
Emergent Software Services

Nicolás Cardozo
Systems and Computing Engineering Department, Universidad de los Andes

Bogotá, Colombia
n.cardozo@uniandes.edu.co

Abstract
Services are normally composed following a structured
model, or based on a particular goal that needs to be ful-
filled. Such model is problematic for pervasive environments,
since service components deployed in the environment are
unknown beforehand. As a result, services may never execute
due to the unavailability of one of the pre-specified compo-
nents, or components missing to fulfill the service goal. This
paper posits a new vision for service composition by invert-
ing the control flow of service-oriented applications between
users and the environment. Rather than having to request
a particular service, services emerge from the environment
based on interactions between available service components,
and are pushed to be utilized by users. We present the ar-
chitecture required to fulfill our vision in enabling service
emergence in a pervasive environment. This vision architec-
ture is realized by an initial prototype framework for software
service emergence called Mordor. Early results of this vision
are obtained from two examples demonstrating the feasibility
of services emergence from previously unknown service com-
ponents, and a case study demonstrating Mordor’s usability
in real world scenarios.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Frameworks

General Terms Design, Languages

Keywords Dynamic service composition, Emergent ser-
vices, Microservices

1. Introduction
The proliferation of sensors and actuators advocated by the
Internet of Things (IoT) and Cyber Physical Systems (CPS)
is driving a change in both the way users interact with and

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

Onward! 2016, October 23-28 2016, Delft, Netherlands
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM
ACM 978-1-4503-4076-2/16/10?$15.00. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2986012.2986016

benefit from software services, and the autonomous interac-
tion between software services [17, 18]. Such proliferation
of devices, and the services associated to them will enable
the provision of more and better services, for example, by
improving services’ Quality of Service (QoS) attributes such
as response time, load, or availability.

IoT and CPS technologies are becoming of extreme impor-
tance in so called smart applications, such as ambient assisted
living, smart buildings, or in general, smart city environ-
ments. Such environments are characterized by a multitude
of sensors, actuators, and human users alike, all seamlessly
interacting with each other. Sensor information and actua-
tor capabilities can be used to enhance services deployed
in the environment, for example by personalizing services
to specific user needs, based on their preferences and infor-
mation currently available in the environment. An example
application domain that benefits from the aforementioned
environments is that of routing users in a city. Users in a city
are in continuous movement, requiring to travel from A to
B to C. Users’ routes could be affected by real-time traffic
information, external sensor information, user preferences,
or weather conditions. An example of a multi-modal routing
service in a city composed of all such information can be
defined as shown in Figure 1.

In order to cope with the requirements of new application
domains spawn by such technologies (e.g., multi-modal travel
assistants in a smart city) it is necessary to update the current
Service-oriented Computing (SOC) composition model. Con-
siderable effort has been put in the composition of software
service components defined by distributed providers in perva-
sive environments [25], as in our routing example. Notably,
service composition approaches use a pull request model for
service composition, in which services are always requested
by users. Recent approaches, using a pull model, increase
services’ robustness by dynamically replacing service com-
ponents if they fail or disappear from the environment [8].
These approaches, however, overlook two characteristics in-
herent to the pervasive environments in which they execute,
giving rise to two main problems.

1. Services must be foreseen. In the pull service request
model, users request a particular service they want to
use. That is, software services are composed from service

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Onward!’16, November 2–4, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4076-2/16/11...$15.00
http://dx.doi.org/10.1145/2986012.2986016

15

providers following a pre-defined structure between (ab-
stract) service components [1, 31, 36]. Software services
are normally composed according to an abstract workflow
definition, in which each workflow node represents a ser-
vice component, and information flows from the outputs
of one node to the inputs of another (see Figure 1). While
the specific components may be reified at run time by
any service provider mapping the expected inputs to the
outputs, the workflow structure defines the way in which
components interact. Relying on such a workflow struc-
ture is problematic in dynamic environments as interaction
between service components must be foreseen by devel-
opers. Service application developers must assume that all
components required to satisfy the requested goal exist,
interact in the foreseen way, and are available in the envi-
ronment. Such composition models mismatch the reality
of services deployed in pervasive environments, where mo-
bility, heterogeneity, disconnections, and service failures
are common. It is not possible to ensure that a particular
service component will exist and have the expected inter-
actions to fulfill a service request. This impairs services
usability, as services may never execute (properly). In
pervasive environments, service providers’ availability is
unknown at service definition time, therefore, service def-
initions cannot assume specific component interactions.

2. Services are coarse-grained. Services are seen as full-
fledged pieces of software providing a particular func-
tionality end-to-end. Services are normally composed by
coarse components offering multiple functional aspects to
meet an objective. Such a vision of service components,
makes definition of services too rigid, as components’ in-
terchangeability is more difficult to achieve. Service com-
ponents should be defined as independent process with
a minimal set of functionality to foster their exchange-
ability [6, 35]. Available devices in the environment may
not have the capabilities to support full services, or even
process multiple services. Some devices deployed in the
network may only be able to provide very fine-grained
functionality according to their sensory capabilities. For
example, an ambient sensor may only provide a data
stream of the current temperature measurement, rather
than a full weather service. Service definition should be
maintained as fine-grained as possible in order to increase
their flexibility, and foster interaction between available
service components in the environment.

To tackle these problems, we propose a push service model
for pervasive environments, in which services are offered
to users from available service component providers in the
environment (Section 2). In such model, services accessible
by users are guaranteed to be available, increasing services’
usability. Additionally, this model reduces the complexity
of service components’ definitions, as no prior knowledge
about other services is required. The push service model is
used to support our vision for software services emergence,

Figure 1: Service composition model specification for the
routing example.

in which devices deployed in a pervasive environment can be
associated with fine-grained service component definitions.
From these definitions, new complex services emerge based
on the autonomous interaction and composition between
service components.

The feasibility of our vision is tested in Section 3 by imple-
menting a prototype framework called Mordor: where emer-
gent service fellowships converge. Mordor enables the emer-
gence of software services from the definition of fine-grained
stand-alone service component entities that do not require
any prior information about their deployment environment
or other components’ availability. Mordor autonomously en-
ables the broadcasting and discovery of service components,
learning the interactions with those components that match
in their semantics, inputs, outputs, and QoS attributes. Using
components’ learned interaction with other components, it is
possible to push new emergent services, making them acces-
sible to users. Software services emergence is validated by
using two example applications: a color palette chooser, and
a poker-hand discoverer. Each of these applications defines
multiple service components. We use Mordor to discover
all available services in the environment (both, the defined
service components and the services that emerge from their
interaction). In the simulation of our application examples,
we observe emergence by comparing the ratio between the
number of services discovered and the number of deployed
service components. If it is possible to discover more ser-
vices than the number of deployed service components, then
services have emerged. The usability of our framework is
evaluated through a case study that illustrates service com-
ponents definition and composition in a real-world setting of
a routing application for pedestrians in city. The exploration
of Mordor’s feasibility is complemented by a discussion of
challenges and future lines of research to complement our
vision (Section 5).

