
WebRB: Evaluating a Visual Domain-Specific Language For
Building Relational Web-Applications

Avraham Leff James T. Rayfield

IBM T.J. Watson Research Center

{avraham,jtray}@us.ibm.com

Abstract
Many web-applications can be characterized as “relational”.
In this paper we introduce and evaluate WebRB, a vi-
sual domain-specific language for building such applica-
tions. WebRB addresses the limitations of the conventional
“imperative-embedding” approach typically used to build
relational web-applications. We describe the WebRB lan-
guage, present extended examples of its use, and discuss
the WebRB visual editor, libraries, and runtime. We then
evaluate WebRB by comparing it to alternative approaches,
and demonstrate its effectiveness in building relational web-
applications.

Categories and Subject Descriptors D [1]: 7—Visual Pro-
gramming; D [3]: 2—Data-flow languages

General Terms Languages

Keywords webrb, web relational blocks, relational web-
applications, web-application development, visual program-
ming languages, data-flow languagesR

1. Introduction
Different techniques have been proposed for developing web
applications. For example, some design tools exist (e.g.,
Dreamweaver [1] and IBM Rational Application Devel-
oper [2]), that provide a largely visual design paradigm.
However, for web applications which create dynamic pages
and update relational databases, the imperative-embedding
approach seems to be by far the most popular. In this ap-
proach, developers create web pages in an imperative lan-
guage such as Java or PHP. When the web page is accessed,
the web server executes the imperative language code and
sends the output to the web-browser client. The imperative

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

code may be written by hand, or automatically generated
and hand-tailored (e.g., Ruby on Rails [3]).

The popularity of such text-based approaches is puzzling,
since an all visual technique for designing web-pages would
seem to be more natural. This paper advocates the use of We-
bRB (Web Relational Blocks), which is unique in being pre-
cisely such an all-visual approach, in contrast to imperative-
embedding or largely visual approaches.

Consider the Product Catalog web-page shown in Fig-
ure 1A. The web-page allows an eCommerce site to adminis-
ter its product catalog through a browser interface. Although
simple, it illustrates the following typical pieces of dynamic
web-page function:

• A dynamic HTML table is displayed to the user in which
each row shows information about a product in an eCom-
merce catalog. The table is populated by reading data
from a relational database table.

• Buttons in each row of the HTML table allows users to
modify the relational database table (e.g., to edit or delete
a product in the catalog). Another button allows users to
add products to the catalog.

• The web-page is linked navigationally to other web-
pages in the application so that clicking the “add” but-
ton navigates to the “Add Product” page, and clicking the
“edit” button navigates to the “Edit Product” page. More-
over, data required by the next page (such as a product’s
ITEMNO) flow from the current page into the next page.

The Product Catalog web-page illustrates properties of a
broad class of dynamic web-applications which we charac-
terize as “relational”. By this we mean that they:

1. Read relational databases and present the data in a GUI;

2. Update relational databases based on a user’s interaction
with the GUI;

3. Perform transformations of the relational data which re-
quire only simple or moderately complex business logic.

Contrast the imperative-embedding approach for writing
dynamic web-pages with the WebRB approach. Figure 2 is
a fairly typical PHP specification of the Product Catalog

281

A

B
Figure 1. Product Catalog Web-Page and WebRB Page-Design

web-page; Figure 1B is a WebRB page-design of the same
web-page. (Here, we are motivating the use of WebRB; a de-
tailed set of examples and evaluation is provided later in the
paper.) Since PHP pages start in unprocessed mode (typ-
ically HTML), the code in Figure 2 immediately switches
to PHP mode. Using PHP imperative code, a connection
to the database is established, and a SQL[4] query is exe-
cuted. Next, the page switches back to HTML mode in order
to generate the HTML table, then back to PHP to fetch the
database data, then back to HTML to generate the contents

of the table cells. After the loop, the page reverts back to
HTML mode to generate the closing elements. This exam-
ple illustrates a number of drawbacks with the imperative-
embedding approach. First, six language transitions are re-
quired in this example, forcing a developer to switch be-
tween “model and business logic” mode and “GUI” mode.
Second, the visual (HTML) portion of the page must be ex-
pressed in a non-visual fashion, requiring the developer to
keep a mental image of how the page will look when ren-
dered in a browser. Third, it mixes both imperative (PHP)

282

and declarative (HTML) styles in close proximity. Finally, the
database query must be expressed in SQL, even though a vi-
sual query builder might be more appropriate.

