase the applicability of our approach we
outline an example application which stereotypes the kind
of applications that benefit from Spiders.js. The application,
called CoCode, allows programmers to collaboratively code
in their favourite language. To do so, each programmer logs
in to the application after which she/he can start coding in
a dedicated part of the webpage. Each coder has a consis-
tent view of the piece of code which is collaboratively edited
by all logged-in coders. Moreover, the code is syntax high-
lighted on the fly.
To keep our application efficient each client performs the
syntax highlighting on its own view of the code. This al-
lows the underlying synchronisation of code to work with
pure text rather than highlighted code, which is substantially
larger in size and would slow down communication. More-
over, each client spawns an actor dedicated to performing the
syntax highlighting. This is to avoid blocking the UI thread
and render the application unresponsive. Besides this core
functionality, CoCode also provides coders with ways to dis-
cuss in both a public chat room as well as through private
messages.

4.1 Basic Spiders
Listing 1 shows how the standalone functionality of each
CoCode client (i.e. highlighting code in the webpage as a
user types) is implemented. Each client consists of two ac-
tors: an actor dedicated to updating the user interface with

53



1 a c t o r ({
2 c o d e r s : {} ,
3 r e g i s t e r : f u n c t i o n ( name , r e f ){
4 f o r ( var i in c o d e r s ){
5 c o d e r s [ i ] . newCoder ( name , r e f )
6 }
7 t h i s . c o d e r s [ name ] = r e f
8 } ,
9 codeSync : f u n c t i o n ( newCode ){

10 f o r ( var i in c o d e r s ){
11 c o d e r s [ i ] . codeSync ( newCode )
12 }
13 } ,
14 p u b l i c M e s s a g e : f u n c t i o n ( message ){
15 f o r ( var i in c o d e r s ){
16 c o d e r s [ i ] . newPubl icMessage ( message )
17 }
18 } ,
19 })

Listing 2. Spawning server-side actors in Spiders.js

highlighted code and an actor which will perform the actual
highlighting. Ensuring that only a single actor is able to alter
the user interface allows us to avoid data races and glitches
in the interface. Each actor is created by providing it with a
behaviour object which serves as the entry point for all other
actors.
The UI actor, spawned by invoking the uiActor function pro-
vided by Spiders.js, has an init method which will be in-
voked upon creation. This function will acquire a reference
to the highlight actor through Spider.js’ name-based actor
registry. At each key stroke the newCode function of the UI
actor will be invoked (the HTML code responsible for this is
omitted for the sake of brevity). Subsequently, the UI actor
invokes the highlight method on the highlighting actor’s be-
haviour object (line 10 in the code). All method invocations
on remote objects (i.e. objects owned by other actors) are
translated to asynchronous message sends and return a fu-
ture. Actors are able to register callbacks on futures, through
the onResolve function, which will be called with the return
value of the asynchronously invoked method. In our case the
UI actor registers a callback which will update the user in-
terface with the highlighted code. This update happens by
invoking updateCode on the gui object which represents the
webpage.

4.2 Distributed Spiders
So far our CoCode application is standalone, the UI actor
only responds to new code being produced by the local user.
The first part in making CoCode a true web application is
setting up a server. The code to do so is given in Listing 2.
Our server consists of a single actor which will handle the
synchronisation of the clients’ code and public chat mes-
sages. The server’s behaviour object implements our appli-
cation’s functionality with three methods which will all be
invoked by client-side actors. Register allows client-side ac-
tors to register themselves to the highlighting service. This
method stores the reference to the client’s behaviour object
(i.e. ref ) in a hashmap and notifies all pre-registered coders

1 uiActor ({
2 h i g h l i g h t e r : nul l ,
3 s e r v e r R e f : nul l ,
4 coCoders : {} ,
5 i n i t : f u n c t i o n ( ) {
6 t h i s . h i g h l i g h t e r = t h i s . getRef ( ” h i g h l i g h t e r ” )
7 var f u t = t h i s . getRemoteRef ( s e rve rAddr , s e r v e r P o r t )
8 t h i s . onResolve ( f u t , f u n c t i o n ( s e r v e r R e f ){
9 t h i s . s e r v e r R e f = s e r v e r R e f