2. Software Services Emergence
The software services emergence vision, put forward with
Mordor, proposes to change the control flow in SOC ap-
plications, so that services are pushed to users from the
environment, rather than being user-requested. The vision
behind this model is that fine-grained service components

16

Figure 2: Service interaction model in Mordor

defined in a pervasive environment can interact, giving rise
to new services from the combination of previously existing
ones. We draw inspiration from, and combine three research
areas in Mordor, in order to enable the emergence of full-
fledged software services. (1) Service components are de-
fined as fine-grained and independent pieces of functionality
that self-organize. Interaction between service components
is autonomous, without requiring previous knowledge about
each other [12, 13, 27] (Section 2.1). (2) Service components
should be able to compose autonomously by learning with
which other type of components they can interact. Further-
more, components’ learning process can be used to prioritize
commonly used services over other possible compositions,
so that the environment evolves organically (Section 2.3).
(3) Finally, when executing a service, the execution should
adapt to failing or disappearing components in order to in-
crease services’ usability. Adaptations can also be used to
gear service emergence for particular situations and users’
preferences, increasing the usability of such services [14, 16]
(Section 2.4).

The self-organization, learning, and adaptation compo-
nents in Mordor are coupled as part of the same single pro-
gramming model. Figure 2 shows how these three compo-
nents interact. Schematically, we show them in three different
layers to help understand how and when each of the com-
ponents is used. However, readers should keep in mind that
they are all coupled. Service components are deployed in
isolation in the environment (bottom layer). As part of their
definition, components declare their service interface —that
is, the functionality the component offers to the outside world.
This, interface is used to broadcast and discover other compo-
nents in the environment. Service components self-organize
through interaction with each other’s service interface. Inter-
actions between service components are learned so that they
can be composed directly in future interactions. Such compo-
sitions are lifted as emerging services in the top layer. Once
a service emerges, this is pushed to the Mordor application

to be used. In the following we explain how each of these
components work in more detail.

2.1 Service Components Organization
CPS propose a symbiosis between physical elements and
software systems by offering software services associated
to a set of physical sensors or devices [17]. These environ-
ments are not fixed, but rather are in continuous change with
the introduction and removal of devices, and the consequent
effect on the software services such devices support. As a re-
sult, management of software services must be decentralized,
where each service component is defined independently and
with no prior knowledge about other services available in the
environment.

Given that the nature and type of service components de-
ployed in the environment is unknown, to promote interaction,
all service components defined in Mordor have the capability
to interact with each other. Services are broadcasted to, and
discovered in the environment using a zero-configuration ser-
vice such as multicast Domain Name System (mDNS). In this
protocol, every service component deployed in a given envi-
ronment is made available to all other components already
deployed, and vice versa. Upon discovery, service compo-
nents start an interaction process to see whether they can be
combined into bigger services. As service components are
defined in isolation without prior knowledge about other com-
ponents, and may even be developed by different providers,
interaction between components must start by communicat-
ing the nature (i.e., semantics) and type (i.e., syntax) of each
component to each other.

The semantics of a service component are defined by
its intended use, the component’s physical conditions (e.g.,
deployment environment), the external information gathered
by sensors, or possible interactions. In our routing example
from Figure 1, the Forecast component can be defined with
the “routing” semantics as the service is intended to be used
for this purpose, while the BikeAvailability component
can be defined with the “transport” semantics, as the sensors it
uses are associated to a transport mode (e.g., physical bikes).

Service components initially exchange their semantic in-
formation conveying what kind of application domain they
can be used for (e.g., routing, environmental, video). Seman-
tics for a service component follow an ontology definition,
such that semantics for related application domains are as-
sociated in an ontology graph. The advantage of using such
semantics definition, is that correspondence between service
components is not required to be exact (i.e., the components
may not be part of the same application domain). More gen-
eral or more specific semantics could be used for correspon-
dence in case there is no exact match [23]. For example, the
“transport” semantics can be used as a more general appli-
cation domain to the “bus” semantics. Ontology semantics
definition is normally used in centralized settings, where a
global ontology structure can be maintained and accessed
by multiple components. Nevertheless, this is not the case in

17

pervasive environments. Rather than using one big semantics
ontology definition, service components in Mordor keep their
own slice of the ontology [5], keeping track of only those
semantics relevant to the component. Service components
semantics can evolve by learning new interactions with other
service components (cf., Section 2.3), for example, by taking
into account user-driven actions to compose services.

After service components have matched, such components
proceed to exchange their syntactic information, to check if
interaction is indeed possible. In order to have a successful
interaction and collaboration between service components,
the functionality of one of the services should extend, or be
used by the other. That is, the outputs of one component
can be used as the inputs of the other one. In Mordor, we
follow the service composition requirements normally used
in SOC [8]. Given two service components C1 and C2 with
corresponding inputs and outputs In1, In2 and Out1, Out2, we
say that, for example, C1 is usable by C2 if Out1 ⊆ In2. That
is, the outputs of the first service component satisfy the inputs
of the second one.

In order for service components to interact it is not
sufficient to match their semantic and syntactic interfaces.
In addition, the QoS requirements of the first component (C1)
must be satisfied by the component using it (C2). Service
components’ QoS interface is as flexible as possible, and any
kind of attribute can be defined for a given service component.

In Mordor, the QoS requirements policy is open for service
component developers to define. Such policy should express
how many and up to what extent QoS requirements should
be satisfied. For example, in the routing application, we
could define timeToResolve to be the most relevant QoS
attribute, requiring service components to respond within a
given threshold. If the components do not satisfy this policy,
then they do not match.

If both the semantic and syntactic interfaces of two com-
ponents match, they are deemed to interact. The resulting
service of the compositions is then pushed to users, so that
it can be called an executed. If, on the contrary, the compo-
nents do not match, then there is no interaction between the
components, and no service emerges to be called by users.

Figure 3: Service component, interaction perspective

Figure 3 shows the main elements in a service component.
The generated ontology slice, and the definition of the inputs,
outputs, and QoS elements, used to broadcast and discover
components in the environment. The service interface, as we
explain next, presents the actual service functionality.

2.2 Fine-Grained Service Definition
The service emergence vision follows the trend of microser-
vice architectures [35], which foster the flexibility of service-
oriented architectures by combining multiple small services.
Such flexibility is appropriate for IoT and CPS environments,
where software services are associated with specialized and
small devices (e.g., sensors). We envision Mordor to offer
equally specialized and small services. Along side services’
semantic and syntactic interface, developers provide the main
functionality of a service component. This functionality is
exactly the behavior other service components will use when
composing full-fledged services. In the routing example, the
definition of the Route service component is as in Snippet 1,
where transportMode corresponds to a service component
providing information about a particular transport mode (e.g.,
bike, bus), and origin and destination are input parameters
of the component.
Route = Service ({

var schedule= transportMode.getSchedule
();

var route= _.filter(schedule , f u n c t i o n (
node) {

r e t u r n node >= origin && node <=
destination;

});
r e t u r n route;

});

Snippet 1: Definition of the route service component

The importance of having a fine-grained definition of ser-
vice components, is that failing or disappearing components
can be replaced at run time (cf., Section 2.4), improving pro-
vided services availability [8, 14, 16].

2.3 Emerging Service Composition
The previous sections discussed the definition and interaction
of service components. This section turns the discussion into
the emergence of full-fledged services from such components.
In order to compose services, each service component keeps
track of all other components it can interact with. Mordor
achieves this using a model-free learning technique, specifi-
cally Q-learning.