WebRB is a visual domain-specific language designed
to address the limitations of the imperative-embedding ap-
proach for relational web-applications. As shown in Fig-
ure 1B, WebRB includes the following specific features that
make it easy to write such applications:

• Its relational API and dataflow approach strongly support
the bi-directional movement of relational data between
database tables and the GUI.

• By using relational algebra to transform relational data,
developers are able to express business logic in a way
that fits their data’s semantics.

• As a visual programming language, it allows develop-
ers to visually construct the application’s GUI. Moreover,
even the non-GUI portions of the application are written
using the same syntax and semantics as the GUI portion.
Developers therefore do not have to repeatedly cross be-
tween visual and non-visual languages when developing
the application.

These features also point to the types of web-applications
that WebRB is not suited for: those with complex business
logic (more difficult to express in relational algebra) or those
that access non-relational data (need a different API).

In this paper, we substantiate the claim that, compared
to the imperative-embedding approach, WebRB can signif-
icantly improve developer productivity and reduce mainte-
nance costs for relational web-applications. Also, we show
that WebRB provides sufficient functionality to implement
any relational web-application with moderately complex
business logic.

Section 2 defines the WebRB model of computation and
visual language, and compares its approach to related work.
We discuss the WebRB implementation in Section 3. In Sec-
tion 4 we present a detailed set of examples to show how
WebRB is used to construct non-trivial web-pages. The core
of the paper is Section 5 in which we evaluate WebRB across
a number of important language dimensions, and compare
it to alternative approaches for developing web-applications.
We summarize the contributions of WebRB in Section 6.

2. The Language
2.1 Model of Computation

The WebRB model of computation closely supports the lan-
guage’s application domain: relational web-applications.
From the end-user’s perspective, such applications consist
of a set of pages, each of which has a GUI through which
the user can interact with the application. A WebRB devel-
oper implements the application with a set of visual page-
designs (such as Figure 1) that – in addition to specifying
the GUI seen by the end-user – specify the business logic

and database access that respond to user interactions. The
WebRB model of computation is therefore “page-based”,
and differs from typical GUI event-handlers [5] in that re-
sponse logic is specified by the page-design itself rather than
through code that is attached to individual GUI widgets.
Specifically, the event-loop for processing page Pj consists
of the following steps:

0. Render Pj’s GUI on the end-user’s device (e.g., as a page
displayed in a web-browser).

1. Wait for the user to interact with the GUI.

2. Process a user-interaction by executing Pj’s declarative
specification which describes (through the semantics of
its blocks and the block data-flow):

(a) What (and how) data should be transformed, and
which persistent database tables should be accessed
and updated.

(b) How to select the application’s next page (e.g., Pk).
Note that the next page may be the same as the current
page (i.e. k = j).

3. Repeat from step 0, using Pk.

We next explain how the behavior of an individual page-
design is specified by WebRB’s visual syntax and by We-
bRB’s relational API.

2.2 Language Elements

A WebRB page-design is a named set of blocks that have
been assembled by a developer, such as the one shown in
Figure 1. Page-designs are constructed using the following
visual elements:

• A block is a component that provides a well-defined
relational function. Blocks may optionally receive input
and/or produce output; such inputs or outputs may consist
only of relational data.

• A block indicates that it receives relational input (or out-
put) with an input (or output) pin. Pins are thus a named
I/O port, and blocks can have zero or more input (or out-
put) pins.

• Data flow between blocks is represented as a wire that
connects a block’s input pin to a block’s output pin.

Examining Figure 1, we see a wire transmitting an n-
tuple relation (each containing four attributes) connecting
the READ DB block’s output pin to the HTML-TABLE

block’s input pin.

A WebRB implementation is responsible for providing de-
velopers with a set of useful blocks. The only requirement
is that all blocks use a relational API. The number of in-
put and output pins are arbitrary and may vary from block
to block. A block’s API can further constrain its input’s re-
lation header in terms of what attribute names or types are
legal, or it can constrain the cardinality of a valid relation.

