
Multitier Reactive Abstractions

Pascal Weisenburger

TU Darmstadt, Germany

weisenburger@st.informatik.tu-darmstadt.de

Abstract

Distributed applications are traditionally developed using

separate modules for each component in the distributed

system, which can even be written in different programming

languages. Those modules react on events such as user input,

which are produced by other modules, and may in turn

produce new events to be handled by different modules.

Thus, most distributed applications are reactive in nature.

Distributed event-based data flow makes it is hard to reason

about the system and therefore makes the development of

distributed systems challenging.

In this paper, we present language abstractions for dis-

tributed reactive programming easing the development of

such applications and supporting various distributed architec-

tures.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features

General Terms Languages, Design

Keywords Distributed Programming, Reactive Program-

ming

1. Motivation

Despite a long history of research, developing distributed

applications remains challenging. Among the sources of

complexity, we find that distributed applications are often

event-based [1, 10] and require to transfer both data and

control among different hosts [15].

These two aspects make it hard to reason about the behav-

ior of a distributed application because its runtime behavior

depends on the interaction between the separate modules via

events, whose occurrences can be unpredictable and poten-

tially interleaving [5, 7]. Thus, keeping track of potential

events, control flow and data flow between components is

challenging. The separation into modules during the develop-

ment process leads to developers having a local view of each

module but may not be aware of the interaction regarding

other modules within the entire system. Events neglected by

the developer can lead to unexpected behavior of the system.

As a result, when developers move from a local setting to a

distributed one, they face a serious challenge [12].

Moreover, when developing a distributed application, the

developer is required to choose the appropriate software stack

for each component and master all different programming

languages that come with it. This leads to a lot, potentially

complex boilerplate glue code, which needs to be developed

and maintained [9].

Aspects of this complexity can be addressed by multitier

– sometimes referred to as tierless – programming, which

aims to reduce the complexity of developing distributed

applications, and reactive programming (RP), which is a

recent technique for developing reactive and event-based

applications.

Multitier languages are designed to reduce the complexity

and the amount of required boilerplate code needed to develop

a distributed application. To achieve this goal, the complete

application, including all tiers, is developed in a single

multitier language. The gap between the different tiers is

typically filled in by the compiler, allowing the developer to

focus on writing the actual application logic rather than being

occupied with writing boilerplate code.

In the object-oriented paradigm, reactive aspects of appli-

cations are traditionally implemented by using the Observer

design pattern. This pattern comes with several issues in-

cluding inversion of the control flow, inducing side-effecting

operations to change the state of the application [4].

Functional reactive programming (FRP) [6] is a program-

ming paradigm designed to overcome the problems of the

Observer pattern. FRP allows for data flows to be defined

directly and in a more intuitive manner. When declaring a

reactive value, the reactive system keeps track of all depen-

dencies of the reactive value and updates it whenever one of

its dependencies changes. Reactives allow for better maintain-

ability and composability as compared to observers [8, 11].

However, both techniques do not address the scope of

problems when dealing with the event-based data flow within

distributed applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

SPLASH Companion’16, October 30 – November 4, 2016, Amsterdam,
Netherlands
ACM. 978-1-4503-4437-1/16/10...$15.00
http://dx.doi.org/10.1145/2984043.2984051

18

2. Problem

We claim that the complexity described in Section 1 is in

a major fraction accidental and due to poor abstractions.

Existing abstractions do not address the range of issues for the

development of distributed applications and are insufficient

to reduce the complexity by

I. allowing data flow spanning over multiple hosts to be

specified directly,

II. allowing all components of the distributed system to be

developed in an seamless way which allows for reasoning

about the complete distributed system, and

III. guaranteeing safety properties across hosts.

The state-of-the-art development of distributed applica-

tions disregards one or more of the properties (I, II, III) moti-

vating this work.

Traditionally, the different components of a distributed

system are developed as separate modules. Those modules

can even be developed in different programming languages,

which makes it hard to reason about the component’s interac-

tion and thus about the behavior of the distributed system in

its entirety. Our proposal to overcome this problem is inspired

by the multitier approach (cf. II).