10 s e r v e r R e f . r e g i s t e r ( g u i . name , t h i s )
11 })
12 } ,
13 newCoder : f u n c t i o n ( name , r e f ){
14 t h i s . coCoders [ name ] = r e f
15 } ,
16 newPubl icMessage : f u n c t i o n ( msg ){
17 g u i . newPubl i c ( msg . from , msg . t e x t , msg . d a t e )
18 } ,
19 newPr iva t eMessage : f u n c t i o n ( msg ){
20 g u i . n e w P r i v a t e ( msg . from , msg . t e x t , msg . d a t e )
21 } ,
22 newCode : f u n c t i o n ( code ){
23 var f u t = h i g h l i g h t e r . h i g h l i g h t ( code )
24 t h i s . onResolve ( f u t , f u n c t i o n ( h i g h l i g h t e d ){
25 g u i . upda teCode ( h i g h l i g h t e d )
26 t h i s . s e r v e r R e f . codeSync ( h i g h l i g h t e d )
27 })
28 } ,
29 codeSync : f u n c t i o n ( code ){
30 var f u t = h i g h l i g h t e r . h i g h l i g h t ( code )
31 t h i s . onResolve ( f u t , f u n c t i o n ( h i g h l i g h t e d ){
32 g u i . upda teCode ( h i g h l i g h t e d )
33 })
34 } ,
35 makeMessage : f u n c t i o n ( t e x t ){
36 re turn t h i s . i s o l a t e ({
37 from : g u i . name ,
38 d a t e : g u i . now ( ) ,
39 t e x t : m s g S t r i n g
40 )}
41 } ,
42 s e n d P u b l i c M e s s a g e : f u n c t i o n ( m s g S t r i n g ){
43 var msg = t h i s . makeMessage ( m s g S t r i n g )
44 t h i s . s e r v e r R e f . p u b l i c M e s s a g e ( g u i . name , msg )
45 } ,
46 s e n d P r i v a t e M e s s a g e : f u n c t i o n ( to , m s g S t r i n g ){
47 var msg = t h i s . makeMessage ( m s g S t r i n g )
48 t h i s . coCoders [ t o ] . newPr iva t eMessage ( g u i . name , msg )
49 } ,
50 })

Listing 3. Making CoCode clients distributed

that a new peer has joined the session. CodeSync is invoked
by a client as soon as its user has entered new code through
the user interface. Subsequently all other coders are notified
of this event in order to highlight this new code. Lastly, pub-
licMessage broadcasts a message from a particular user to
all coders.
The addition of a server requires us to update the implemen-
tation of our client-side CoCode actors. Listing 3 shows the
additions to the original client-side code of Listing 1 that
are needed in order to make CoCode a full-fledged web-
application. The code for the highlighting actor remains un-
changed and is therefore omitted.
Each client first acquires a reference to the server actor (see
line 7) through the getRemoteRef primitive. As is the case
for getRef this primitive returns a future which will be re-
solved with a reference to the requested actor. In contrary
to getRef, getRemoteRef takes the address and port of the

54



Table 1. Spiders.js API
Function Arguments Return
actor object, (string) far ref
uiActor object, (number), (string) far ref
getRef string future
getRemoteRef number, number future
. far ref, selector, arguments future
onResolve future, function null
onRuin future, function null
isolate object object

server actor as arguments. This reference to the server actor
has two purposes. First, each client needs to register itself as
a coder in order to get code updates from other clients. This
is done by invoking the register method on the obtained ref-
erence (see line 10). Second, coders are able to send mes-
sages to each other. Through a dedicated section in the in-
terface a user can either publicly broadcast a message (i.e.
the UI invokes the sendPublicMessage method) or send a
private message to a particular coder (i.e. through the send-
PrivateMessage method). In both cases an isolated object is
created which contains the name of the sender , the date and
the actual text of the message. In contrast to other objects,
isolated objects are sent by copy rather than by reference. As
such, when a client receives a message (either through the
publicMessage or newPrivateMessage methods), the mes-
sage’s data can directly be read from the copied object. If
the message were to be sent by reference one would obtain
a future for each field access which would be impractical for
this use case.