Q-learning [34] is a reinforcement learning algorithm
used to optimize decision-making processes in environments
where there may not be complete knowledge about the system
states and transitions beforehand. This can be applied to
dynamic environments where the complete information about
the environment is usually unknown. Given a system, Q-
learning records (i.e., learns) the actions taken to reach

18

one system state from another. In addition, each action
taken by the system is associated with a reward function,
in Equation (1), calculating the long term cumulative reward
from a particular state s, where rt+1 is the reward after
t transitions have executed. γ defines the discount factor
providing a weight of the decisions for each action over time.

r(st) =
∞

∑
t=0

γ
trt+1 (1)

As time progress, the system specializes its actions more and
more, so that with every new change of state, the system
chooses the optimal action with respect to the long-term
pay-off. Optimal actions are chosen based on states’ q-value.
These values are associated to each state and represent the
overall pay-off of choosing the action to get to that state.
q-values are updated with every action, using the reward
function.

Figure 4: Service component, learning perspective

In order to learn interaction between service components
we modified the Q-learning process. Whenever two service
components are deemed to match, say C1 and C2, the compo-
nent extending the behavior of the other component (i.e., the
component such that Out1 ⊆ In2) becomes the service leader
and keeps track of the interaction with the other component.
In our case, C1 is deemed the leader, so it learns that C2 is
one of its reachable states (states are represented as circles
in Figure 4) and the actions to reach such state (actions are
represented as rhombi in Figure 4). Each learned state has
a reward associated to it. Every time a service is used, the
q-value of the state associated with such service increases
using the reward function, increasing the likelihood of using
that service in the future.

Figure 4 depicts the “brain” of service components in
Mordor —that is, the entity in charge of learning which
states (i.e., service components) and actions (i.e., service
combinators) a given component can interact with. In the
routing example, the BikeAvailability component can
interact with a route component, which in turn can interact
with the Cycling and Walking components. Therefore, the

components learned by BikeAvailability correspond to
the Route service component, and the services emerging
form this component (i.e., the compositions with the services
it interacts, namely, RouteCycling and RouteWalking).

Once interaction between service components is learned,
brand new (i.e., emergent) services are pushed to users. Such
services, however, need to provide information about their
functionality and specification (i.e., name, service specifica-
tion, and description). This responsibility rests on service
leaders, as the starting point of a service execution. Service
leaders can generate a semantically meaningful service inter-
face that is pushed to users. The alternative chosen in Mordor
to generate the full service semantics interface reuses the
service components’ semantics ontology. For example, for
the BikeAvailability component, a cycling route emer-
gent service could be pushed to users as a “Cycling transport
routing” since the components of this service are respectively
defined “transport mode” (for the BikeAvailability com-
ponent), “routing” (for the Routing component), and “bike”
(for the Cycling component). Such a name could be given
to the service by, for example, concatenating each of their
semantics. The definition of meaningful semantics for emer-
gent services relates to semantic web definitions [19], and is
part of our avenues of future work (Section 5.2).

2.4 Service Execution
Once service components are composed to generate new full-
fledged software services, the latter can be pushed to the user
for their subsequent execution. Users get access to emergent
services via the Mordor application, a service discovery
application receiving all available services that emerge from
the environment. Figure 5 shows a mockup interface of the
Mordor application. In this figure, emergent services are
displayed using the concatenation of its components’ names,
and are grouped by application domain according to the
semantics extracted from all its components.

Figure 5: Mordor emergent services mockup interface

Selecting one of the services in the Mordor application
trickles down the execution of each of the components func-
tionality. In order to manage possible errors during service
execution due to service components disappearing from the
environment or failing, the concrete components to execute
are not defined. Before a particular service component ex-

19

ecutes, its availability is verified. In case the component is
no longer available, the execution can adapt to replace this
component with a component providing similar functionality.

We manage service adaptation by means of adapting the
problematic service component. In existing approaches, ser-
vices are adapted by changing missing or failing compo-
nents for new components providing an equivalent function-
ality [8, 16]. We take advantage of the fine-grained definition
of service components’ functionality to drive their adaptation
by means of a programatic adaptation technique, as proposed
by Context-oriented Programming (COP) [5, 10]. The main
idea behind COP is to modify the behavior of an application
according to the situations of its surrounding execution en-
vironment (e.g., available service components). Using this
technique, it is possible to adapt the behavior provided by a
single service component with that provided by other compo-
nent.

This type of behavioral adaptation at the component level
can also be used to refine the type of services that emerge for
a given user, customizing the behavior of services according
to users preferences (cf., Section 5.4).

3. Emerging Services in Mordor
This section uses our prototype Mordor implementation to
define service components in an environment and observe
service emerge. We define two proof-of-concept service sce-
narios with two purposes. First, we demonstrate the feasibility
of service emergence through the simulation of two small ex-
ample applications. Second, we illustrate the usability and ap-
propriateness of Mordor for the definition of service-oriented
systems using a routing scenario employing real city services
and service components.

The first scenario uses two applications, a color palette
offering color combination services. This application offers
users a palette to chose a given color, from those available in
the environment. Each service component represents a color,
defined using either the RGB or CMYK color system. Colors
belonging to the same color system can be combined (i.e.,
interact), offering a color palette services consisting of all
possible combinations of colors available in the environment.
Selecting one such service executes the composed service be-
havior —that is, the composed color is used in the palette. The
second application defines a discoverer application offering
poker-hand services. In this application each card represents
a fine-grained service component. Offered services to users
are constrained to sets of five components, making the differ-
ent poker hands to be played (e.g., two of a kind, straight, or
royal flush). Selecting one of the available services, plays the
given hand one card at a time.

The second scenario consists of a routing application in a
city. The application is composed by a routing service present
in users’ mobile device, and different service components
deployed around the city offering route enhancements accord-
ing to the surrounding environment. This scenario is used to

show the definition of service components (i.e., their semantic
and syntactic interfaces), as well as to show how multiple het-
erogeneous service components interact without developers’
involvement.

3.1 Current State of Affairs
Mordor is currently implemented in ECMAScript. In this
section we describe the state of affairs of the Mordor imple-
mentation with respect to the full model described for our
vision in Section 2.

Currently, Mordor offers developers an API to instanti-
ate service components, as well as a textual version of the
Mordor application to discover services (Figure 5). Service
components are broadcasted into a network using the mDNS
protocol, where all service components defined in Mordor can
be discovered. Components self-organize taking into account
those service components belonging to the same applica-
tion domain —that is, service components are discovered
according to their semantic interface (i.e., ontology slice),
and exchange only their syntactic interface (inputs, outputs,
and QoS). Service components are deemed to match based on
a user-defined syntactic matching policy (i.e., a conditions
function) defining additional conditions for service matching.

Service components only learn about other components
they can interact with, and keep track of them as new states
in their Q-learning brain. While service components are
learned as they appear, their q-values do not yet condition
the behavior of the system. All components have the same
reward function. Each component keeps track of all reachable
services from it by means of a serviceCombinator function,
which determines the concrete interaction between them —
that is, how the outputs of a service component are used by
the inputs of another one. Finally, to push emergent services,
we use the plain-text name of the combination of all service
components in them.

3.2 Service Emergence Feasibility
To investigate the feasibility of software service emergence,
we use the color palette and the poker-hand application sce-
narios. For each of the applications we created a simulation
as follows:

1. Service components are created and deployed in the
environment on regular 5s time intervals.

2. Service components interact with each other —that is, they
broadcast their interface and interact with other (unknown)
service components every 1s.

