
Crossfire - Multiprocess, Cross-Browser,
Open-Web Debugging Protocol

Michael G. Collins

IBM Research - Almaden

mcollins@collinsmichaelg.com

John J. Barton

IBM Research - Almaden

johnjbarton@johnjbarton.com

Abstract
We present Crossfire, a system and protocol designed to en-
able debugging of Web pages in another process or machine.
Issues specific to any one Web browser are abstracted by the
protocol and implementation, allowing a new generation of
Open Web development tools to be implemented. We discuss
the major refactoring of Firebug, the open source Web de-
bugging tool to use Crossfire and the interplay between goals
and resources that such an effort requires. In addition to the
cross-browser focus of the protocol, we also discuss support
for extensions which themselves will be cross-browser and
client-server.

Categories and Subject Descriptors D.2.5 [Software Engi-
neering]: Testing and Debugging debugging aids, distributed
debugging

General Terms Experimentation, Reliability

Keywords Source-Level Debugging, Distributed Debug-
ging, Open Source

1. Introduction
Web Applications continue to grow in size and complexity.
The appearance of AJAX, which enabled data to be down-
loaded by a Web page in the background, started the surge.
This led to the emergence of common toolkits and libraries
for JavaScript, which drove performance increases in Web
Browsers, fueling more growth in client-side Web applica-
tion development. These improvements, combined with new
features available in Web browsers shifted investment from
server- to client-side. Recent empirical analysis of represen-
tative major Web sites shows program sizes in the range of
hundreds of kilobytes of sophisticated code[27].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’11 Companion, October 22–27, 2011, Portland, Oregon, USA.
Copyright © 2011 ACM 978-1-4503-0942-4/11/10. . . $10.00

To develop and maintain these large applications, pro-
grammers and designers rely on numerous tools, most no-
tably Web page debuggers. This paper describes Crossfire,
a protocol and implementation to provide a next generation
platform for Web page debuggers: support for cross-browser,
remote and mobile development tools. We describe the ma-
jor re-architecting of the most widely used Web page de-
bugger, Firebug, to use Crossfire to support its client-server
communications. Our description focuses on practical, state-
of-the-art issues in an on-going, fast-moving, open-source
project. Thus we cover details of protocol important for im-
plementation and issues of matching resources to goals im-
portant for project management: we must deal with both low
and high level issues to be successful.

2. Background
To understand the importance and challenges of the Cross-
fire work we start by introducing Firebug. Released by Joe
Hewitt in 2006, Firebug was the first integrated Web debug-
ger. Firebug is a runtime debugger: it directly accesses, re-
sponds to, and operates on the running Web browser. Rather
than separate views of JavaScript, CSS, and HTML, Firebug
integrated its views such that interaction with, for example,
an HTML element would cause synchronized views of the
CSS rules. Rather than static views of browser state, Firebug
included dynamics like network traffic analysis and console
logging; rather than read-only views, Firebug allowed live
edits where possible so developers could try out changes.
The resulting tool became very popular with developers and
contributing significantly to the growth in Web applications.

The primary implementation of Firebug is a Firefox
extension, a supplemental software component that loads
into the Firefox Web browser. A secondary implementation
with fewer features and, in particular, limited support for
JavaScript debugging, called Firebug Lite, works in multiple
browsers. The success of Firebug triggered competitive im-
plementations of Web Page debuggers in other browsers, in-
cluding DragonFly for Opera[20], Web Inspector for Google
Chrome and Apple Safari[5], and the developer tools in Mi-
crosoft Internet Explorer[12]. Since 2007 Firebug has been

115

developed as an open source project, with seven major re-
leases.

To give a flavor of the kinds of operations Firebug sup-
ports, we outline an example more completely described in
Ref.[22]. Suppose a developer wants to understand why a
block of text in the Web page turned green while the page
was loading. They might use the Firebug ”inspect” feature,
moving their mouse cursor over the green text, causing Fire-
bug to display the corresponding HTML element. They see
that the element has a style attribute setting the color green.
While hovering over the green block of text, the developer
clicks down to lock the user interface on the element, then
moves to the HTML panel in Firebug and right-clicks on the
selected HTML element representation. A menu pops up al-
lowing the developer to select ”Break On Attribute Change”.
When the developer reloads the page, Firebug halts in the
JavaScript code panel, on the line where the attribute is
changed from red to green.

This example illustrates that we will need to synchronize
mouse events on the Web page with the debugger UI, iden-
tify HTML element representations rendered in the debugger
UI with the elements in the Web page and synchronize DOM
mutation event handling wit JavaScript execution. Crossfire
is designed to support the kinds of features available in cur-
rent built-in development tools such as Firebug, while en-
abling the advantages of a remote debug connection.

3. Design Motivation
Crossfire has three main design goals: multiprocess sup-
port, remote and mobile debug, and cross-browser debug-
ging. These closely related goals arose out of an interplay be-
tween user benefit and development costs. As an open source
project we must work with development resources motivated
by goals: no matter how much value Firebug users may re-
ceive from a goal, the selection must be limited by the moti-
vation of open source contributors.