5. Spider.js Runtime
This section exhaustively describes the functionality pro-
vided by Spiders.js. For each provided function we detail
its semantics as well as how it is implemented using na-
tive JavaScript constructs. We divide this functionality into
three categories: actors, referencing and message passing.
An overview of Spiders.js’ API is given by Table 1 which
provides the arguments for each of Spiders.js’ functions (ar-
guments between parentheses are optional).

5.1 Actors
As mentioned in Section 2, actors in Spiders.js adhere to
the CEL model. These actors form the cornerstone of our
framework. Although we cannot prohibit programmers from
using web workers or child processes in combination with
our framework, it is Spider.js’ goal to provide a complete
solution to parallelism in JavaScript.

Application Actors can be spawned through one of two
primitives: uiActor or actor. Both these functions take a be-
havioural object as argument and return a reference to the
spawned actor. An optional naming argument can be pro-
vided in order to register the actor in Spider.js’ registry sys-

tem. If the naming argument is not provided the actor will
not be registered in the registry system.
The server-side versions of these primitives accept an addi-
tional optional numeral argument which indicates the port on
which the actor will listen for incoming messages (which is
8080 by default). If the behavioural object of the actor spec-
ifies an init method it will be invoked at creation time.
Part of the strength of parallelism through actors is that pro-
grammers need not deal with data races. In Spiders.js this
is achieved by denying an actor’s behavioural object access
to its lexical scope. Concretely, the behavioural object can
only access its own fields and methods. All other accesses
result in a runtime exception. For an actor to make use of
external libraries it can specify the path to these libraries us-
ing the imports: field. Moreover, Spiders.js enforces single
actor access to the user interface on the client-side. Only ac-
tors spawned with the uiActor primitive are able to access
the DOM and only one of such actors can be spawned per
page.

Implementation The implementation of a Spiders.js actor
depends on whether it was spawned client or server-side.
Client-side actors are built atop web workers. We differen-
tiate between the UI actor which runs on the client’s main
thread (and is therefore not an actual web worker) and reg-
ular actors, each of which are supported by a single web
worker. Server-side actors are implemented as child pro-
cesses, which entails that each server-side actor is a full-
fledged Node.js instance.

5.2 Referencing
Actors in Spiders.js are conceived as communicating event
loops and therefore come with a built-in referencing mech-
anism. Concretely, objects within the same actor reference
each other locally and are able to access each other’s fields
and methods synchronously. Objects residing in different ac-
tors can obtain far references to each other and access each
other’s fields and methods through asynchronous messaging.
However, the dynamic nature of JavaScript and the fact that
Spiders.js is implemented as a library entails that one cannot
lexically determine whether a reference is local or far.

Application Two objects within the same actor can refer-
ence each other locally using JavaScript’s referencing mech-
anism (i.e. using this). An actor can obtain a far reference
to an object owned by another actor implicitly or explicitly.
Obtaining a far reference to an actor’s behaviour object can
be done explicitly with getRef or getRemoteRef. The for-
mer is used to obtain a reference to the behaviour object of
an actor residing on the same physical machine. The func-
tion takes the actor’s name as parameter and returns a future
which will be resolved with the reference to the actor’s be-
haviour object. The latter is used to obtain a reference to the
behaviour object of an actor residing on a different machine.
This function takes an ip-address and port number and re-
turns a future which will eventually be resolved with the far

55



reference. This functionality can either be employed by a
client-side actor to obtain a reference to a server-side actor
or between two server-side actors. Other configurations (e.g.
a client-side actor requiring a remote reference to another
client-side actor) are unsupported since web clients lack a
static ip-address.
Since references in Spiders.js are first-class entities one can
also obtain far references implicitly. For example, in CoCode
(see Section 4) the server actor allows all clients to obtain far
references to each other. When a new coder connects to the
server actor it provides a far reference to its own behaviour
object. The server actor then forwards this reference to all
other clients. In general an actor can implicitly obtain a far
reference in two ways. First, if the future resulting from an
invocation on a far reference is resolved by a far reference.
Second, if a method of one of its objects is invoked remotely
(i.e. by an object residing in a different actor) with a far ref-
erence as argument.
By default objects are passed between actors as far refer-
ences. Exceptions are made for primitive objects (i.e. nu-
merals,strings, booleans, ...) and isolates. A programmer can
explicitly create such an isolate through the isolate construct
which takes a regular object and returns an object which will
be passed by copy rather than by far reference. Given that
isolates are passed by copy it is the programmer’s responsi-
bility to make sure that the isolated object does not rely on
its lexical scope (e.g. a method accessing a variable defined
outside the object).