3. The Mordor application is refreshed to display pushed
services on fixed time intervals.

For each of the simulations we measured the number of
services discovered by Mordor with respect to the number
of service components deployed in the environment. This
measurement was taken in regular time-steps (i.e., as per the
Mordor display rate).

20

3.2.1 Color Palette
In the color palette application, we generate two simulations
shown in Figure 6. The first simulation consists of 10 RGB
colors (with randomly generated values). In the color palette
application, the number of colors that can emerge varies with
respect to the initial values used for each color and the follow-
ing restrictions: (1) colors are only applied once to a given
combination, and (2) the maximum saturation value for a
basic color is 255 (e.g.,green = {R: 0, G: 255, B: 0}. With
this restrictions in mind, the number of services that can
emerge in an environment in which n (n≥ 2) service compo-
nents are deployed, is in the range [n+1,2n +1]. The lower
bound corresponds to an environment in which any pair-wise
composition of colors reaches black {R:255, G:255, B:255
}, and the upper bound to whenever all possible combinations
of all service components are possible. Figure 6a, shows the
growth (in logarithmic scale) in the number of services as the
number of service components increases taken in 2s intervals.
The bottom gray line shows the estimate number of services
to discover —that is, one per each service component (the
identity function). The top blue line shows the number of
services discovered in the simulation. Note that, for this par-
ticular simulation, around 5 service components the amount
of services that emerge is double, by the time 10 service com-
ponents are deployed, the services that emerge has increased
to over 4 times the number of deployed service components.

The second simulation deploys 50 color service compo-
nents with a random distribution for the amount of colors
in the RGB and CMKY color systems. Figure 6b shows the
number of emergent services, as the number of service com-
ponents in the environment increases, in logarithmic scale.
As before, the bottom gray line shows the identity in function
of the number of deployed service components, and the top
blue line shows the values obtained in the simulation. Note
that rate of growth of discovered services is more erratic than
in the previous case, with periods of rapid growth and periods
of more steady growth. This might be due to the types of
services deployed in the environment. The periods of rapid
growth may see a larger number of colors using one particu-
lar system. Given that these are able to interact, the number
of emerging services increases. As the distribution between
color systems evens up, the growth rate decreases, as one new
color can only interact with a portion of the deployed service
components.

From both graphs in Figure 6 is possible to see that the
number of services available has a higher growth rate than the
linear growth of the number of service components deployed
in the environment. This is because new services do emerge
as deployed components start interacting. The deployment
of a new service component in the environment will prompt
its interaction with all other services deployed in the system,
generating about n+1 services. In the worst case scenario,
where no new interactions occur, the growth is linear. If there
are interactions, the growth will be faster. The simulation

results shown here, are not absolute for the applications used,
but rather present the trend of growth for emergent services.
As a matter of fact, simulations may variate with respect to
the particular services deployed for that simulation

Note that the exact number of services that are generated
depends on the distribution of service components having
the same semantic and syntactic interface in the environment.
In the color palette example, there are two types of services,
those representing RGB colors and those representing CMKY
colors (syntactically, each component represents a different
color). In this case, all service components presenting the
same semantic interface (e.g., color system) will interact.
Mordor does not discriminate between services providing the
same semantic interface, interaction takes place between all
of them. However, if two services provide the same semantic
and syntactic interface (i.e., are functionally the same service),
the first service with which an interaction is stablished is
learned, while the second service will be used without any
learning process taking place. Equivalent service components
can be used to replace failing components for their equivalent.

3.2.2 Poker-Hand
In the poker-hand application we generate a simulation in
which the 52 cards of a playing deck are deployed in the envi-
ronment, deploying a card every 5s. In this example, services
discovered in Mordor consist of sets of 5 cards. As in the
previous application, to investigate emergence we measure
the ratio between available services (i.e., sets of five cards)
and the deployed service components (i.e., individual cards).
Analytically, if there are n service components there will be(n

5

)
services. Figure 7 shows the effective numbers of emer-

gent services in relation to the available service components
taken every 5s. As it is possible to see from the graph, the
simulation values (in the blue top line) surpass the expected
values (in the bottom gray line). This is because in our poker
composition playable hands [10♥][J♥][Q♥][K♥][A♥] and
[J♥][K♥][Q♥][10♥][A♥] are considered different, as the
order in which they are composed may influence the outcome
of the service. Therefore, the upper bound for service combi-
nations is nP5. The poker application reaches the upper bound
as we do not check for semantic matches between service
components.

Figure 7 shows the results gathered from the simulation.
As it is possible to see, the amount of services pushed in the
simulation is slightly lower than the upper bound. This is
because processes deploying service components and the one
measuring components’ interactions are asynchronous and
processing all interactions for a given number of components
lags behind the the time to measure pushed services. Fur-
thermore, not all components can be successfully deployed
in the experiment. This is because after 17 components the
system stack fills as there are over 730000 services created,
and no more data can be collected. This example exhibits
the complexity of managing emerging services as multiple
interacting service components appear in the environment.

21

1

estimate 0 1 2 3 4 5 6 7 8 9 10

label 0 1 2 3 4 5 6 7 8 9 10

actual 0 1 3 5 10 15 19 24 29 34 43

Table 1

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 910

N
o.

 o
f e

m
er

ge
nt

 s
er

vi
ce

s

No. of available services

1

10

100

0 2 4 6 8 10

N
o.

 o
f e

m
er

ge
nt

 se
rv

ic
es

No. of available service components

estimate

values

(a) Single color system emergence

1

estimate 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 47 50

label 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 47 50

actual 0 1 6 7 12 17 22 28 35 39 44 49 56 63 67 72 77 81 85 89 93 98 103 107 112 118 126 130 138 142 144 149 153 158 161 164 171 175 327 481 646 1053 1810 3206 4167 4997

Table 1

1

10

100

1000

10000

100000

1000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 44 50

N
o.

 o
f e

m
er

ge
nt

 s
er

vi
ce

s

No. of available services

1

10

100

1000

10000

0 10 20 30 40 50

N
o.

 o
f e

m
er

ge
nt

 se
rv

ic
es

No. of available service components

estimate

values

(b) Multiple color systems emergence

Figure 6: Color palette emergent services to service components simulation

N
o.

 o
f e

m
er

ge
nt

 se
rv

ic
es

1

10

100

1000

10000

100000

1000000

10000000

No. of available service components
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

values
lower bound
upper bound

�6

Figure 7: Poker-hand emergent services to service compo-
nents simulation

3.3 Service Component Development
The push model envisioned for service emergence aims to
reduce the complexity of developing software services (i.e.,
the definition of service discovery, composition, interaction,
and execution) in pervasive environments. Using Mordor,
application developers are to focus on the main functional
logic of service components, while the other aspects of
service definition should be inferred autonomously from the
surrounding execution environment (e.g., available services
in the network, or previously learned interactions with other
components).

Now that we have shown that services effectively emerge
from the environment, we present a real-world case study,
illustrating the definition and interaction of service compo-
nents. For this purpose, we use a routing CPS application as
case study. Now a days, cities are equipped with a diversity
of IoT devices providing information about the city, such as
pollution (e.g., noise, air), ambient conditions (e.g., tempera-
ture, humidity), or mobility (e.g., public transport schedules,
traffic density, available transport modes) to mention a few.
Based on such information routes can be enhanced to take
users around the city. Unlike existing routing applications
fully providing enhanced routes to users [21, 24], based on
information gathered by sensors around the city. Our case

study differs from these applications by providing the en-
hanced services autonomously as more IoT devices and ser-
vice components are deployed in the environment, rather than
requiring developers to continuously integrate such devices
and components.