Necessity motivated the first Crossfire design goal, multi-
process support. Soon after the Google Chrome browser was
released, the Firefox team at Mozilla began plans to convert
Firefox to a multi-process design. The Google browser uses
one controlling process for the application and one process
for each Web page. This allows the browser to use the oper-
ating system isolation to prevent problems on one page from
bringing down the entire application and it allows each page
to use a different physical processor on modern multi-core
computers [11]. Depending upon the Firefox browser plat-
form changes, a shift to multiprocess could render a single-
process Firebug debugger unusable.

As a practical matter we could not wait for the new plat-
form to become available: with only two full-time develop-
ers plus a number of dedicated but part-time contributors,
and a commitment to continuous compatibility with Firefox
we had to begin work immediately to ensure that our small

resource could complete the transition in time to remain a
viable project.

Therefore we assumed that Firefox would eventually
adopt an architecture similar to Google Chrome: a clien-
t/server split debugger with a back-end in one process and
a front-end in another process. We believe that this assump-
tion is planning for the worst case: converting Firebug to
client/server is a multi-person-year effort but likely to work
with what ever the Firefox team decides to do.

While necessity forced our action, opportunity followed.
The client/server choice, if successful, adds two new dimen-
sions to Firebug for users: remote debug and mobile device
debug. We expect the value of these dimensions to grow as
more developers work in distributed teams and as mobile
plays an increasingly important role in Web application de-
velopment. In fact this value was recognized by the Drag-
onFly Web debugger for Opera[20] well before the Google
Chrome browser.[5] The additional cost of designing for re-
mote and mobile debug on top of a client/server design – pri-
marily mechanisms for specifying the connection addresses
– comes with potentially high benefits. Moreover, the bene-
fits align with directions important to the project’s primary
open source contributors (IBM and Mozilla).

The final goal of cross-browser debugging offers even
more benefits to Firebug users. Web application developers
by definition target all Web users, but not all Web users are
running identical Web platforms. Almost all potential users
of a Web site will be running one of few similar but slightly
different browsers. The commonality allows Web developers
to do most of their work on one browser, then test for differ-
ences on other browsers. Of course in the latter case they
need to debug the problem on a browser with unfamiliar de-
bugging tools. A common debugging tool across the major
browsers would help with this common and significant prob-
lem.

The benefit of cross-browser debugging comes at a high
cost for the project. Instead of one server and one client, we
face at minimum one server for every browser. And for each
server we have to deal with both the slight differences in
browser implementation of standard Web APIs and poten-
tial large differences in how debuggers can connect to the
browser.

Unlike commercial or pure research projects, a community-
driven open source project like Firebug might balance the
cost of implementing cross-browser debugging support by
attracting more contributors interested in this particular goal.
That is, by adding this costly goal we can attract new con-
tributors, allowing us to create more total value. In particular
new contributors from the Orion project[21], joined to create
a Crossfire server for Microsoft Internet Explorer and from
the Eclipse project[10] to create a new Crossfire client in
Java for connecting to Eclipse. Moreover, a cross-browser
client for Web debugging can be largely implemented with

116

Firebug Lite code, allowing our project to consolidate devel-
oper resources around fewer lines of code to maintain.

Our three design goals created constraints for the Cross-
fire implementation. Above we outlined how the multipro-
cess support lead to a client-server design choice. Support
for remote and mobile debug forces isolation of user inter-
face to the client (excepting some small interface for con-
nection specification). The cross-browser goal creates con-
straints indirectly: to minimize the extra cost of support-
ing multiple servers we chose to adopt the Google Chrome
communications channel (sockets) and wire protocol format
(JSON). Neither Firefox nor Internet Explorer had existing
servers, so they did not alter our choices. Opera had a server
but no one on our open source team planned to work with
Opera and the server itself was not open source making im-
plementation more difficult. Since Firebug is already written
in JavaScript, JSON format is especially easy to work with
and has good performance[25]. For the communications pro-
tocol, HTTP would be a better choice for the project: the
JavaScript support for HTTP is much better than sockets and
HTTP works better in practical remote scenarios through
firewalls. However we made the judgment that better socket
support was coming in the near future[1], support was ade-
quate now, and lowering cost on a Google Chrome back-end
was important. In addition our goals imply that the client and
the communication protocol should be built from open Web
standards to maximize the reuse across target browsers.

4. Evolution not Revolution
In addition to motivating developers to contribute to Cross-
fire, we also need to motivate users to help us test and refine
the system. As a practical project supporting 3 million users,
Firebug provides a large base of experienced Web develop-
ers working with a broad spectrum of Web technologies. An
open source, working, state-of-the-art debugger motivates
users to explain problems, create test cases, provide docu-
mentation and to help other users with problems that come
up. To harness this unusual resource for Crossfire we need
a plan for incremental refactoring of Firebug to be compat-
ible with Crossfire. The refactoring plan needs to provide
waypoints for the development and it needs to provide inter-
mediate value to users and/or contributors.