Implementation Far references are essentially proxies to
objects owned by an actor other than the one owning the ref-
erence. This reference should provide the same methods and
fields as the proxied object. Moreover, calling a method or
accessing a field should be translated into an asynchronous
message to the actor owning the original object. To achieve
this we need to be able to infer which methods and fields the
proxied object offers. Furthermore, we need to be able to in-
tercept invocations and accesses to this proxy object
In Spiders.js far references are implemented using Java-
Script’s proxies. This reflective construct allows us to define
traps which intercept method invocations and field accesses.
Given that a far reference holds an exhaustive list of the ref-
erenced object’s properties, the wrapping proxy is able to
mimic the object’s behaviour. If an actor accesses a prop-
erty known to the referenced object, the proxy will forward
the call to the actor owning the referenced object through an
asynchronous message and return a future. If the referenced
object lacks the accessed property an exception is thrown to
notify the calling actor accordingly.

5.3 Message Passing
Although Spiders.js provides the same API towards pro-
grammers regardless of whether they are implementing
server or client-side actors, the implementation of these ac-
tors differs. Similarly, the way in which messages are sent

depends on what type of actors are interacting. However,
from a programmer’s point of view these complexities are
hidden in favour of a simple and unified actor model.

Application Programmers never need to deal directly with
message sends in Spiders.js . It suffices to have a far ref-
erence to an object and access one if its fields or methods,
Spiders.js will perform the actual message send in the back-
ground. Such an access or invocation is done using Java-
Script’s dot operator, after which a future is returned. Actors
can register a listener which will be called with the return
value of the invoked method or accessed field using onRe-
solve. Moreover, an exception handler can be registered to a
future using onRuin in order to catch any exception thrown
by the remote object.

Implementation From an implementation perspective we
discern two types of far references: internal and external ref-
erences. The former type is used for objects owned by actors
residing in the same JS environment while the latter is used
for objects owned by actors from different environments. We
define a JavaScript environment as either a web-page in a
browser (for client-side actors) or a Node.js instance (for
server-side actors). Given that each server-side actor is im-
plemented as its own Node.js instance, each server-side actor
is its own JS environment.
On one hand, internal references (i.e. actors running in the
same web-page) communicate through the messaging sys-
tem provided by web workers and message channels. All ac-
tors possess internal references to each other, each of these
references contains a message channel used to send mes-
sages to the corresponding actor. On the other hand, exter-
nal references communicate through web sockets. The use
of these sockets depends on the kind (i.e. client or server)
of the actors communicating. We differentiate between the
actor owning a particular referenced object (i.e. the issuing
actor) and the actor accessing a field or invoking a method
on the far reference (i.e. the receiving actor).

Server/Server In this case both the receiving actor and the
issuing actor are server-side actors. Since each server ac-
tor runs a socket server at startup, the issued far reference
keeps track of the IP address as well as the port on which
the owning actor listens for messages. When the receiv-
ing actor accesses a property of said reference the actor
opens a connection to the issuing actor’s socket and for-
wards the access.

Server/Client In this case the receiving actor is a server-
side actor while the issuing actor is a client-side actor.
As a consequent the client must have requested a remote
far reference to the server-side actor and has therefore
already opened a connection to the actor’s web socket.
This connection is used by the server-side actor to for-
ward all property accesses to the client-side owning actor.
The same hold for the reverse case where the client-side

56



Figure 2. Comparing Spiders.js and web workers in the
Savina Benchmark Suite. Error bars indicate the 95% con-
fidence interval

actor received a reference to an object owned by a server-
side actor.

Client/Client Both the receiving actor as well as the issu-
ing actors are client-side actors. This case can only take
place as a result of the receiving actor initially getting the
reference from a server-side actor (since client-side ac-
tors can only use getRemoteRef to acquire a server-side
far reference). When a property of the far reference is
accessed, the receiving client-side actor will request this
intermediate server-side actor to route the access to the is-
suing client-side actor. This layer of indirection is needed
given JavaScript’s lack of client-to-client communication
primitives.