Routing users through a city should offer a routing service,
for example, accessible from mobile devices. This service,
defined as a Mordor service component, provides a route,
given its origin and destination.

Mordor service components are created as stand-alone
instances of service entities, describing their semantics, and
functionality. A routing service component (Snippet 2)
should be aware of the city, represented as a graph, where
each edge corresponds to a street. The component is de-
fined with its inputs, outputs, QoS attributes, and func-
tionality. The routing component receives as inputs, the
origin and destination of the route (given by users), and
weightingData. The weightingData is used by the graph al-
gorithm, and corresponds to the weight given to every edge ac-
cording to the purpose of the route. For example, the shortest
route would weight edges according to street lengths, while
the quietest route, would weight them by the noise levels per-
ceived in the street. The component’s outputs correspond to
the path to follow by users. Finally, in our application we rank
weighting data according to its reliability, giving a priority
to the data to use. The more reliable data is, the highest its
priority (1 being the highest priority posible). Our case study
will consider highly reliable data sources, having priority 1
or 2, as expressed in the conditions function, Lines 5-8 in
Snippet 2. Note that Snippet 2 is only showing the basic ser-
vice definition: its main functionality, the A* graph traversal
algorithm, providing a path between two nodes (Lines 9-15),
and the graph.1

The routing component offers the possibility to combine
other services through its weightingData. Components’ com-
positions are managed in the combinator function expressing

1 the graph and auxiliary algorithms are omitted for conciseness. These are
defined in the component’s private interface (i.e., methods not shared with
other components)

22

how the composition takes place. For example, the routing
component composes with components providing weighting
data, i.e., IoT devices. As shown in the combinator function
(Lines 16–26), this is done by associating the new weight
with each edge, so that edges have tuples of weights. Edges
are ordered lexicographically on each dimension of the tuple.

1 var routing = new Service ({
2 inputs: [origin , destination ,

weightingData],
3 outputs: path ,
4 qos: { "priority": f u n c t i o n (p)
5 { r e t u r n p < 3;}

},
6 conditions: f u n c t i o n (interface , state)

{
7 r e t u r n t h i s .qos.priority(state.

priority);
8 },
9 serviceInterface: {

10 service: f u n c t i o n () {
11 //build the path using the A*

algorithm
12 //Edges in the city graph are

weighted with the weightingData
13 r e t u r n astar.runAlgorithm ();
14 }
15 },
16 combinator: f u n c t i o n (serviceStates) {
17 _.each(serviceStates , f u n c t i o n (state)

{
18 _.each(state.data , f u n c t i o n (edge , w)

{
19 _.map(t h i s .graph.edges , f u n c t i o n (e

) {
20 i f (e.id == edge.id)
21 e.weight.push(w);
22 });
23 });
24 }, t h i s);
25 r e t u r n t h i s .graph;
26 }
27 });

Snippet 2: Routing service component definition

Suppose now, that while the routing service is in use,
the city deploys sensors measuring different environmen-
tal conditions such as transportModes, traffic, noise,
or airPollution, exporting gathered weighting data as ser-
vice components. The service components providing weight-
ing data based on the city’s environment, such as noise, or
traffic, are defined similarly. Snippet 3 shows the definition
for the noise service component. The functionality of this
component is to output all information collected in the city,
by giving each street its weight. In the case two weighting ser-
vices compose, they are combined similarly than in Snippet 2
—that is, creating weighting data tuples for every edge.

1 var noise = new Service ({
2 inputs: [],
3 outputs: [[e1, nw1], [e2, nw2], ...],
4 qos: { "priority": 1 },
5 serviceInterface: {
6 service: f u n c t i o n () {
7 _.each(t h i s .graph.edges , f u n c t i o n (e)

{
8 client.get(’fwk’, f u n c t i o n (err ,reply

){
9 t h i s .outputs.push[e, reply];

10 });
11 });
12 }
13 },
14 combinator: f u n c t i o n (serviceStates) {
15 //As the combinator in Snippet 2
16 }
17 });

Snippet 3: Noise service component definition

Service components are accesible only in the vicinity of
their respective devices. For the purpose of this example, as-
sume that we have two environments, one with only the noise
component and one with both the noise and airPollution
components. As users enter the first environment, the routing
and noise components interact, pushing all services in the
environment (i.e., routing, noise, and noiseRouting). Simi-
larly, in the second environment all service combinations are
pushed (those shown in Figure 5). Note that service composi-
tions as noiseAir and airNoise, displayed last in Figure 5,
are not particularly useful services. These services emerge
as their components are defined with empty inputs, so other
components answering to the same semantics can be com-
bined with them too. Executing these services will give the
user a list of streets with two associated weights.

This case study illustrates how real world applications are
defined in Mordor by means of the independent definition of
service components, demonstrating that complex services do
emerge from the environment.

Note that, service components are defined without any
prior knowledge about the environment, or services previ-
ously defined. All components can be defined and deployed
by different developers at different times. Normally, each
ordering to execute services components would require a dif-
ferent composition strategy. In Mordor, regardless of the de-
ployment order, all possible combinations of services emerge
autonomously.

Beyond the illustrative emergent services in the case study,
new services can appear as more basic city services (as the
ones shown in the case study) are deployed. One may think
of fitness routing services, which combine the different trans-
port modes in the city and its infrastructure, bikeRacks or
joggingLanes. Deploying services providing the weighting
information about these modes, and the location and availabil-

23

ity of the infrastructure, the joggingRoute, bikeRoute,
or even duathlon (combining jogging and biking) services
emerge. Each of these services would require a completely
different definition (by interested parties) without Mordor.

As more and more of these service components are de-
ployed in, and removed from the environment, new and in-
teresting services emerge, increasing their availability fluc-
tuation. Yet, their definition does not increase in complex-
ity. Developers are still defining fine-grained components.
Nonetheless, not all services that emerge will be useful to
users. Over time, such services are relegated to the end of the
pushed services list, giving priority to more frequently used
(i.e., relevant) services (based on the q-value of each service),
reducing too the complexity of choosing a given service.

3.4 Extension to Heterogeneous Services
The case studies presented in this section provide initial re-
sults supporting our vision for software services emergence.
As demonstrated with our simulation, it is possible to ob-
serve new services emerge from the interaction of previously
unknown service components deployed in a pervasive envi-
ronment. However, a note of warning must be raised about
the obtained results. While it is possible to observe services
emerging in the simulations, the results are not yet generaliz-
able to any two types of services interacting in the environ-
ment. All service components used in the examples belong to
the same application domain (i.e., colors, poker playing cards,
or routing), and so, interactions between service components
are restricted and well defined by their combinator function.

In order to generalize the results obtained in this section
to a set of heterogeneous service component types, to man-
age interactions between components in multiple application
domains we must extend Mordor so that: (1) service compo-
nents can exchange messages to promote interaction, even if
their semantic interfaces belong to different application do-
mains, (2) the semantics of a service should be elevated from
its components, (3) service components learn with which
other components they can interact, and (4) service compo-
nents learn which actions must be taken to interact with such
components (i.e., the combinator function used).