Furthermore, the traditional approach falls short on pro-

viding type safety guaranteed by the compiler for data flow

across different hosts. Our language abstractions allow for

the type-safe specification of data flow over multiple hosts in

the system (cf. III).

Existing multitier languages for distributed programming,

e.g., Hop [14] or Links [3], usually do not support data flow

across hosts to be specified directly. Data flow from one host

to another needs to be modeled by remote procedure calls and

callbacks. We draw inspiration from reactive languages for

specifying data flow and support its specification spanning

over several components of the distributed system (cf. I).

Even existing languages like Ur/Web [2] which aim to

combine multitier and reactive programming use a reactive

system which is confined to a single component of the dis-

tributed system. Thus, they do not allow data flow spanning

over multiple hosts to be specified directly.

Another common shortcoming regarding existing multitier

languages is the lack of support for distributed application

architectures other than client–server applications. Multitier

languages like Ur/Web, Hop or Links are focused on client–

server web development. Notably, this also applies to the

existing approaches aiming for a deeper integration of multi-

tier reactive programming, e.g., Scala Multi-Tier FRP [13].

3. Approach

We tackle the problem of developing a distributed application

through dedicated language abstractions (w.r.t. I, II, III).

Furthermore, the developer can freely define the distributed

1 class Client extends ClientPeer[Server]

2 class Server extends ServerPeer[Client]

3

4 val message: Event[String] on Client = new Event[String]

5

6 val publicMessage = placed[Server] { message.asLocalSeq }

7

8 placed[Client].main {

9 publicMessage.asLocal += println _

10 for (line <− io.Source.stdin.getLines)

11 message(line)

12 }

Figure 1. Simple chat application.

architecture for the system by specifying the components in

the system and the relations between them.

We outline the key concepts for our multitier reactive

language referring to a concrete example of a small chat

application given in Figure 1, where a server makes the

messages from all clients available to all clients.

Peers and Peer Ties: Language-Level Distributed Architec-

ture Definition The distributed architecture of an applica-

tion can be defined within the language by specifying the

scheme of the architecture at compile-time, e.g., whether an

application belongs to a client–server or peer-to-peer scheme.

The architecture is described using peers and ties between

peers.

Peers represent the components of the distributed system

while ties characterize the structure of the system as inter-

connected components approximating the runtime behavior

regarding communication channels, i.e., a peer can only ac-

cess remote abstractions of a tied remote peer. Each peer can

be tied to arbitrary peers in the system.

For instance, the client–server architecture is defined by

a server and a client peer that have a single tie to each other.

A peer-to-peer architecture can be defined by a node peer

that has multiple ties to itself because all peers in a peer-to-

peer system are considered homogeneous and are represented

by the same node peer. To differentiate between single and

multiple ties, a tie specification states the tie’s multiplicity.

The following code shows the previously described type

definitions for a client–server and a peer-to-peer architecture:

trait Client extends Peer { type Tie = Single[Server] }

trait Server extends Peer { type Tie = Single[Client] }

trait Node extends Peer { type Tie = Multiple[Node] }

Figure 1 uses predefined client and server peers (Line 1

and 2) which define the peer ties for a server that connects to

multiple clients.

Abstraction Placement Computations can be placed on

specific peers. A placed abstraction is an abstraction which

is assigned to a certain peer and defines a computation that

is executed on the assigned peer only. The placement of

an abstraction is statically defined by the developer when

declaring the abstraction.

19

Figure 1 illustrates the way abstractions can be placed

on the previously defined peers. Placement can be specified

using a placed expression (Line 6), where an expression

of the form placed[P] { e } means that the computation

expressed by e is placed on P. The placement of an abstraction

is reflected in its type (Line 4). An abstraction of type T on P

represents an abstraction of type T placed on a peer P. 1

The compiler can check that the way abstractions refer to

each other is consistent to the architecture defined through

peer ties. For example, for an architecture that specifies that

the two peers A and B and the two peers B and C are tied, a

remote access from peer A to an abstraction placed on peer C

will not pass compiler checks. Thus invalid access to placed

abstractions is prevented to compile.