6. Evaluation
We implemented the Savina [8] benchmark suite twice:
once in the client-side version of Spiders.js and once using
JavaScript’s native web workers. Since Spiders.js uses web
workers for its client-side implementation we performed
these experiments to assess the runtime performance im-
pact of the added functionality atop web workers. Moreover,
we compared the coding complexity associated with each
approach.
All benchmarks were conducted using Benchmark.js 2 in
Mozilla Firefox (version 47.0) on a Macbook Pro with a
2,8 GHz intel core i7 processor, 16GB 1600 MHz DDR3
of RAM memory running Mac OSX Yosemite (version
10.10.5)

6.1 Runtime Performance
The results for all benchmark applications in the suite are
given in Figure 2. For each application we provide the mean

2 https://benchmarkjs.com/

Figure 3. Actor creation overhead as measured in the fork
join application. Error bars indicate the 95% confidence in-
terval.

time to completion in seconds for both the Spiders.js imple-
mentation (indicated by the blue bars) and the web workers
implementation (indicated by the red bars). One clearly dis-
tinguishes that Spiders.js incurs a significant overhead com-
pared to the web workers approach. In the best case, for the
ping pong application, Spiders.js is roughly twice as slow
with a mean time to completion of six seconds compared
to three seconds for the web workers implementation. In
the worst case, for the chameneos application, Spiders.js is
roughly seventeen times slower with a mean to completion
of ten seconds compared to a completion time of under a
second for the web workers implementation.
This overhead stems from two parts of the Spiders.js imple-
mentation: actor creation and message passing. Two applica-
tions clearly showcase this overhead. First, the fork join (ac-
tor creation) application which aims to measure actor cre-
ation and destruction overhead. Second, the big application
which is aimed at measuring messaging overhead. In order
to further investigate this source of overhead for Spiders.js
we performed additional experiments focused on these two
applications.

6.1.1 Actor Creation Overhead
Figure 3 provides the results for the experiments aimed at
measuring actor creation overhead (error bars for the web
worker results are hardly visible due to the low error rate).
The overhead which web workers incur is clearly orders
of magnitudes smaller than the one incurred by Spiders.js.
Moreover, as the amounts of spawned actors increases, this
overhead considerable slows down the Spiders.js implemen-
tation.
The reason for this overhead can be found in the way both
approaches provide actors with their behaviour objects. In
order to spawn a web worker one must provide the path to
a JavaScript source file containing the worker’s behaviour.
In Spiders.js the programmer provides this behaviour as an
object, after which the object is serialised and sent to a blank
web worker by Spiders.js’ implementation. Upon reception
of this serialised object the web worker must evaluate the ob-
ject and instantiate it as its behaviour. Both the serialisation

57

https://benchmarkjs.com/


Figure 4. Message passing overhead as measured in the big
application. Error bars indicate the 95% confidence interval.

Figure 5. Code complexity associated with web workers
and Spiders.js in the implementation of Savina.

of this behaviour object and its instantiation have a clear and
significant impact on the overhead associated with spawning
actors.

6.1.2 Message Passing Overhead
We used the big application to conduct our experiments in-
volving message passing overhead. This application is an
extension of the traditional ping pong scenario in which a
number of actors continuously send ping messages to each
other. Figure 4 shows the results of these experiments. One
clearly denotes that the message passing overhead is a con-
stant factor greater in Spiders.js than it is in the web workers
implementation.
This overhead stems from the fact that messages in Spi-
ders.js are reified as objects, and therefore need to be man-
ually serialised by the implementation. In the web workers
implementation the ping message is a simple string which
can be sent between workers without this manual serialisa-
tion. As a result Spiders.js messages incur a constant over-
head over web workers sending primitive values.