4.1 Inter-application JavaScript Debugging

The first intermediate state for Crossfire is shown in Fig.1.
In Firefox we implemented a Crossfire server limited to sup-
port for JavaScript debugging. In Eclipse we implemented a
Crossfire client. This allows the user interface in Eclipse to
control and examine the JavaScript program running in Fire-
fox. A proprietary version of the client shipped in IBM’s Ra-
tional Application Developer product for two years, then the
open source Eclipse team created a new implementation as
part of it’s JavaScript Developer Tools (JSDT) project[10].
By working towards the Eclipse team’s goals of remote

Figure 1. Inter-application JavaScript Debugging Crossfire
architecture. Crossfire versions 0.1 to 0.3 connected to an
Eclipse plugin, supporting simple JavaScript debugging

JavaScript debugging, this stage of the work provided valu-
able implementation experience and engagement with the
Eclipse team. This work has been released to users but con-
tinues to be improved.

4.2 Intra-browser JavaScript Debugging

The second intermediate state implements the client side of
the JavaScript part of Crossfire in a Web browser as sketched
in Fig. 2. While this diagram seems a bit bizarre, with the

Figure 2. Intra-browser JavaScript Debugging Crossfire ar-
chitecture. Crossfire versions 0.4 targets supporting simple
JavaScript debugging with the client and server in the same
application.

debugger running in and connecting back into the the same
browser, this step allows us to add JavaScript debug support
to the Firebug Lite implementation in the Google Chrome
browser while we simultaneously refactor the Firefox Cross-
fire server to resemble the Google Chrome back end.

The key reason this architecture makes sense is that a
large part of the non-JavaScript parts of a Web page debug-
ger uses standard Web APIs. That means that three different
applications, Firebug Lite running as co-resident with a Web
page, Firebug Lite running as a Google Chrome extension,
and the HTML/CSS/Console debug support code in Fire-
bug for Firefox can use identical code in different wrappers.
By re-engineering our current somewhat divergent code to
group the identical parts we reduce maintainence. By adding
JavaScript debugging using the now platform-independent
Firefox code to the Firebug for Google Chrome code we add

117

user value: the beginnings of cross browser development.
Both efforts contribute to our final goals.

Furthermore, the two JavaScript-only Crossfire servers,
one for Firefox and one for Google Chrome, will be able to
support alternative clients. In particular, the Orion project,
a Web based Web-development system, plans to support
JavaScript debugging over Crossfire on their editor user in-
terface. In return that project is implementing a Crossfire
server for Internet Explorer, allowing us to cover more than
75% of the browser market with Crossfire supported tools.
Versions with these features are scheduled to complete in
June, 2011.

4.3 Cross-browser Debugging

The final stage completes the transformation of an in-process
single-browser Web page debugger to a client-server cross-
browser tool as shown in Fig. 3. Conceptually we simply re-

Figure 3. Cross-browser Debugging architecture, proposed.

apply the approach ironed out in the previous step to the rest
of the program and arrive at the complete value proposed at
the outset. In practice, the concept hides a lot of work. Many
lines of code must be carefully divide into two piles and the
whole must be made to work again. This work is scheduled
to complete in Dec. 2011.

4.4 Modules and Tools Interface

In parallel with the architectural changes outlined above, we
also need to make important infrastructure improvements.
Two such improvements are of particular interest: conver-
sion of the source code to ’modules’ and introduction of a
cross-browser JavaScript tools application programming in-
terface (API).

Modules The original Firebug for Firefox and Firebug Lite
code used HTML <script> tags to load and compile the
source. This approach has two major drawbacks: 1) all of
the top-level symbols in each file mix with the top-level sym-
bols of any other files loaded in the same scope and 2) the
load/compile steps are serialized. The first drawback never
affected Firebug code because all of the files encapsulated
their symbols in function scope. But the second one means
that loading code always causes an upfront overhead to start-
ing the application.

A replacement for <script> tag loading will need to
support both client and server sides of a refactored Firebug
and it must allow us to debug our own code. As in other
cases, we also want a solution that avoids additional work
by the development team. The solution we adopted was
RequireJS[23], a form of a module loader inspired by the
CommonJS[14] open standards effort. For the client side or
Firebug Lite we can use this loader directly once we change
our source to its format. For the server side we needed
to implement code to read source files within the Firefox
platform and to support debugging.

Tools Interface During the transformation from mono-
lithic to client-server application, Firebug needs to operate in
both modes. The obvious way to deal with this is to introduce
a programming interface between the front and back ends.
In Firebug for Firefox, the interface functions call the back
end directly; in the intermediate and cross-browser version
these functions call the Crossfire client API. Similarly in the
back end, the multiprocess versions of the interface call the
Crossfire server. Notice that this interface becomes a natu-
ral programming layer for interaction between parts of the
debugger. Since Crossfire is designed to be cross-browser,
with some care in the design, the programming interface we
create becomes a general purpose Tools Interface for Open
Web development.