283

Figure 2. Product Catalog, PHP version

For example, by looking at Figure 1, we see that BUTTON

blocks have no input pins, since they are used only for user
input. In contrast, an HTML-TABLE block has one input pin
which accepts a relation of any type, and whose data is used
to populate the table. A BUTTON block has a single output
pin which transmits a single boolean relation (see [6], TA-
BLE DEE) whose value indicates whether or not the button
was clicked. In contrast, an HTML-TABLE block has multi-
ple output pins: one that transmits a generic relation con-
sisting of the tuple selected by the user’s interaction, and a
set of pins that transmit the individual attributes of the tuple
selected by the user.

Once a developer assembles blocks as a page-design, that
design becomes a “first-class” citizen of the language. From
WebRB’s perspective, page-designs are blocks. The only dif-
ference is that built-in block types are pre-assembled by a
WebRB implementation, whereas pages are assembled by a
developer. Because they must be assembled, pages are the
only construct that can be edited or validated using a We-

bRB visual editor. In the context of the visual editor, we re-
fer to a page design. Once assembled, a page is represented
using the “blocks, pins, and wires” metaphor, and behaves
just like a pre-assembled block. In that context, we refer
to a page block. The semantics of a page-design are self-
contained since developers do not add any non-visual code.
Pages can therefore be directly executed by the WebRB run-
time, for example, as web-pages rendered in a browser and
linked to data and control logic on the server. In the context
of page execution, we refer to a page-design as an applica-
tion page.

A page-design A can use a page block B in two ways:

• As a page that is directly embedded into A’s page-design
and application page. In this case, B is represented with
an EMBEDDED PAGE block. EMBEDDED PAGE blocks
allow developers to construct libraries of reusable page-
designs such that a page can be nested in other pages as
a custom block. Alternatively, a developer may re-factor

284

a complicated (visually “busy”) page-design into a page
containing EMBEDDED PAGE blocks.

• As a possible “next” page when A executes. In this case, B

is represented with a PAGE TRANSITION block, to which
a developer wires relational logic that specifies when the
application will transition from A to B’s application page
(see Section 2.1).

The Search page-design of Figure 9 illustrates these two
ways that page blocks are used. The “buy” button in the
HTML table is wired to an embedded “buy” page block
(Figure 12) that encapsulates the processing of purchasing
a single line-item. Using PAGE TRANSITION blocks, the
Search page-design specifies that a successful buy operation
navigates to the Shopping Cart page (Figure 11). The Search
page-design also specifies that a “search” operation refreshes
the Search page, but populates the TEXT-ENTRY field with
the user-supplied search string.

In order for pages (supplied by a developer) to behave
exactly like pre-assembled blocks, there must be a mecha-
nism to specify a page’s input and output API. This is done
with PAGE INPUT and PAGE OUTPUT blocks. A PAGE IN-
PUT block passes data (unchanged) from an input pin on a
embedded or PAGE TRANSITION block into the page-design
in which the PAGE INPUT block appears. Likewise, a PAGE

OUTPUT block passes data (unchanged) from the page de-
sign in which it appears to the output pin of an EMBED-
DED PAGE block. Thus, PAGE INPUT blocks are analogous
to a function’s formal input parameters, and PAGE OUTPUT

blocks are analogous to a function’s formal output parame-
ters. These blocks are represented as named input (output)
pins on the page’s corresponding EMBEDDED PAGE block or
PAGE TRANSITION blocks.

PAGE INPUT and PAGE OUTPUT blocks are illustrated by
the Buy page-design shown in Figure 12. There are two
PAGE INPUT blocks: ItemNoQty supplies a two-attribute,
single-tuple, relation consisting of the selected product’s
name and the quantity purchased; buy supplies a boolean
relation indicating whether to initiate the buy processing.
There are three PAGE OUTPUT blocks: errorMsg provides
an error message string (as a single-tuple single-attribute
relation); success is a boolean relation which is TRUE if
the buy processing was successful; and error is a boolean
relation which is TRUE if an error occurred.

2.3 Refined Model of Computation

The semantics of database and widget blocks require that we
refine Step 2 of the WebRB model of computation described
in Section 2.1. We do this characterizing pre-assembled
blocks along two axes: (1) whether they are stateless or state-
ful; and (2) whether they appear in the GUI that is seen by
the end-user.