6.2 Coding Complexity
As stated in [8], the Savina benchmark suite allows to com-
pare actor frameworks with regards to both runtime perfor-
mance as well as the complexity of the code with which
programmers have to deal with using the framework. In or-
der to showcase that Spiders.js simplifies the implementa-
tion of parallel applications for the web we compared the
web workers implementation of the suite with the imple-
mentation in Spiders.js. Figure 5 showcases the lines of
code needed to implement each application comprised by
Savina. One clearly denotes that the applications written in
Spiders.js are significantly smaller (roughly 25% on aver-
age).
This reduction in code complexity on Spiders.js’ behalf
mainly stems from two of its features. First, unlike web
workers, Spiders.js actors do not need to explicitly define a
message handling function. Rather, the actor’s objects im-
plicitly act as its message handler. Second, communication
between two web workers requires a message channel to be
created after which each of the participants needs to obtain
a port of said channel. In contrast, Spiders.js actors solely
need to obtain a far reference to objects owned by other
actors to communicate.

7. Related Work
This work is strongly motivated by the limitations of built-in
parallelism features of JavaScript. Although we are not the
first to propose an actor framework for web applications we
are the first to fully implement and explore the CEL model
in this setting. What follows is a discussion of the more
prominent actor-based solutions for JavaScript.

web workers Since HTML5, client-side JavaScript devel-
opers can employ web workers to execute code in paral-
lel. At its core web workers are limited versions of actors:
Given a URL to a piece of JavaScript code, the main thread
is able to spawn web workers which will execute the code
in their own thread of control. Moreover, web workers run
in a completely isolated environment which entails that they
do not have access to the scope in which they are created.
This scope isolation also includes graphical elements such
as the DOM, since these would also be race condition sen-
sitive. This ensures that race conditions between workers
are avoided. However, web workers limit programmers in
a number of ways which we discuss in detail in Section 1.

Child Processes Server-side JavaScript (i.e. Node.js) of-
fers child processes which can be used to execute any sys-
tem command . They also provide a built-in wrapper (fork)
which spawns a new node.js instance and returns an object
used to send messages to the spawned instance. However,
child processes limit programmers in the same way as web
workers do.

q-connection The integration of the CEL model has al-
ready been discussed by previous work [11]. So far, the most

58



notable step towards this integration comes in the form of
the Q-connection 3 library. As is the case for Spiders.js, q-
connection differentiates between local and far references
for objects. Moreover, far references can be exchanged be-
tween web workers. However, q-connection lacks the vat-
semantics of Spiders.js: a web worker must explicitly ex-
port an object before another worker can acquire a far ref-
erence to it. Furthermore, q-connection does not solve the
problems related to hierarchical communication identified in
Section 1.

Akka.js Akka.js [13] is an actor framework that allows one
to deploy Akka actors in any JavaScript environment. To do
so it employs Scala.js to compile the Scala/Akka code to
JavaScript.
Akka.js’ main goals closely resemble ours. First, it strives
for in-browser parallelism by mapping actors onto web
workers. Second, it allows for different actor runtimes (i.e.
server and client runtimes) to seamlessly communicate.
However, Spiders.js differs from Akka.js in two major ways.
First, with Spiders.js we strive to provide JavaScript devel-
opers the means to easily write parallel applications. On
the other hand, Akka.js aims to provide Akka/Scala pro-
grammers the means to easily deploy their application to
JavaScript runtimes. Second, as the name suggests Akka.js
is built atop the Akka actor-model which is a hybrid be-
tween the original and the active objects model. As we ar-
gued in Section 2, the CEL model better matches both the
distributed needs for a web-based actor framework and the
coarse-grained parallelism offered by web workers.

Generic Workers Generic workers [18] strive to unify the
way in which communication happens between parallel en-
tities (i.e. web workers) and distributed entities (i.e. clien-
t/server) in JavaScript. To do so, it introduces the notion of
a generic worker which can run both on a client as well
as a server. Furthermore, generic workers provide the same
communication API regardless of the tier in which the com-
munication partner resides.
Although we share the vision that a unified parallelism
framework is needed for web applications, Spiders.js ex-
plicitly steps away from the traditional web worker interface
in favour of a more expressive API through CEL actors.

Syndicate Syndicate [7] is a novel actor language tailored
towards reactive programs. It extends upon functional actors
with a number of reactive and event-driven features. Further-
more, it provides a JavaScript implementation of its model
which provides the same features atop active objects-like ac-
tors.
Syndicate features a very expressive API which suits Java-
Script applications well due to its event-driven and interac-
tive nature. However, it reuses the underlying event-loop in
order to provide concurrency and therefore lacks the parallel
capabilities sought after in Spiders.js.