The module and Tools Interface infrastructures comple-
ment one another. Each logical chunk of the Tools Interface
corresponds to the exported symbols from one of the mod-
ules and the conditional assembly of the application from
modules, to become either in-process or client-server, works
by using the module loader to select the appropriate imple-
mentations of the interface.

5. Crossfire
The Crossfire protocol is an asynchronous, bi-directional
protocol designed to enable the full functionality of the
Firebug debugger in a multi-process or remote scenario.
Where it was possible, the design of the protocol took cues
from existing debug protocols such as DBGP[24], Opera
Scope[8], Google’s Chrome Dev Tools[4] , as well as com-
mon Web technologies (e.g. HTTP, JSON[25]). Certain fea-
tures unique to Firebug and to debugging code running in-
side a Web Browser had to be taken into account in the
design of the protocol. We give an overview of the protocol
and discuss some aspects that are important to its design.

5.1 Overview

Debugging the code that implements a Web page or Web
application differs in some significant ways from debugging
applications developed for other types of systems. HTML
and CSS are used to declaratively specify the structure and
style of the user-interface, which is rendered by the Web
browser. Developers cannot (easily) debug the rendering
code itself. Instead, built-in tools like Firebug allow the

118

developers to interact with the rendering engine by modi-
fying the input and observing the output in real time, via
live CSS and DOM editing. JavaScript code on the page can
be stepped through when it is executing, however there is
no guarantee that any JavaScript code is necessarily running
at any given moment. JavaScript code on a Web page can
be triggered by timers, user interactions or network events.
There is no outermost main or idle loop to return to; when a
section of JavaScript code is finished executing, control re-
turns to the Web browser. This confounds attempts at things
such as a simple ’halt’ command, which is common among
debuggers for other systems. The closest analog in Firebug
is the break-on-next feature.

The Crossfire protocol is heavily event-driven, and re-
quests made via Crossfire are asynchronous. This differs
from many other debug protocols which are often syn-
chronous or a combination of synchronous and asynchronous
calls. The reasons for this decision stem from the nature
of code running in a web page, and the fact that in some
scenarios, especially the intermediate scenarios we wished
to achieve, we would have a remote client connected to a
server which also had a co-resident debug UI (Firebug). In
other words, a complete Firebug and Crossfire server imple-
mentation would be running in a single Firefox process, and
clients could connect to the Crossfire server. The result of
this scenario is that clients cannot assume or rely on being
the only agent acting on the runtime engine. For instance, a
Crossfire client cannot safely assume that the debugger will
remain suspended on a line of code until the client issues
a request to resume. It is also possible that this action was
triggered by the user from another client (in this case it is
helpful to think of Firebug’s in-process UI as another client
to the debugger). However any connected Crossfire client
will receive an event whenever the JavaScript debugger sus-
pends or resumes, and should react accordingly.

Implementations of the protocol differ based on whether
the implementation is intended to operate as a client or
server. A Crossfire server resides in or is connected to the
process which is acting as the runtime platform for the Web
page, application, or other code which is to be debugged.
This is typically a Web Browser, although supporting other
runtime environments is envisioned. A Crossfire client con-
nects to a server in order to receive events and issue requests,
typically in order to provide a user-interface for debugging,
(e.g. GUI or command-line debugger). It is not necessary for
the client and server to reside in the same process or even the
same host machine.

5.2 Connection and Handshake

To avoid conflicts with existing ports, Crossfire does not
specify a standard or well-known port. Port agreement is left
up to the user, or the client software must start the server
listening on the same port it will attempt to connect to.

The connection protocol is purposefully conventional.
The Crossfire server listens for a TCP connection on the

specified port (greater than 1024). A client wishing to con-
nect sends the string “CrossfireHandshake” followed by a
CRLF (a blank line specified by a carriage-return followed
by a line-feed character, as with HTTP). An optional sec-
ond handshake line may contain a comma-separated list of
tool names to be enabled immediately, followed by another
CRLF. The server replies with the same handshake string, at
which point the connection is established and the client may
begin sending requests and receiving events from the server.

5.3 Client/Server Behavior

Once a connection has been established and a success-
ful handshake is completed, the server may begin sending
events to the connected client using the same TCP connec-
tion used for the handshake. A client may also begin send-
ing requests to the server using the same connection. Clients
should not expect the server to respond synchronously to
requests or in order. The most common example is a Cross-
fire server sending one or more events to the client before
responding to a client’s request, because the events occurred
during the time the request was being sent or processed.

5.4 Message Packets

As described above, the packet format follows the design of
the Google Chrome browser[13]. A well-formed Crossfire
packet contains one or more headers consisting of the header
name, followed by a colon (“:“), the header value, and ter-
minated by a CRLF. A “Content-Length” header containing
the number of characters in the message body is required,
and additional headers are allowed.