Stateless, non-GUI, blocks are the simplest to understand.
They are purely functional, in the sense that block output
depends completely on the current inputs to the block. For

example, the output of a JOIN block is always the natural join
of the inputs. Such blocks have attractive properties: they
are easily composed, and reasoning about their behavior is
straightforward ([7], Chapter 3). Also, all their dependencies
can be clearly seen in the visual representation.

Stateless GUI blocks are also fairly simple: they create
a visible GUI artifact based on their current inputs. For
example, a TEXT block generates a text label in the GUI,
and the contents of that label are based on the block’s input
at the time that the GUI’s widget is generated.

Stateful blocks are less straightforward. However, they
are vitally necessary, because useful applications require the
ability to enter, preserve, and modify persistent information.
Even pure functional languages such as Haskell are forced
to accommodate this requirement [8]. The WebRB model of
computation incorporates stateful blocks by treating a page-
design as a sequential synchronous circuit. As a result, step 2
above executes as a series of sub-steps that describe how
block’s inputs and its current state Si interact to create the
block’s outputs and next state Si+1.

Stateful GUI blocks (e.g., TEXT-ENTRY) are displayed
in the GUI using the current value of their input(s). The
user’s interaction may alter the value of the block, e.g., by
typing into the text-entry field. When the user interaction
is processed, the output value(s) of the block are the last
value(s) seen by the user: i.e., either the value that was
initially displayed, or the value that was entered by the user.
Thus, stateful GUI blocks can retain state during the user-
interaction period, but may also be modified by the user to
contain new state.

Stateful non-GUI blocks are used to access the database,
and encapsulate the state of a database table. READ DB

blocks have an output pin whose value is the current con-
tents of the specified database table, and do not have any
input pins. Mutator blocks (INSERT DB, UPDATE DB, and
DELETE DB) make changes to the database. These blocks
have two input pins: an enable pin, which enables or disables
the block, and another pin which accepts the tuple(s) to be
inserted, updated, or deleted. Mutator blocks have no output
pins. During event processing, the database state transitions
from the initial state Si to the final state Si+1.

WebRB allows multiple instances of READ DB and muta-
tor blocks to reference the same database table. This is visual
“syntactic sugar”; otherwise WebRB would have to define a
CRUD block (one per table per page), combining the func-
tion of READ DB, INSERT DB, UPDATE DB, and DELETE DB.
However, the WebRB runtime only allows one mutator block
(per user) to be enabled at any given time. Otherwise the
developer would need to specify ordering rules for updates.

Step 2 in Section 2.1 incorporates these various types
of pre-assembled blocks in a refined event-processing algo-
rithm that executes as follows:

1. All enabled mutator blocks evaluate their inputs (in-
cluding “enable”). This recursively causes all the blocks

285

which feed those inputs to evaluate their inputs, and so
on. The recursion terminates at stateful blocks which
have a known output value (stateful GUI blocks and
READ DB blocks). Stateful GUI block outputs corre-
spond to the values that the user saw in the GUI, and
READ DB block outputs correspond to the initial state of
the database, Si.

2. All mutator blocks simultaneously change the database
state (according to the inputs saved in the previous step)
to the new state Si+1, by inserting, updating, or deleting
table records as appropriate.

3. The next application page is selected. This is done by
evaluating the inputs to the “enable” input pin of all
PAGE TRANSITION blocks in the current page. Although
“enable” is a reserved pin name, the semantics of this
input pin evaluation are the same as other pin evaluations.
A page is selected as the application’s next page only
if the enable pin’s input is TRUE. In the Shopping Cart
page-design (Figure 11), for example, the Search page
is selected if the user initiates a search by clicking the
“go” button. Although a page-design may contain any
number of PAGE TRANSITION blocks, at runtime, only
zero or one of them may be enabled simultaneously.
If zero PAGE TRANSITION blocks are enabled, no page
transition occurs (the next page is the same as the current
page, i.e. k = j). It is a runtime error for two or more
PAGE TRANSITION blocks to be simultaneously enabled.