Service components belonging to different application
domains may still reach coherent and complete services when
combined. To allow such compositions, it should be possible
for components to “probe” each other’s services, and observe
if sound functionality can be reached. In conjunction with
this, the system should be able to generate what the service
semantics are, so that the service is meaningful for users. For
example, in the routing case, a TextToSpeech component
could be combined with a Route component in order to
generate an audible route stream.

There may be multiple ways to successfully combine two
service components, for example in two different application
domains. In addition to learning what these actions may be,
the learning component in Mordor should also estimate which
of the combinators is best suited for the application domain

at hand. These and other challenges to be tackled in order to
realize the full vision of Mordor are discussed in Section 5.

4. State-of-the-Art
To the best of out knowledge, there are currently no similar
approaches proposing the emergence of software services
by means of their autonomous interaction in a push-service
model. However, as previously mentioned, our proposal
draws inspiration from existing research areas. Here, we
discuss the similarities, shortcomings, and advantages of our
approach in the perspective of the following four areas.

Decentralized Service Composition In SOC development,
services and their availability are assumed to be globally
known [31]. However, this is no longer the case in pervasive
environments, where services can be deployed into, or re-
moved from the environment unannounced, due to the mobil-
ity of their containing devices. In response to this, Chen et al.
[8] propose a new service composition model, GoCoMo. This
model is the closest to our proposal from existing approaches.
GoCoMo addresses the problem of service components avail-
ability by using a decentralized composition model in which
unavailable service components can be replaced by other
equivalent (set of) components through dynamic adaptation.
Service components appropriate to satisfy a given service
request, and to replace failing components, are selected from
all available components in the environment using a goal-
driven algorithm. There is no defined structure for service
components in GoCoMo; rather, components self-organize
(i.e., define their interactions) upon a service request sent by
users, as the initiator of the execution process. Such a request
can come from a pre-defined service of the application in
use, or as a query expressing the goal to be fulfilled. Regard-
less of the method used, at the moment of a service request,
it is unknown if the requested service can be executed due
to components’ unavailability. Therefore, services can still
be requested by users and be unavailable in certain environ-
ments. This fact constitutes the main novelty and difference
of Mordor over GoCoMo. Using Mordor, by definition, all
services available to users (i.e., can be requested) are exe-
cutable, as these are exactly the services pushed to users
from the environment. Additionally, while both approaches
enable service components to self-organize, in Mordor such
organization is independent from service requests. That is,
service components interactions are determined at compo-
nents’ connection/disconnection time (i.e., discovery), and
remain untouched so long service components availability
does not change.

The difference between the two approaches may impact
the execution of services in pervasive environments in two
ways. First, the success ratio of a service execution should
improve using Mordor, due to the assurance that all compo-
nents of pushed services are available in the environment. The
way in which service components self-organize will have an
impact on the delay-time of answering for a service request

24

depending on the volatility of the environment and the stress
on services’ use. In an environment with low volatility of
service components in which (the same) services are called
often, GoCoMo services may take longer to execute than
in Mordor. In highly-volatile environments where services
are not called as often, Mordor services may take longer to
execute. A full evaluation of the tradeoff between the two
approaches is left for future work.

(Model-free) Learning Bringing learning techniques into
SOC is not an idea exclusive to Mordor. It is important to
note, however, that in order to allow service emergence, it is
necessary to use a model-free learning algorithm. Having a
model would require previous knowledge about the system,
similar as when using an abstract workflow specification to
define a service. Notwithstanding, learning has been used
extensively in SOC to optimize service composition with re-
spect to certain QoS requirements [20, 33]. Learning has also
been used for service adaptation using dynamic composition
planning [37].

Composing software services from multiple available
providers is a difficult task because not all services may pro-
vide the same execution properties —that is, satisfy the same
QoS requirements. As a result, services may be composed in
sub-optimal fashions. Optimizing service composition with
respect to QoS attributes can be improved by means of rein-
forcement learning. Here, the system learns which service
component combinations yield a better system state [33],
even when multiple QoS attributes are evaluated simultane-
ously [20]. Service composition learning in Mordor draws
inspiration from these approaches in that we also learn which
service components can be composed with one another. How-
ever, unlike existing approaches, in Mordor, the states of the
learning engine are generated at run-time.

Service adaptation through learning uses a central compo-
sition engine, where a composition plan is made according
to the rewards obtained from previous compositions. In case
the execution fails, a new plan is drawn using different ser-
vice components [37]. This approach is somewhat similar
to ours in that service components analyze possible compo-
sitions with every new component that is deployed in the
environment.

(Context-aware) Mashups Mashups are introduced to inte-
grate data from multiple sources and provide new services
from the combination of such data. Mashups proved useful
as visualization services, by combining geo-location with
service data. For example, a mashup can be used to display
all social media posts in a map, during a particular period of
time. Furthermore, mashups can use sensor data to specialize
provided services to the current situation in the surrounding
environment [4]. Mashup definition is sequential, following
a defined structure in which data can be combined. Such se-
quential definition makes the applicability of mashups to per-
vasive environments complex. This is due to the uncertainty
about resources availability associated with these environ-

ments. Dynamic mashup solutions are explored to tackle the
aforementioned problems. Dynamic mashup definitions [32],
introduce service types as a means to group services pro-
viding similar functionality and abstract the interaction with
concrete mashup services. This model also permits the dy-
namic selection of mashups according to the surrounding
environment.

Mashup development is similar to SOC in that it intends
to compose services from already existing ones. Mashups run
into many of the same problems regular SOC approaches face,
and so are unfit for our purpose. However, the idea of service
types introduced in mashups could be used as inspiration to
extend the ontology classification of service components as a
means to group them.

Symbiotic Interfaces Symbiotic Interfaces are introduced
in the context of human-machine interaction as a means to
enable ad hoc collaboration between users. This technology
is used, in particular, in the presence of wearables, where
the devices can both take advantage of the situation to
improve their functionality, and use the system to help human
behavior [2, 29]. While introduced in a different setting,
symbolic interfaces share some commonalities with our
approach, as they enable the possibility to learn information
about the executing system in order to predict future behavior.

5. Challenges
In Section 3.4, we already discussed some of the extensions
required in Mordor to enable the emergence of software ser-
vices in environments with heterogeneous service compo-
nents. In this section, we further discuss some of the current
and future challenges faced to completely fulfill software
service emergence. This section also serves as a roadmap for
the future research avenues to explore in, and spawn from our
vision.

5.1 Self-Organization
One of the main challenges in service emergence, arising as a
consequence of the interaction between multiple service com-
ponents, is the definition of services as semantically meaning-
ful objects understood by users. Such semantic definition is
required to convey the intention of all components making up
the service. The research question to explore here is how to
give meaning to an aggregated object. Our current exploration
combining the semantic ontology associated with each of the
used components could be extended by exploring emergent
semantic techniques in the data-base community [11], the use
of markup techniques in the semantic web [19], or even the
creation of meaning in linguistics [9, 22].

5.2 Learning Interactions
In the learning area, we could also consider using a dynamic
reward function for the learning phase of service components’
interactions. As mentioned in Section 2.3, every service
composition has an associated reward for a particular service

25

component. The more a service component is used, the
more likely this service is to be used in the future. However,
given the environment’s dynamicity, the conditions in which
services execute may change, requiring to modify the reward
function involving that service. For example, because a
component’s QoS decreases, or one component is no longer
available for the execution of a service. To deal with these
situations, Mordor’s reward function should proportionally
track QoS attributes, and each time they change adjust the
currently learned services, so that the likeliness of using
services with deteriorating QoS values, until the service is
fully un-learned.