3 https://github.com/kriskowal/q-connection

Connect.js Connect.js [3] is a JavaScript/Titanium 4 li-
brary which allows the development of cross-platform mo-
bile applications. Spiders.js resembles Connect.js in two
ways: both are heavily influenced by AmbientTalk and both
are JavaScript based. However, both the aim as well as the
implementation of Connect.js differs widely from Spiders.js.
First, Connect.js operates in the context of mobile applica-
tions where peers are homogeneous (i.e. there is no clien-
t/server separation). Second and most importantly, actors in
Connect.js do not operate under their own thread of control
and therefore do not provide real parallelism.

8. Conclusion
As the web continues its evolution from a thin to a thick
client model, the need for efficient web application in-
creases. As is currently the case JavaScript constitutes the
programming language used by most, if not all, web applica-
tions. JavaScript provides two constructs allowing program-
mers to write parallel web applications: web workers and
child processes. However these two constructs suffer from
three major deficiencies. First, sending messages between
actors can only be done between the spawning actor and the
spawned actor. Second, objects sent between actors are not
always automatically serialised burdening the programmers
with manual serialisation and deserialisation. Third, even
though JavaScript programs are traditionally deployed in a
distributed context the actors which it provides are unable to
communicate over the client/server boundary.
A number of other incarnations of the actor model [7, 13, 18]
have been proposed as more expressive means for paral-
lelism in JavaScript. These frameworks have mostly been
mirrored on two strains of the actor model: active ob-
jects (e.g. generic workers [18]) or variants of the original
model [13]). We argue that the CEL model provides a better
fit for actors in JavaScript. As is the case for JavaScript’s na-
tive actors, CEL actors are tailored towards coarse-grained
parallelism. This contrasts with other actor models which
favour a finer-grained parallel approach. Moreover, the CEL
model was designed to asynchronously handle events be-
tween possibly distributed actors. This design choice closely
maps onto JavaScript’s philosophy, which prohibits pro-
grammers from blocking the language’s internal event-loop.
In this paper we unveil Spiders.js, an incarnation of the CEL
model for the web. Spiders.js differentiates itself from other
JavaScript actor frameworks in three ways. First, references
to actors are first class and enable many-to-many commu-
nication between actors. Second, Spiders.js specifies two
clear ways for objects to be passed between actors. Isolated
objects are passed by copy without programmers needing
to manually intervene in the serialisation. All other object
are passed by reference for which Spiders.js ensures asyn-
chronous messaging. Finally, actors in Spiders.js provide
built-in distribution. Programmers are freed from the burden

4 http://www.appcelerator.com

59

https://github.com/kriskowal/q-connection
http://www.appcelerator.com


of manually managing distribution of actors between client
and server. In Spiders.js all actors are able to communicate
with each other (i.e. client/server, server/server and client/-
client) using a single set of abstractions.
We compare the results of two implementations of the Sav-
ina benchmark suite: a first implementation in Spiders.js
and a second implementation using JavaScript web work-
ers. This comparison clearly indicates that further research
needs to be conducted in order to improve the efficiency
of Spiders.js’ message passing and actor creation function-
ality. However, comparing the complexity associated with
programming the suite in both frameworks clearly show-
cases that using Spiders.js makes programming parallel web
applications significantly easier.

Acknowledgments
This work has been supported by Innoviris (the Brussels
Institute for Research and Innovation) through the Doctiris
program (grant number 15-doct-07).

References
[1] Usage of javascript for websites.

https://w3techs.com/technologies/details/cp-javascript/all/all.
Accessed: 2016-06-3.

[2] G. Agha and P. Thati. An Algebraic Theory of Actors and Its
Application to a Simple Object-Based Language, pages 26–
57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.
ISBN 978-3-540-39993-3.

[3] E. G. Boix, C. Scholliers, N. Larrea, and W. De Meuter.
Connect. js. Technical report, Vrije Universiteit Brussel,
2015. URL http://soft.vub.ac.be/AGERE15/papers/

AGERE_2015_paper_20.pdf.