4. The GUI for the next application page is generated. All
GUI blocks on the page (stateful and stateless) evaluate
their input pin(s). This ultimately evaluates the blocks
which feed the GUI element inputs. As before, the re-
cursion terminates at stateful blocks which have a known
output value (stateful GUI blocks and READ DB blocks).
Stateful GUI block outputs still correspond to the values
that the user saw in the current GUI page, but READ DB

block outputs now correspond to the new database state
Si+1.

5. The next GUI page is returned to the user for display.

2.4 Concurrency

Since relational applications are almost always multi-user,
WebRB must support concurrent execution of its applica-
tions. The shared application-state in WebRB consists of the
database tables which are accessed by the READ DB and
mutator blocks. WebRB relies on the database manager to
provide ACID [9] properties for the database tables. At the
beginning of the refined event-processing algorithm (Sec-
tion 2.3), a database transaction is started. Before the next
GUI page is returned to the user for display (step 5), the
database transaction is committed. If any runtime errors are
detected by the WebRB runtime (e.g., for the same user,
multiple mutator blocks are simultaneously enabled, or two
or more PAGE TRANSITION blocks are simultaneously en-

abled), the database transaction is rolled-back. If they wish,
developers can explicitly roll-back transactions by disabling
all mutator blocks when an error is detected. We do this in
Figure 12, in which a failed string-to-integer disables the IN-
SERT DB block for the CART table.

The WebRB approach of coupling transaction scope to the
event loop is a compromise between requiring an applica-
tion to handle transaction-scoping explicitly, and providing
middleware [10] which supports long-running transactions
(those which span multiple user events). Future WebRB work
will explore relaxing the “transaction-scope = event” con-
straint.

2.5 Security

With respect to access control to application page-designs or
data, WebRB does not currently distinguish between the de-
veloper role (the person coding a page-design) and the end-
user (the person executing the assembled application). We-
bRB implements access control by providing authenticated
users of the system with a virtual database partition that
stores page-designs and application data. However, a sim-
ple model is used in which one user (whether a developer of
end-user) cannot access another user’s database partition.

Obviously this design is unsuitable for a production en-
vironment. In such an environment, WebRB will have to dis-
tinguish the developer role from the end-user role and pro-
vide each role with different access rights. Developers would
need new blocks to support access control. WebRB will also
have to enable collaboration (both read and write access) be-
tween developers by providing function similar to CVS or
SVN. We have not done any design work in this area with
regard to WebRB.

With regard to an application’s runtime security, WebRB
is generally not susceptible to some of the attacks which
are effective on contemporary systems. For example, SQL
injection attacks are not effective because there is no way to
specify a design which routes user input to the SQL parser.
SQL cannot be directly entered into WebRB designs, and
internal use of SQL always uses parameterized prepared
statements. Similarly, WebRB is generally not vulnerable to
cross-site scripting attacks, because there is no way to have a
design which causes user-supplied or database-supplied data
to be interpreted as HTML. TEXT-ENTRY, TEXT-LABEL, and
HTML-TABLE widgets automatically escape all input data to
prevent it from being interpreted by the browser.

2.6 Related Work

The task of easing the development of multi-page applica-
tions that integrate relational data, GUIs, and business logic
has been approached from many directions. WebRB provides
an integrated, visual, end-to-end approach for building rela-
tional applications, which eliminates the need for developers
to cross between visual and non-visual languages. Although
many mixed (visual and non-visual) development environ-
ments exist, the bulk of this paper focuses on a comparison

286

between WebRB and non-visual imperative-embedded ap-
proaches. We do so because imperative-embedding also pro-
vides a consistent language paradigm (all non-visual), and
has enduring popularity among the developer community. In
this section, however, we discuss the relationship of various
components of the WebRB approach – such as visual pro-
gramming, visual editors, and integration of relational data
– to other work in this area.

2.6.1 Visual Programming Languages

The idea that visual programming languages (VPLs) should
be used to improve developer productivity (relative to text-
based languages) is well-known. Some VPLs, such as VIPR [11]
and Prograph [12], have attempted to provide visual imper-
ative programming languages. From a language perspec-
tive, WebRB differs from such VPLs because it is declarative
(rather than imperative), and is relation-based (rather than
object-oriented). More fundamentally, unlike WebRB which
is a domain-specific language, these languages are general
purpose and therefore do not provide built-in support for
databases access or for constructing GUIs. Rather, such lan-
guages are intended to replace languages such as C. Other
languages and systems do support visual GUI construc-
tion. Forms/3 [13] allows construction of screens based on
function expressions. However, it does not support database
access, and does not directly support relation types. Also,
Forms/3 functions are expressed textually, not visually. Co-
coa [14] supports simple GUI construction, but again does
not support database access.