5.3 Communication
IoT and CPS environments are composed of tens and hun-
dreds of devices. If a service component is defined for each of
these devices, the messages exchanged to organize them may
quickly overflow the network. Further research in Mordor is
required to optimize network usage. Rather than allowing all
service components in the environment to interact with every
other component, we could apply message passing algorithms
used in distributed and peer-to-peer networks. Among the
possibilities to explore we include the use of tuple spaces [7],
gossip algorithms [28], and ultrapeer communication [30].

5.4 Dealing with Choice
Emergence of services from available service components can
potentially result in an excess of services that can be pushed to
users. This is specially the case in IoT and CPS environments
where the number of devices potentially defining fine-grained
service components is ever at a rise. As described by the
paradox of choice [26], offering too many services to users
might actually prevent users from using any service, in
particular because users are not previously aware of the
services that might be available.

To attain this concern, in Mordor we already envision
emergent services to be organized according to their semantic
application domain, as shown in Figure 5. Additional refining
of available services could be done by means of filtering
results. More over, we can use the q-value of services to order
them according to their relevance (i.e., services used more are
shown first as they are “preferred”). Nonetheless, we foresee
these measures not to be enough. Two research areas can be
explored to ease this problem.

First, it is clear that not all services are of interest to all
users. For example, in the poker-hand application, users may
only want to see winning hands —that is, hands contain-
ing three of a kind, or higher. Behavioral adaptations have
been used in the past for the specialization and customization
of application behavior with respect to users’ preferences.
Extending the service component adaptation technique intro-
duced in Section 2.4, it is possible to customize the kind of
services that emerge for a particular user. For example, sight
impaired users may want to filter emergent services exclu-

sively to those services whose outputs can be transformed
into an audio signal.

A second possibility is to refine the services gathered
in Mordor according to a semantic ontology, similar to the
way semantic web refinements work. The idea behind this
approach, similar to the customization of observed services,
is to refine the kind of services that are pushed to users. For
example, a decision tree could be built based on user-defined
ontologies, specifying what kind of services are of interest to
users [15].

5.5 Reliability and Robustness
Coupled to the problem of dealing with choice presented in
Section 5.4, come the challenges of the system’s reliability
and robustness.

The type and amount of services pushed to users solely de-
pends on the environment of use. Users may find discomfort
in an application, using Mordor, offering a variable set of ser-
vices, as services previously used may not be available in new
environments. User acceptance to the new service provision
approach proposed with Mordor is key for its realization. In
future work, several user studies must be conducted to evalu-
ate the acceptance of users when faced with such a system.
Such a user study would consist of a user group using a fixed
restricted set of services in different environments, some of
which are not able to satisfy all services’ requests. A second
user group will use Mordor in the same environments as the
previous group, using the services that emerge from each
environment. Then, the reactions of both users groups can
be compared with respect to service availability, frustration
of using the system, and conformance to the set of services
used.

Additionally, emergent services may present side-effects
or behavior that does not map to users’ initial expectations.
The fact that a set of service components can interact and be
combined into a service does not guarantee that this service
would be useful, or be accepted by users. This problem
can be addressed from two perspectives. Semantically, the
emergent service could express the effects of executing a
service [3]. This way users would be better informed about
a the services they execute. In the poker example, this is
done by presenting the service as the combination of all five
cards, rather than just the name of the play e.g., “three of a
kind.” A second alternative, would be to use a user defined
functional verification process during service components’
composition, such that the effects of a service can be verified
upfront its execution. This alternative, for example, could be
specified not to consider service combination of triplets of
cards where the remaining two cards have a denomination
below seven. The drawback of this alternative, is that users
are being burden again with the definition of verifications
for multiple services they may not know during development.
Both of these alternatives, would need to be explored in the
future.

26

6. Conclusion
This paper proposes a new vision for Service-oriented Com-
puting (SOC) applicable to pervasive environments as real-
ized by the IoT and CPS. In our vision we reverse the control-
flow of service composition and execution by enabling the
system to dictate what services can be executed in a given
environment. Software services emerge from the interactions
of service components deployed in the environment, and are
subsequently pushed to the user. The advantage of using such
SOC model is that service developers are not required to have
any previous knowledge about their deployment environment,
or other services deployed in it. Rather the development focus
can be on components’ logic. Keeping components’ function-
ality as fine-grained as possible, the flexibility and availability
of services increases, being able to compose a full-fledged
service in various ways (i.e., (re-)using different service com-
ponent providers).

We have implemented a first prototype framework for soft-
ware services’ emergence, dubbed Mordor. Mordor currently
contains the basic functionality to define service components
that can learn and interact with other components. In order
to validate the feasibility of our vision, we developed three
applications using Mordor. These applications define mul-
tiple services components, confirming that new composed
services emerge, and that real-life complex applications can
be build with Mordor. Furthermore, we discussed avenues for
future work required to fulfill the overall vision of emergent
software services.

Acknowledgments
We thank the anonymous reviewers for their comments on
earlier versions of this paper. Special thanks go to Ivana
Dusparic for discussing the ideas, and reviewing early drafts
of this paper.

References
[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu,

S. Mittal, and B. Srivastava. A service creation environment
based on end to end composition of web services. In Proceed-
ings of the 14th International Conference on World Wide Web,
WWW ’05, pages 128–137, New York, NY, USA, 2005. ACM.
ISBN 1-59593-046-9.

[2] D. Ashbrook and T. E. Starner. Enabling ad-hoc collaboration
through schedule learning and prediction. In Proceedings of
the CHI Workshop on Mobile Ad-Hoc Collaboration. ACM,
2002.

[3] N. Bencomo, K. Welsh, P. Sawyer, and J. Whittle. Self-
explanation in adaptive systems. In 17th International
Conference on Engineering of Complex Computer Systems,
ICECCS’12, pages 157–166, July 2012.

[4] A. Brodt, D. Nicklas, S. Sathish, and B. Mitschang. Context-
aware mashups for mobile devices. In Proceedings of the
9th international conference on Web Information Systems
Engineering, WISE ’08, pages 280–291, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-85480-7. doi: 10.
1007/978-3-540-85481-4_22.

[5] N. Cardozo and S. Clarke. Context slices: Lightweight discov-
ery of behavioral adaptations. In Proceedings of the Context-
Oriented Programming Workshop, COP’15, pages 2:1–2:6.
ACM, July 2015. doi: http://dx.doi.org/10.1145/2786545.
2786554.

[6] N. Cardozo, K. Mens, S. González, P.-Y. Orban, and W. De
Meuter. Features on demand. In Proceedings of the 8th
International Workshop on Variability Modelling of Software-
intensive Systems, number 18 in VaMoS’14, pages 18:1–18:8.
ACM, January 2014. ISBN 978-1-4503-2556-1/14/01.

[7] N. J. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman.
Message passing interfaces: The linda alternative to message-
passing systems. Parallel Computing, 20(4):633 – 655, 1994.

[8] N. Chen, N. Cardozo, and S. Clarke. Self-organizing goal-
driven services in mobile pervasive computing. Transactions
on Services Computing, page to appear, 2016.