The message body is separated from the headers by an-
other CRLF blank line. The blank line is followed by a well-
formed JSON string. The message must contain a “type”
field with the value one of “request”, “response”, or “event”,
and a “seq” field which contains the sequence number of
the packet. The sequence number of each message should be
greater than that of the last message received.

5.5 Contexts

Unlike desktop or server application debuggers, a Web
browser typically runs multiple applications or Web pages.
A developer is likely to debug one or two of these appli-
cations, while the rest are unrelated to the application. The
debugger must have a mechanism to focus on the particular
page being debugged. Firebug represents an instance of a
Web page via an object called a Context. The context object
allows Firebug’s panels and modules to share information
about a web page that is being debugged, therefore it has a
central role in Firebug’s architecture.

Most of the events that occur in a Web browser that are
of interest to a debug UI are related to individual pages, and
therefore individual Firebug contexts. Examples of context-
specific events include loading (or reloading) of a page,
loading and compiling a script, errors being generated from

119

an executing script, DOM elements being added or modified,
a breakpoint being added to a script, etc.

The Crossfire protocol uses contexts for most requests /
events. Crossfire represents a context as a mapping of the
unique context ID and the URL of the page. This allows a
connected Crossfire client to distinguish between separate
loads of the same URL, as is often the case when a developer
reloads a page several times in the course of developing or
debugging the page. Firebug’s TabWatcher component mon-
itors loading and unloading of Firefox windows and tabs.
The Crossfire server assigns a unique identifier to each con-
text, and passes this ID as part of most event and response
packets.

5.6 Breakpoints

Breakpoint debugging is a standard tool for debugging soft-
ware at runtime in many languages and environments. The
Web Browser environment creates several challenges for de-
signing a remote protocol which supports breakpoint debug-
ging. Firebug also introduces several types of breakpoints
which are not present in other environments [22].

Even the simplest case, a JavaScript line breakpoint, has
design implications that must be considered. Typically, such
a breakpoint is identified by a line number and the URL
of the script. However, existing JavaScript debugging APIs
such as Firefox’s do not contain the concept of Firebug’s
contexts. Therefore if a user places a breakpoint on line 23
of a URL http://localhost/script.js, then that breakpoint will
exist for all occurrences of that URL. This may or may not
be what the user actually desires. Considering the increasing
use of JavaScript libraries, it is entirely likely that a script
from the same URL is loaded into two completely unrelated
pages. It is conceivable that a user would wish to debug
his or her code and the interaction with the library, without
affecting code running in another tab or window.

Crossfire’s breakpoint protocol allows breakpoints to be
set in one of two ways, either with or without a context ID. If
a Crossfire client specifies a context ID along with a request
to set a breakpoint, then that breakpoint should be enabled
for that location in any existing context, or a future context
which is created with the same URL in the same container
(i.e. the page is reloaded).

If a client does not specify a context (by passing null as
the value of the context ID), then the behavior is to set a
breakpoint for the specified location in any future contexts.
The intended use case for this behavior is setting a break-
point in a client UI such as an editor, where the source code
location has changed (due to editing), but the changes have
not yet been applied to the page in the browser.

More advanced breakpoints, such as the HTML element
breakpoints, are supported by specifying that the location
property of a breakpoint in Crossfire is an arbitrary JSON
object. A location object is defined depending on the type
of breakpoint. A JavaScript line breakpoint has a location
object which consists of a target URL and line number.

Firebug’s HTML breakpoints have a location object which
consists of an XPath expression that identifies the target
element. Eventually other location types may be added, e.g.
to support network-related breakpoints such as Firebug’s
Break-On-XHR feature[22].

5.7 Extensibility

One of the goals of Crossfire is to support remote and multi-
process versions of Firebug. One of Firebug’s features is its
ability to be extended, and there are already many existing
extensions. Therefore, we have developed what an API for
Crossfire, called the Crossfire Tools API. The Tools API
allows Firebug extension developers a clean and consistent
way to access the Crossfire client and/or server connection.

On the server-side, the Tools API allows an extension
to send custom events and handle custom requests using
Crossfire’s connection and transport mechanism. A client
extension can listen for these events and respond to the
requests. Using this API, it will be possible for Firebug
extensions to continue to adapt to architectural changes in
future versions of Firebug.

One consequence of this design choice is that the set
of possible commands or event names cannot be specified
definitively by the protocol. A Crossfire client or server must
therefore be able to accept and respond to any well-formed
message packet, even if it may not know how to handle a
particular command or event type.

6. Implementation
6.1 Crossfire Firefox Extension

The first implementation of the Crossfire protocol is an ex-
tension to Firefox and Firebug. Implemented entirely in
JavaScript, it uses a modular design to allow us to share
code between client and server implementations, as well as
cross-browser implementations. The transport layer operates
as either a Crossfire client or server; currently the transport
operates over TCP sockets. Future support for operating over
HTTP and/or WebSockets is planned.