[4] J. De Koster. Domains: Language Abstractions for Control-
ling Shared Mutable State in Actor Systems. PhD thesis, Vrije
Universiteit Brussel, 2015.

[5] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers. A
limit study of javascript parallelism. In Proceedings of the
IEEE International Symposium on Workload Characteriza-
tion (IISWC’10), IISWC ’10, pages 1–10, Washington, DC,
USA, 2010. IEEE Computer Society. ISBN 978-1-4244-
9297-8.

[6] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin,
M. R. Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Oren-
dorff, J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita,
M. Chang, and M. Franz. Trace-based just-in-time type spe-
cialization for dynamic languages. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 465–478, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-392-1.

[7] T. Garnock-Jones and M. Felleisen. Coordinated Concur-
rent Programming in Syndicate, pages 310–336. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN 978-3-
662-49498-1.

[8] S. Imam and V. Sarkar. Savina–an actor benchmark suite. In
4th International Workshop on Programming based on Actors,
Agents, and Decentralized Control,AGERE!, 2014.

[9] H. Lieberman. Thinking about lots of things at once without
getting confused: Parallelism in act i. Technical report, Mas-
sachusetts Institute of Technology, 1981.

[10] J. K. Martinsen, H. Grahn, and A. Isberg. An argument for
thread-level speculation and just-in-time compilation in the
google’s v8 javascript engine. In Proceedings of the 11th ACM
Conference on Computing Frontiers, CF ’14, pages 25:1–
25:2, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2870-8.

[11] M. S. Miller and T. Van Cutsem. Communicating event
loops, an exploration in javascript. http://soft.vub.ac.be/ tv-
cutsem/talks/presentations/WGLD CommEventLoops.pdf,
2011.

[12] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency
among strangers: Programming in e as plan coordination. In
Proceedings of the 1st International Conference on Trustwor-
thy Global Computing, TGC’05, pages 195–229, Berlin, Hei-
delberg, 2005. Springer-Verlag. ISBN 3-540-30007-4, 978-3-
540-30007-6.

[13] G. Stivan, A. Peruffo, and P. Haller. Akka.js: Towards a
portable actor runtime environment. In Proceedings of the 5th
International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, AGERE! 2015, pages 57–
64, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-
3901-8.

[14] S. Tilkov and S. Vinoski. Node. js: Using javascript to build
high-performance network programs. IEEE Internet Comput-
ing, 14(6):80, 2010.

[15] C. Tomlinson, W. Kim, M. Scheevel, V. Singh, B. Will, and
G. Agha. Rosette: An object-oriented concurrent systems
architecture. SIGPLAN Not., 24(4):91–93, Sept. 1988. ISSN
0362-1340.

[16] C. Varela and G. Agha. Programming dynamically reconfig-
urable open systems with salsa. SIGPLAN Not., 36(12):20–34,
Dec. 2001. ISSN 0362-1340.

[17] R. Virding, C. Wikström, and M. Williams. Concurrent Pro-
gramming in ERLANG (2Nd Ed.). Prentice Hall International
(UK) Ltd., Hertfordshire, UK, UK, 1996. ISBN 0-13-508301-
X.

[18] A. Welc, R. L. Hudson, T. Shpeisman, and A.-R. Adl-
Tabatabai. Generic workers: Towards unified distributed and
parallel javascript programming model. In Programming Sup-
port Innovations for Emerging Distributed Applications, PSI
EtA ’10, pages 1:1–1:5, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0544-0.

[19] S. Xanthopoulos and S. Xinogalos. A comparative analysis of
cross-platform development approaches for mobile applica-
tions. In Proceedings of the 6th Balkan Conference in Infor-
matics, BCI ’13, pages 213–220, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-1851-8.

60

http://soft.vub.ac.be/AGERE15/papers/AGERE_2015_paper_20.pdf
http://soft.vub.ac.be/AGERE15/papers/AGERE_2015_paper_20.pdf

	Introduction
	Problem Statement
	Communicating Event Loops
	Spiders.js by Example
	Basic Spiders
	Distributed Spiders

	Spider.js Runtime
	Actors
	Referencing
	Message Passing

	Evaluation
	Runtime Performance
	Actor Creation Overhead
	Message Passing Overhead

	Coding Complexity

	Related Work
	Conclusion