2.6.2 Visual Editors

Many visual editors exist which allow the design of static
web pages, in WYSIWYG fashion. This is an attractive ap-
proach, because it provides a very close mapping between
the design-time view and the run-time view. However, it is
difficult to extend such editors to support dynamic pages,
because of the lack of appealing visual languages which can
handle the business logic (“controller”) portions of the ap-
plication.

Dreamweaver [1] is an example of a visual editor for
static web pages that also provides some extensions for dy-
namic web pages. For example, it allows developers to attach
non-visual imperative code (e.g., JavaScript) to web pages,
to generate HTML tables from queries on database tables,
and to generate HTML forms that update database tables.
However, it allows only forms-based business logic to be
specified visually, and forces developers to escape into non-
visual languages when they need to express logic beyond
this scope.

JavaServer Faces [15] (JSF) is an alternative technology
for specifying web pages, and a variety of visual editors
(e.g., [16]) allow developers to construct web pages using a
mix of WYSIWYG and non-visual techniques. JSF provides
(server-side) user-interface components, such as text-input
boxes, tables, and buttons, which are rendered to the browser

using pluggable rendering code. The web page is described
by a set of JSF tags and XML configuration. Although the
(initial) page layout can be done visually, and inter-page
navigation can also be specified visually, existing JSF visual
editors do not provide a visual mechanism for handling the
dynamic portions of the page. The visual editors instead
provide a linkage with (non-visual) Java code (“managed
beans”), which reads and updates the JSF components.

2.6.3 Visual Access To Relational Data

Other languages, like WebRB, directly support visual access
to relational databases, including Query-by-Example [17]
which allows non-programmers to specify database queries
and updates by filling out templates describing the desired
operations. Visual query systems [18] provide read access
and presentation services for relational database systems
using a visual programming paradigm. Database modeling
software such as DDS-Pro [19] support visual design of
tables and queries. Unlike WebRB, however, none of these
tools provides full support for the visual construction of
relational applications. Like Cocoa [14], most do not support
updates to the database – other than very simple property-
editor GUIs.

2.6.4 Object-Relational Mapping

Object-Relational Mapping (ORM) technologies address the
task of integrating relational data into applications by treat-
ing such data as objects that can be used in a general-purpose
object-oriented language. Typically tooling (either visual or
XML-based) is used to create a mapping between a row in
a database table and an instance of an object. Examples of
such technology include Hibernate [20] and EJB container-
managed persistence [21]. In ORM approaches, objects are
the first-class construct used to build applications.

WebRB, in contrast, is motivated by the observation that
for relational applications – in which relational data is heav-
ily accessed and manipulated – the most natural approach
treats relations (tables) as the first-class construct used to
build applications. The relational model is based on set the-
ory, in which each relation represents a set, and each tuple
(row) value indicates the presence of that value in the set.
Attribute (column) values are drawn from a specific type,
such as integer, string, date, etc. Row values indicate a rela-
tionship between multiple attribute values, and thus do not
themselves naturally form a type system (see [6], chapter 2).
In WebRB, objects are attribute values rather than the tuple
values of an ORM system.

WebRB borrows many concepts from object-oriented pro-
gramming, including encapsulation and separation of in-
terface from implementation. Blocks have a defined inter-
face (pins), and are only accessible via that interface. The
implementation is unspecified and not available from out-
side the block. In addition, attribute values in WebRB are
handled very much like object instances, and a natural ex-
tension of WebRB would be to support developer-defined

287

types (classes) for attributes. Developer-defined types could
then be mapped onto relational columns, and FUNCTION

blocks (Section 4.3) would enable operations to be invoked
on developer-defined types.