The extension can be started in client or server mode
either from the Firefox user interface, or via command-line
switches to Firefox. This latter mode of operation allows
external tools to launch Firefox and start the Crossfire server
listening on a known port so that the external tool may
automatically connect back to it.

6.2 Crossfire Tools API

To support extensions, Crossfire maintains a registry on both
the client and server side as show in Fig. 4. The Crossfire
extension also implements an API, called the Crossfire Tools
API which enables extensibility of the Crossfire system and
protocol. Firebug features such as the Console, Inspector,
and Net Panel, are implemented as tools using the API,
allowing them to be enabled/disabled independently.

120

A tool can be implemented as a JavaScript file or collec-
tion of files that implements the Crossfire Tools API. The
tool registers itself with the core Crossfire Module, provid-
ing an identification string that is used to identify messages
via the ’tool’ header. In server operation, the tool is then able
to receive notification when a connection is created or when
request packets are received. The Tools API allows a tool
to access Crossfire’s transport layer in order to send events
or command responses. Typically, a tool operating within the
context of a Crossfire server might register listeners with one
or more Firebug modules, in order to dispatch events gener-
ated by the module to the remote connection. A tool operat-
ing as part of a Crossfire client would process the events sent
from the server tool, and update part of the client UI, such as
a Firebug panel. The tool could also listen for client events
from the UI, and send the appropriate requests to the server,
to be handled by the tool’s server-side component.

Figure 4. Crossfire Extension Architecture. The Crossfire
Module running in both client and server load extension
modules which register ’tools’, one half in the Server Tools
registry and the other half in the Client Tools registry.

7. Related Work
7.1 Multiprocess Web Debug Tools

As we discussed above, Opera’s DragonFly[20] implements
a complete remote debug solution and Google Chrome’s
Web Inspector works across processes. These implementa-
tions are specific to their host browser.

7.1.1 Weinre

The Weinre (Web Inspector Remote)[26] project implements
a partial Web page debugger (no JavaScript debugging) by
adding JavaScript code to a Web page in a proxy server
much like Firebug Lite. The added code connects back to
the proxy which then re-transmits to a third process running
the user interface code from WebKit’s Web Inspector. The
main target for this work is mobile devices. If a Crossfire
server were implemented in Weinre, the proxy could support
connections to Crossfire clients.

7.1.2 Eclipse JSDT

The Eclipse JavaScript Development Tools (JSDT) project[10]
includes a Crossfire client implementation (currently in in-
cubation). This code is written in Java and supports connec-
tions to Firebug’s server as well as an early implementation
of Crossfire in Internet Explorer.

7.1.3 Orion

The Orion project[21] aims to create Web development tool-
ing based on Web technologies, and plans to use Firebug
and Crossfire as part of their debugging support. Discussions
with the Orion team helped inform the design of Crossfire.

7.1.4 Cloud 9 IDE

The Cloud 9 IDE[6] supports remote JavaScript debugging
(only) from a Web page to Google’s V8 engine running in a
Node.js server.

7.2 Remote Protocols

Many protocols have already been designed for the pur-
poses of remotely debugging an application running in an-
other process, virtual machine, host, etc. The GNU GDB de-
bugger has an associated Remote Serial Protocol (RSP)[7].
While it is the only debugger we know of with its own
song [3], it is primarily designed for debugging native code,
particularly on embedded systems, and would not be well-
suited for use with Firebug. The Java Debug Wire Protocol
(JDWP) [2] provides remote debugging of Java Virtual Ma-
chines. The protocol supports command and response mes-
sage pairs similar to Crossfire and other Web debugging pro-
tocols. However the design of the protocol, particularly the
synchronous aspects, would not work well with Firebug’s
existing architecture.

7.2.1 DBGp

DBGp[24], is an acronym for Debug Protocol, and was de-
veloped for version 2 of the XDebug debugger for the PHP
language. Although it was designed not to be language spe-
cific, many of the commands are intended to be synchronous,
as opposed to the asynchronous nature of Crossfire. DBGp
also allows for the debugger engine to send an event to a
client via the ’notification’ element, with a custom body.
However in order to support Firebug, we would need to de-
fine the same events defined by Crossfire as DBGp notifica-
tions, essentially creating another protocol within the proto-
col.

7.2.2 Opera Scope Protocol

The Opera browser has a built-in Web development tool
called DragonFly, which also supports the Scope remote
debug protocol. The Scope protocol[8] supports XML and
JSON formats, and features such as JavaScript debugging
and remote DOM inspection. It is used to allow the desk-
top DragonFly client to connect to another Opera browser
instance, including mobile versions.

121

7.2.3 V8 / Chrome Dev Tools Protocol

The V8 protocol[13] is a JSON-based wire protocol for de-
bugging JavaScript programs running within the V8 engine.
The Chrome Dev Tools protocol[4] wraps the V8 protocol
to provide the additional information needed to debug a Web
page running within Google’s Chrome browser. The protocol
implements JSON messages over TCP/IP sockets, and was
the basis for much of the initial work on the Crossfire pro-
tocol. However, over the course of developing Crossfire and
refactoring of Firebug, it was realized that Crossfire would
require more functionality than the Chrome protocols pro-
vided.