Cross-Peer Access Code placed on a peer can access the

abstractions placed on the same peer. Furthermore, it can

access abstractions placed another peer if and only if both

peers are tied, thus realizing remote access across peers based

on their ties. Remote abstractions, e.g., remote reactives, can

be accessed in the same way as local abstractions except

for a syntactic marker to make potentially costly remote

communication visible to the developer.

Figure 1 shows how the placed abstractions message and

publicMessage can be accessed remotely (Line 6 and 9).

Remote access almost looks like local access and is statically

typed, but requires an asLocal form, to explicitly mark the

involvement of network communication.

When accessing remote abstractions, the multiplicity of

the tie to the respective remote peer determines how values

are represented locally, e.g., as a single value for a single tie

or as an aggregation of multiple values for multiple ties.

Multitier Reactivity By supporting multitier reactive pro-

gramming on the language level, data flow between peers

can be directly specified to build reactive dependency graphs

spanning over multiple hosts.

Figure 1 specifies a reactive dependency from the server-

side messagePublic event (Line 6) to the client-side message

event (Line 4). The call to asLocalSeq provides events from

all connected clients sequentially. The client contains again a

dependency to the server-side messagePublic by attaching an

event handler and printing each new message (Line 9).

The data flow from all clients to the server and back to all

clients over message and publicMessage is explicitly declared

and type-checked.

4. Evaluation Methodology

Our objective is to provide multitier reactive language ab-

stractions to ease the development of distributed systems. We

claim that providing such abstractions leads to a reduction of

boilerplate code and higher design quality of distributed reac-

tive applications. To validate this claim we plan to perform

side-by-side comparisons of alternative designs of distributed

1
T on P is syntactic sugar for on[T , P]

reactive applications. We plan to compare versions using a

traditional approach of implementing all peers as separate

modules and using the multitier language and both variants

once using reactive abstractions and once not using reactive

abstractions.

In order to affirm that the language can meet real-world

requirements, we intend to reimplement existing open-source

applications and show how our multitier reactive language

compares in relation to the base version.

We plan to compare code metrics, e.g. lines of code,

needed callbacks etc., as well as giving a side-by-side

overview on how concrete problems encountered during

the implementation are solved with and without our language

to show the influence of our approach on the application

design.

References

[1] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and

evaluation of a wide-area event notification service. ACM

Transactions on Computer Systems, 2001.

[2] A. Chlipala. Ur/Web: A simple model for programming the

web. POPL ’15. ACM, 2015.

[3] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web

programming without tiers. FMCO ’06. Springer-Verlag, 2007.

[4] G. H. Cooper and S. Krishnamurthi. Embedding dynamic

dataflow in a call-by-value language. ESOP ’06, 2006.

[5] J. Edwards. Coherent reaction. OOPSLA ’09. ACM, 2009.

[6] C. Elliott and P. Hudak. Functional reactive animation. ICFP

’97. ACM, 1997.

[7] J. Fischer, R. Majumdar, and T. Millstein. Tasks: Language

support for event-driven programming. PEPM ’07. ACM,

2007.

[8] I. Maier, T. Rompf, and M. Odersky. Deprecating the observer

pattern. Technical report, 2010.

[9] D. Manolescu, B. Beckman, and B. Livshits. Volta: Developing

distributed applications by recompiling. IEEE Software, 2008.

[10] R. Meier and V. Cahill. Taxonomy of distributed event-based

programming systems. In Distributed Computing Systems

Workshops, 2002.

[11] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Green-

berg, A. Bromfield, and S. Krishnamurthi. Flapjax: A program-

ming language for Ajax applications. OOPSLA ’09. ACM,

2009.

[12] A. Ranganathan and R. H. Campbell. What is the complexity

of a distributed system? Technical report, University of Illinois

at Urbana-Champaign, 2005.

[13] B. Reynders, D. Devriese, and F. Piessens. Multi-tier functional

reactive programming for the web. Onward! 2014. ACM, 2014.

[14] M. Serrano, E. Gallesio, and F. Loitsch. Hop: A language

for programming the web 2.0. In P. L. Tarr and W. R. Cook,

editors, Companion to OOPSLA ’06. ACM, 2006.

[15] C. A. Thekkath, H. M. Levy, and E. D. Lazowska. Separating

data and control transfer in distributed operating systems.

ASPLOS VI. ACM, 1994.

20