2.6.5 Summary

To summarize, many tools, languages, and systems use vi-
sual techniques to improve developer productivity for con-
structing portions of an application. WebRB, however, uses
visual techniques for all parts of an application. Its ability
to do so stems, in large part, because WebRB is a domain-
specific language for relational web-applications, and does
not support programming of other types of applications.
Thus, by limiting its scope, WebRB can use a data-flow ap-
proach which naturally expresses the movement of relational
data between databases and the GUI with a small set of
visual metaphors. By using relational algebra, transforma-
tions of relational data are done in the same semantic space
– and with the same visual metaphors – as the data itself.
Finally, the WebRB model of computation and runtime nat-
urally supports the deployment of multiple page-designs as
web-applications containing multiple web-pages that run in
a standard web-browser.

3. Implementation
WebRB [22] also includes:

• a visual editor whose palette of pre-assembled blocks
provides the functionality used to typically develop the
simpler sort of web-applications. The visual editor allows
developers to directly “code” WebRB page designs using
only the language’s visual syntax without additional con-
structs.

• a runtime which deploys WebRB page designs as an ap-
plication’s web-pages that execute in a standard browser.
It also manages an application’s inter-page navigation
and associated data-flows. Finally, the runtime validates
page designs and reports errors via the visual editor.

3.1 Visual Editor

The WebRB editor is written in JavaScript (about 10,000
lines of code), runs in a standard Mozilla Firefox browser,
and is used to visually construct WebRB programs. Because
WebRB is a visual language, there is a good fit between the
editor and the programs that it constructs.

Figure 3 shows that the WebRB editor is comprised of sev-
eral frames. A page-design (corresponding to a single web-
page) is assembled in the page editor frame. As a named
page-design, it will be listed in the set of EMBEDDED PAGE

blocks and PAGE TRANSITION blocks that are available to
the developer. The palette frame contains the set of pre-
assembled blocks from which a developer drags and drops
blocks when assembling a page design in the page editor
frame. The palette can be thought of as a block “factory” that
produces generic block instances. The set of pre-assembled

blocks will be discussed as we walk-through the process of
using WebRB to construct web-pages in Section 4. If a given
block instance is selected, a property editor for that instance
is displayed in the bottom frame of the visual editor. This al-
lows developers to view and customize the block’s behavior
(e.g., rename input or output attributes). The “blocks, pins,
and wires” visual metaphor is directly supported because
the pin names of all block instances (including page-blocks)
are displayed in the page-design. Wires are drawn by left-
clicking near an given pin, dragging the mouse to the other
pin while holding the left mouse-button down, and then re-
leasing the mouse button. Wires can be deleted by selecting
them and hitting the delete key. Blocks (and all of their at-
tached wires) are deleted by selecting them and hitting the
delete key.

The WebRB editor provides special support for construct-
ing a web-application’s GUI. Developers can move all of a
page-design’s blocks to specific “x, y” coordinates on the
page editor frame. When a page-design is rendered as a
web-page, its widget blocks (e.g., TEXT-ENTRY or HTML-
TABLE) are rendered as corresponding GUI widgets at pre-
cisely those coordinates on the web-page. This approach is
much easier than using imperative code to draw and position
the widgets.

The WebRB editor reduces the length of the “code, test,
and debug” development cycle because applications can be
directly executed from the editor itself. Incremental con-
struction is encouraged because only a small set of blocks
is required to bootstrap a working application. Blocks may
be added, removed, or rewired at any time. Any page may be
immediately validated and executed.

3.2 Runtime

The WebRB runtime is written in PHP (approximately
15,000 lines of code), and is hosted on an Apache web-
server, using IBM DB2 as the database storing the page
designs and application data. The WebRB runtime is respon-
sible for deploying WebRB page-designs as web-applications
that execute in a standard browser. We now explain how our
runtime can do this without requiring developers to add im-
perative code on either the client or the server.

The server does not have to directly manipulate the We-
bRB visual language because page-designs are stored in their
serialized XML representation. The XML representation
serves as a canonical form of a given block: it’s instantiated
as an PHP object on the server, and as a JavaScript object
in the browser. The WebRB runtime renders a WebRB page
by creating server-side versions of each WebRB “block”.
Model blocks are implemented as a wrapping of connec-
tions to database tables; algebra blocks are implemented to
provide the required algebra function; and widget blocks are
implemented so that their getHTML() method produces the
corresponding HTML that can be rendered in a web-browser.
Block inter-connection is implemented by driving the spec-

288

Figure 3. The WebRB Editor

ified data-flow from output pins to their input pins, and so
on, using a recursive process.

