
HJ-Viz: A New Tool for Visualizing,
Debugging and Optimizing Parallel Programs

Peter Elmers
Rice University
pe4@rice.edu

Hongyu Li
Rice University
hl33@rice.edu

Shams Imam
Rice University
shams@rice.edu

Vivek Sarkar
Rice University
vsarkar@rice.edu

1. Motivation
The proliferation of multicore processors warrants paral-
lelism as the future of computing, increasing the demand
to write parallel programs for increased application perfor-
mance. Previous experience has shown that writing explic-
itly parallel programs is inherently more difficult than writ-
ing sequential programs. Programmers need parallel pro-
gramming models, constructs, and tools that can simplify
writing of parallel programs. In this poster, we present an in-
novative new tool, HJ-Viz, which generates interactive Com-
putation Graphs (CGs) of parallel programs by analyzing
event logs. The visual feedback is valuable for a program-
mer to efficiently optimize program logic and to eliminate
the presence of potential bugs which may otherwise be dif-
ficult to detect. For example, in cases of deadlocks, HJ-Viz
enables users to visualize and easily diagnose the deadlock
scenario.

CGs provide an intuitive graphical view of a parallel pro-
gram’s execution. A CG is an acyclic graph that consists of:
a) a set of nodes, where each node represents a step consist-
ing of sequential computation, and b) a set of directed edges
that represent ordering constraints among steps. A task can
be partitioned into multiple steps, the key constraint is that a
step should not contain any parallelism or synchronization.

We incorporate Abstract Execution Metrics (AEM) as
well as Real Time Metrics (RTM) in the visualization. AEM
describe the performance of a program by measuring the cost
of abstract operations, such as floating-point, comparison,
stencil, or data structure operations. RTM inserts timing calls
to record the time elapsed between consecutive synchroniza-
tion events.

Programmers can use the visualization of the CG by HJ-
Viz to pinpoint potential sources of bugs and points of im-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
SPLASH ’14, Oct 20-24 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-3208-8/14/10. . . .
http://dx.doi.org/10.1145/2660252.2660395

provement for parallel performance. HJ-Viz highlights the
program’s critical paths and displays the amount of work
performed in each step of computation based on the col-
lected AEM or RTM. Our event logging infrastructure also
maintains precise source code locations for each event, al-
lowing HJ-Viz to display the code involved in the creation
of every node in the CG.

2. Implementation
Our current implementation of HJ-Viz processes event logs
produced by the HJlib runtime [5]. HJlib is an implementa-
tion of a pedagogic parallel programming model used at Rice
University to teach a sophomore-level course titled “Funda-
mentals of Parallel Programming” [1]. Built on top of the
Java Concurrency library [2], HJlib facilitates an effective
learning process in topics like parallel patterns, thread safety
and data race avoidance using a wide range of parallel con-
structs including async tasks, isolated, futures, data-driven
tasks, phasers and actors [3]. HJ-Viz can be used to visual-
ize HJlib programs written using any combinations of these
constructs.

Usage of parallel constructs trigger events in the HJlib
runtime which are used by the event logger to create the
related entries in the event log. AEM data is also included
when available. The event log is built incrementally and the
complete event log becomes available upon program termi-
nation. This log is then processed offline by HJ-Viz to gener-
ate a dot representation of the CG. The dot file is then laid out
and converted to a scalable vector graphic by Graphviz [4],
and displayed in the user’s browser with interactivity fea-
tures implemented in JavaScript. Using web browsers as the
renderer ensures cross-platform compatibility. As a result,
HJ-Viz can be hosted on users’ machines or on a central
server over the Internet.