8. Future Work
8.1 Web Sockets

Implementations of the WebSocket API[1] and protocol[9]
standard are beginning to appear in recent versions of several
Web Browsers. The WebSocket API allows JavaScript code
in a Web page to create a full-duplex socket connection to
another host using a lightweight protocol. Using these API’s,
it may be possible in the future to provide a Firebug front-
end (similar to Firebug Lite) and Crossfire client which do
not rely on other browser-specific extension APIs.

8.2 Mobile Web Debugging

Mobile devices such as smart phones and tablet computers
now include full-featured Web browsers. In contrast to Desk-
top browsers, which have been adding more tools for devel-
opers, mobile browsers do not have the built-in Web devel-
opment tools. The intuitive reason for this lack of tools is
that the form factors of these mobile devices do not lend
themselves to software development tasks. In this scenario,
the remote debugging solution may be the only viable alter-
native.

8.3 Multi-user Debugging

The architecture and system we have built thus far has been
implemented and demonstrated with a single user in mind,
but is not restricted to that. Even in cases with a single user,
there could be cases where it is desirable for a Crossfire
server to support connections to multiple clients, such has
connecting an external IDE while also using Firebug’s in-
browser UI.

Though the default operating mode of our Crossfire
server implementation is to accept incoming connections
only on the local host interface, it is possible to connect
from a remote host. Since Crossfire should support multiple
clients, it is conceivable that multiple users could use sep-
arate Crossfire clients connected to the same Web page in-
stance to collaborate on developing or debugging that page.
While it is beyond the original goals of the Crossfire project,
it would be possible to build on the Crossfire work to add
additional features to facilitate this kind of collaborative de-
bugging.

9. Conclusion
Our work thus far has demonstrated that it is possible to
incrementally refactor and rearchitect an existing codebase
while maintaining the ability to support Firebug’s large user-
base with releases which are compatible with new releases
of Firefox. In addition we have shown it is possible to imple-
ment a system for remote debugging similar to existing so-
lutions in other browsers, but using a modular approach that
is written purely in JavaScript. The project has been success-
ful in attracting new contributors and new opportunities for
Firebug, enabling the project to explore new directions. Con-
tinuing this work will provide numerous benefits for Firebug
users as well new features that are in demand, while allow-
ing Firebug to adapt to possible future changes in Firefox,
and increasing the features offered by Firebug/Firebug Lite
in other Web browsers.

Crossfire is an on-going open source project with source[16]
and documentation[15] made available as part of the Firebug
project, as is Firebug’s source[18] and developer documentation[17].
Documentation and downloads for Firebug are also available
from the Firebug project’s website.[19]

Acknowledgments
As a multi-year open source effort, Crossfire results from a
broad collaboration and contributions from many individu-
als. Simon Kaegi from the Orion team lead us towards col-
laboration with the Orion and Eclipse teams. Darin Wright
wrote the initial implementation of the Tools Interface. Grant
Gayed and Mike Rennie heavily influenced the Crossfire
protocol during their implementation of the IE server and
Eclipse clients. Pedro Simonetti Garcia, Kevin Dangoor, and
Atul Varma provided key insights to the module loading
work. Jan ’Honza’ Odvarko powers the Firebug project es-
sential to our evolution strategy, especially implementing a
test suite critical to maintaining the quality of the waypoint
implementations. Steven Roussey helped with an early im-
plementation and feedback on issues it raised.

References
[1] WebSocket API Specification, 2001. http://dev.w3.org/

html5/websockets/.

[2] Java Platform Debugger Architecture, 2004. http://

download.oracle.com/javase/1.5.0/docs/guide/

jpda/.

[3] GDB Song, 2007. http://www.gnu.org/music/

gdb-song.html.

[4] Google Chrome Dev Tools Protocol, 2009. http://

code.google.com/p/chromedevtools/wiki/

ChromeDevToolsProtocol.

[5] WebKit Web Inspector, 2010. http://trac.webkit.org/

wiki/WebInspector.

[6] Cloud 9, 2010. http://cloud9ide.com/.

[7] GNU Debugger (GDB) Manual, 2010. http://

sourceware.org/gdb/current/onlinedocs/gdb/.

122

http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/
http://download.oracle.com/javase/1.5.0/docs/guide/jpda/
http://www.gnu.org/music/gdb-song.html
http://www.gnu.org/music/gdb-song.html
http://code.google.com/p/chromedevtools/wiki/ChromeDevToolsProtocol
http://code.google.com/p/chromedevtools/wiki/ChromeDevToolsProtocol
http://code.google.com/p/chromedevtools/wiki/ChromeDevToolsProtocol
http://trac.webkit.org/wiki/WebInspector
http://trac.webkit.org/wiki/WebInspector
http://cloud9ide.com/
http://sourceware.org/gdb/current/onlinedocs/gdb/
http://sourceware.org/gdb/current/onlinedocs/gdb/

[8] Opera Scope Protocol, 2010. http://dragonfly.opera.

com/app/scope-interface/.