[9] P. Cobley, editor. The Routledge Companion to Semiotics and
Linguistics. Routledge, 2005. ISBN 0–415–24313–0.

[10] P. Costanza and R. Hirschfeld. Language constructs for
context-oriented programming: An overview of ContextL. In
Proceedings of the Dynamic Languages Symposium, pages
1–10, Oct. 2005.

[11] P. Cudré-Mauroux, K. Aberer, A. I. Abdelmoty, T. Catarci,
E. Damiani, A. Illaramendi, M. Jarrar, R. Meersman, E. J.
Neuhold, C. Parent, K.-U. Sattler, M. Scannapieco, S. Spac-
capietra, P. Spyns, and G. D. Tré. Viewpoints on emergent
semantics. Journal on Data Semantics, 5:1–27, 2006.

[12] A. Furno and E. Zimeo. Efficient cooperative discovery of
service compositions in unstructured p2p networks. In 21st
Euromicro International Conference on Parallel, Distributed
and Network-Based Processing, PDP’13, pages 58–67, Feb
2013.

[13] M. Gharzouli and M. Boufaida. Pm4sws: A p2p model for
semantic web services discovery and composition. Journal
of Advances in Information Technology, 2(1):15–26, February
2011.

[14] C. Groba and S. Clarke. Opportunistic service composition in
dynamic ad hoc environments. IEEE Transactions on Services
Computing, 7(4):642–653, 2014.

[15] D. Jeon and W. Kim. Concept learning algorithm for semantic
web based on the automatically searched refinement condition.
In W. Kim, Y. Ding, and H.-G. Kim, editors, Third Joint
International Conference on Semantic Technology, JIST’13,
pages 414–428, Cham, November 2014. Springer International
Publishing. ISBN 978-3-319-06826-8.

[16] S. Jiang, Y. Xue, and D. C. Schmidt. Minimum disruption ser-
vice composition and recovery over mobile ad hoc networks.
In International Conference on Mobile and Ubiquitous Sys-
tems: Networking Services, MobiQuitous’07, pages 1–8. IEEE
Xplore, Aug 2007.

[17] S. K. Khaitan and J. D. McCalley. Design techniques and
applications of cyberphysical systems: A survey. IEEE Systems
Journal, 9(2):350–365, June 2015.

27

[18] F. Mattern and C. Floerkemeier. From the internet of computers
to the internet of things. Informatik-Spektrum, 33(2):107–121,
2010.

[19] S. McIlraith, T. C. Son, and H. Zeng. Semantic web services.
IEEE Intelligent Systems, pages 46–53, March 2001.

[20] A. Moustafa and M. Zhang. Multi-objective service compo-
sition using reinforcement learning. In S. Basu, C. Pautasso,
L. Zhang, and X. Fu, editors, Proceedings of the 11th Interna-
tional Conference on Service-Oriented Computing, ICSOC’13,
pages 298–312, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg. ISBN 978-3-642-45005-1.

[21] V. Nallur, A. Elgammal, and S. Clarke. Smart route planning
using open data and participatory sensing. In E. Damiani,
F. Frati, D. Riehle, and A. I. Wasserman, editors, Open Source
Systems: Adoption and Impact, volume 451 of IFIP Advances
in Information and Communication Technology, pages 91–100.
Springer, 2015. ISBN 978-3-319-17836-3. doi: 10.1007/
978-3-319-17837-0_9.

[22] C. E. Osgood, G. J. Suci, and P. H. tannenbaum. The measure-
ment of Meaning. University of Illinois at Urbana-Champaign
Press, 2 edition, 1967.

[23] R. Popescu, A. Staikopoulos, A. Brogi, P. Liu, and S. Clarke.
A formalized, taxonomy-driven approach to cross-layer appli-
cation adaptation. Transactions on Autonomous and Adaptive
Systems, 7(1):7, 2012.

[24] D. Quercia, R. Schifanella, and L. M. Aiello. The shortest
path to happiness: Recommending beautiful, quiet, and happy
routes in the city. In ACM Hypertext, HT’14, pages 116–125,
New York, NY, USA, September 2014. ACM. ISBN 978-1-
4503-2954-5.

[25] V. Raychoudhury, J. Cao, M. Kumar, and D. Zhang. Middle-
ware for pervasive computing: A survey. Pervasive Mobile
Computing, 9(2):177–200, Apr. 2013.

[26] B. Schawrtz. The Paradox of Choice. Harper Perennial, 2004.
ISBN 0-06-000568-8.

[27] S. Schuhmann, K. Herrmann, K. Rothermel, and Y. Boshmaf.
Adaptive composition of distributed pervasive applications in
heterogeneous environments. ACM Trans. Auton. Adapt. Syst.,
8(2):10:1–10:21, July 2013.

[28] D. Shah. Gossip algorithms. Foundations in Networking, 3(1):
1–125, 2009.

[29] B. A. Singletary and T. E. Starner. Symbiotic interfaces for
wearable face recognition. In Human Computer Interaction
International Workshop on Wearable Computing, HCII’01,
New Orleans, LA, August 2001.

[30] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient con-
tent location using interest-based locality in peer-to-peer sys-
tems. In Proceedings of the 22nd Annual Joint Conference
of the IEEE Computer and Communications Societies, INFO-
COM’03. IEEE Computer Society, 2003.

[31] L. Thomas, J. Wilson, G.-C. Roman, and C. Gill. Achieving
coordination through dynamic construction of open workflows.
In J. M. Bacon and B. F. Cooper, editors, Proceedings of
the 10t International Middleware Conference, pages 268–
287, Berlin, Heidelberg, December 2009. Springer Berlin
Heidelberg. ISBN 978-3-642-10445-9.

[32] J. Vallejos, J. Huang, P. Costanza, W. De Meuter, and
T. D’Hondt. A programming language approach for context-
aware mash-ups. In Third International Workshop on Web APIs
and Services Mashups, Mashups’09. ACM, October 2009.

[33] H. Wang, X. Zhou, X. Zhou, W. Liu, W. Li, and A. Bouguet-
taya. Adaptive service composition based on reinforcement
learning. In P. P. Maglio, M. Weske, J. Yang, and M. Fanti-
nato, editors, Proceedings of the 8th International Conference
on Service-Oriented Computing, ICSOC’10, pages 92–107,
Berlin, Heidelberg, December 2010. Springer Berlin Heidel-
berg. ISBN 978-3-642-17358-5.

[34] C. Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College London, London, UK, May 1989.

[35] E. Wolff. Microservices: Flexible Software Architectures.
CreateSpace Independent Publishing Platform, January 2016.
ISBN 978-1523361250.

[36] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-aware middleware for
web services composition. IEEE Transactions on Software
Engineering, 30(5):311–327, May 2004.

[37] H. Zhao and P. Doshi. Haley: A hierarchical framework for
logical composition of web services. In IEEE International
Conference on Web Services, ICWS’07, pages 312–319, July
2007.

28

	Introduction
	Software Services Emergence
	Service Components Organization
	Fine-Grained Service Definition
	Emerging Service Composition
	Service Execution

	Emerging Services in Mordor
	Current State of Affairs
	Service Emergence Feasibility
	Color Palette
	Poker-Hand

	Service Component Development
	Extension to Heterogeneous Services

	State-of-the-Art
	Challenges
	Self-Organization
	Learning Interactions
	Communication
	Dealing with Choice
	Reliability and Robustness

	Conclusion