3. Visualization Examples
One of the goals of HJlib is to introduce students to the fun-
damentals of parallel programming. By providing visualiza-
tions for parallel programs, HJ-Viz makes it easier for stu-
dents who have no prior experience in parallel programming
to grasp the fundamental ideas in this field. Figure 1 shows
a simple program written in HJlib that a student may come

53

across early on. This program deadlocks while using DDFs
since the tasks at lines 4 and 5 are waiting on dependencies
(B and A respectively) that are never satisfied unless their
corresponding bodies are run. Having a visual representa-
tion of simple programs like these, as well as more compli-
cated programs later on, helps in a student’s understanding
of the fundamental parallel constructs being employed. Fig-
ure 2 displays the CG rendered by HJ-Viz when this program
is run. The two nodes with red borders highlight deadlocked
tasks (as they are floating leaf nodes with missing join edges)
which allows the user to obtain a better understanding of
where the deadlock stems from. As seen in the figure, hov-
ering over nodes displays the relevant source code snippet
participating in the deadlock.

1 finish (() -> {
2 HjDataDrivenFuture <Long > A = newDDF();
3 HjDataDrivenFuture <Long > B = newDDF();
4 asyncAwait(B, () -> A.put(B.get() + 3));
5 asyncAwait(A, () -> B.put(A.get() + 5));
6 });

Figure 1: Deadlock with DDFs.

Figure 2: DDF deadlock CG.

Figure 3 shows a parallel MergeSort program. The CG
in Figure 4 shows that under finish scope, there are two
new activities being spawned by the main program. The two
newly forked tasks work on different portions of the data
with the same instructions. The two finish start nodes on
the third level arise from the recursive call to MergeSort(),
and in this case, each asynchronous call splits the list into
two smaller parts, until the list is of unit length.

1 final int mid = M + (N - M) / 2;
2 finish (() -> {
3 async (() -> mergesort(A, M, mid));
4 async (() -> mergesort(A, mid + 1, N));
5 });
6 merge(A, M, mid , N);

Figure 3: MergeSort (merge code snippet omitted for brevity).

The CG can also be used to generate the parallelism pro-
file of the program in terms of AEM or RTM. Depending
on the number of participating nodes at each abstract work
unit or real time interval in the CG, the chart shows how
the degree of parallelism varies over time. Traversal of Fig-
ure 4 generates the bar chart shown in Figure 5. Users can
write different variants of the same program (as shown us-
ing matrix multiplication in our accompanying poster) and

Figure 4: MergeSort CG on input array of size 4. The bold edges
represent the critical path of the computation. Since all the edges
are in bold, it means the computation is evenly load balanced.

generate the CGs and parallelism profiles for different par-
allel algorithms for the same problem. These visualizations
are particularly useful when comparing the performance of
the different algorithms and choosing the best performing
parallel implementation.

Figure 5: MergeSort available parallelism chart.

In summary, HJ-Viz renders the CG of a parallel program,
providing an intuitive graphical view of the program’s exe-
cution. The visual feedback allows a user to reason about
performance problems and to optimize program logic to
maximize available parallelism. The visualization also en-
ables fixing bugs such as deadlocks which may otherwise
be difficult to diagnose. As a result, HJ-Viz will be used at
Rice University to teach a sophomore-level course in parallel
programming. We plan to support visualizing nodes partici-
pating in data race bugs in HJ-Viz.

References
[1] COMP 322: Fundamentals of Parallel Programming. https://wiki.

rice.edu/confluence/display/PARPROG/COMP322, 2014.

[2] Java Concurrency Utilities. http://docs.oracle.com/javase/8/
docs/technotes/guides/concurrency/, 2014.

[3] V. Cavé, J. Zhao, Y. Guo, and V. Sarkar. Habanero-Java: the New
Adventures of Old X10. In PPPJ’11, pages 51–61, 2011.

[4] E. R. Gansner and S. C. North. An open graph visualization system
and its applications to software engineering. Software - Practice and
Experience, 30(11):1203–1233, 2000.

[5] S. Imam and V. Sarkar. Habanero-Java Library: a Java 8 Framework for
Multicore Programming. In PPPJ’14. 2014.

54

https://wiki.rice.edu/confluence/display/PARPROG/COMP322
https://wiki.rice.edu/confluence/display/PARPROG/COMP322
http://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/
http://docs.oracle.com/javase/8/docs/technotes/guides/concurrency/

	Motivation
	Implementation
	Visualization Examples