[9] WebSocket Protocol, 2010. http://www.whatwg.org/

specs/web-socket-protocol/.

[10] Eclipse JSDT, 2011. http://wiki.eclipse.org/JSDT/

Debug.

[11] Google Chrome, 2011. http://www.google.com/chrome.

[12] Microsoft Internet Explorer Developer Tools, 2011. http://
msdn.microsoft.com/en-us/library/dd565628.

[13] V8 Debug Protocol, 2011. http://code.google.com/p/

v8/wiki/DebuggerProtocol.

[14] CommonJS, 2011. http://www.commonjs.org/.

[15] Crossfire online documentation, 2011. http://

getfirebug.com/wiki/index.php/Crossfire.

[16] Crossfire source repository, 2011. http://fbug.

googlecode.com/svn/extensions/crossfire/

branches/.

[17] Firebug developer api documentation, 2011. http://

getfirebug.com/developer/api/firebug1.7/.

[18] Firebug source repository, 2011. http://fbug.

googlecode.com/svn/branches/.

[19] Firebug website, 2011. http://getfirebug.com.

[20] Opera DragonFly, 2011. http://www.opera.com/

dragonfly/.

[21] Orion, 2011. http://www.eclipse.org/orion/.

[22] J. J. Barton and J. Odvarko. Dynamic and graphical web
page breakpoints. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages 81–90, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-799-8. doi:
http://doi.acm.org/10.1145/1772690.1772700. URL http://

doi.acm.org/10.1145/1772690.1772700.

[23] J. Burke. RequireJS, 2011. http://requirejs.org/.

[24] S. Caraveo and D. Rethans. DBGP, A common debugger
protocol for languages and debugger UI communication, Draft
16, 2007. http://www.xdebug.org/docs-dbgp.php.

[25] D. Crockford. JSON, 2006. http://json.org.

[26] P. Mueller. Weinre, 2011. http://pmuellr.github.com/

weinre/.

[27] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis
of the dynamic behavior of javascript programs. In Proceed-
ings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation, PLDI ’10, pages 1–12,
New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0019-
3. doi: http://doi.acm.org/10.1145/1806596.1806598. URL
http://doi.acm.org/10.1145/1806596.1806598.

123

http://dragonfly.opera.com/app/scope-interface/
http://dragonfly.opera.com/app/scope-interface/
http://www.whatwg.org/specs/web-socket-protocol/
http://www.whatwg.org/specs/web-socket-protocol/
http://wiki.eclipse.org/JSDT/Debug
http://wiki.eclipse.org/JSDT/Debug
http://www.google.com/chrome
http://msdn.microsoft.com/en-us/library/dd565628
http://msdn.microsoft.com/en-us/library/dd565628
http://code.google.com/p/v8/wiki/DebuggerProtocol
http://code.google.com/p/v8/wiki/DebuggerProtocol
http://www.commonjs.org/
http://getfirebug.com/wiki/index.php/Crossfire
http://getfirebug.com/wiki/index.php/Crossfire
http://fbug.googlecode.com/svn/extensions/crossfire/branches/
http://fbug.googlecode.com/svn/extensions/crossfire/branches/
http://fbug.googlecode.com/svn/extensions/crossfire/branches/
http://getfirebug.com/developer/api/firebug1.7/
http://getfirebug.com/developer/api/firebug1.7/
http://fbug.googlecode.com/svn/branches/
http://fbug.googlecode.com/svn/branches/
http://getfirebug.com
http://www.opera.com/dragonfly/
http://www.opera.com/dragonfly/
http://www.eclipse.org/orion/
http://doi.acm.org/10.1145/1772690.1772700
http://doi.acm.org/10.1145/1772690.1772700
http://requirejs.org/
http://www.xdebug.org/docs-dbgp.php
http://json.org
http://pmuellr.github.com/weinre/
http://pmuellr.github.com/weinre/
http://doi.acm.org/10.1145/1806596.1806598

	Introduction
	Background
	Design Motivation
	Evolution not Revolution
	Inter-application JavaScript Debugging
	Intra-browser JavaScript Debugging
	Cross-browser Debugging
	Modules and Tools Interface

	Crossfire
	Overview
	Connection and Handshake
	Client/Server Behavior
	Message Packets
	Contexts
	Breakpoints
	Extensibility

	Implementation
	Crossfire Firefox Extension
	Crossfire Tools API

	Related Work
	Multiprocess Web Debug Tools
	Weinre
	Eclipse JSDT
	Orion
	Cloud 9 IDE

	Remote Protocols
	DBGp
	Opera Scope Protocol
	V8 / Chrome Dev Tools Protocol

	Future Work
	Web Sockets
	Mobile Web Debugging
	Multi-user Debugging

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