The initial page of an application is displayed when the
client’s browser issues an HTTP GET request: the server’s
WebRB runtime calls getHTML() to create the initial page,
and returns the web-page to the browser. During initial-page
evaluation, widgets with output pins will return empty rela-
tions (since the user has not yet had an opportunity to en-
ter any data). Once launched, the server “forgets” about the
page until the user interacts with the web-page, causing an
HTTP POST of the page and its data to the server. The WebRB
runtime uses the POST data to instantiate the correspond-
ing server-side version of that web-page, provides the user-
supplied data (e.g., text-field input) to the widget blocks, and
evaluates the resulting relational “circuit”. The runtime must
then determine which web-page should be instantiated next.

4. Examples
The Product Catalog example (Figure 1) and the discussion
of the WebRB language (Section 2) show that WebRB theo-
retically addresses many of the scaling difficulties that have
traditionally been associated with visual languages [23]. We-

bRB can be used to develop large-scale applications, since
developers can scale an application in two ways: “hierar-
chical” scaling and “horizontal” scaling. Hierarchical scal-
ing involves using EMBEDDED PAGE blocks to encapsulate
function, both to reduce page complexity and enable re-use
of function. Horizontal scaling involves partitioning an ap-
plication into multiple pages, and using PAGE TRANSITION

blocks to specify inter-page navigation and data flow.
In this section we’ll use a set of examples to show that

WebRB implementation (Section 3) is powerful enough to
easily develop relational web-applications with significant
function. The examples will incrementally introduce WebRB
capabilities to enable us to highlight specific pieces of func-
tion. The page-designs are screen-shots of the WebRB visual
editor [22], and the web-pages are screen-shots of the corre-
sponding web-application executing in a web-browser.

4.1 “CRUD” Function

The examples in this sub-section allow an eCommerce site to
administer a product-catalog: we use them to show how We-
bRB makes it easy to construct web-pages that perform the
well-known Create, Retrieve, Update, and Delete (CRUD)

289

Figure 4. eCommerce Site Page-Transition Diagram

operations. The page-transition diagram of the site is shown
in Figure 4. There are two groups of pages: product cata-
log administration, and shopping pages. We already intro-
duced the Product Catalog page (Figure 1) in Section 1. It
displays the current contents of the product catalog. “Add”
and “Edit” buttons provide links to the Add Product (Fig-
ure 6) and Edit Product (Figure 7) pages, respectively. The
Search page (Figure 9) is used to search the product catalog.
If a product is purchased with the “Buy” button, the Shop-
ping Cart page (Figure 11) is displayed.

The core of the Product Catalog page is a “read” opera-
tion in which a READ DB block flows the product catalog –
the entire relation stored in the PRODUCTS database table –
into an HTML-TABLE block. The developer uses the property
editor (Figure 5) to specify that, in addition to displaying all
columns of the database table, each row of the HTML table
should include “edit” and “delete” buttons. These and the
“Add product” button drive “write” operations from the GUI
to the database table.

The Figure also shows how the WebRB developer spec-
ifies event-handling among a set of possible user-specified
actions. The display of a new page after a user input occurs
is controlled by PAGE TRANSITION blocks (Section 2) such
as the “Add Product” and “Edit Product” blocks. A PAGE

TRANSITION block has an “enable” pin which, if TRUE,
causes a transition to the specified page. They also have any
number of input pins, one for each PAGE INPUT block on
the target page, that specify inter-page data-flow. Although
the Add Product page-design does not have any PAGE IN-
PUT blocks, the Edit Product page-design includes a PAGE

INPUT block that flows the ITEMNO data into the page. Thus,
clicking the “Edit” button brings up the Edit Product web-
page, allowing the selected product to be updated. The page
navigation is specified by wiring the boolean-relation output
of the button to the boolean-relation “enable” input pin of

the “Edit Product” PAGE TRANSITION block. (An unselected
button emits the FALSE relation; a selected button emits the
TRUE relation.) Data-flow to the Edit Product web-page is
specified by wiring the HTML-TABLE’s “selectedRow” out-
put pin from the HTML-TABLE to the “ItemNo” input pin of
the “Edit Product” PAGE TRANSITION block. The developer
uses the property editor (Figure 5) to specify that the one-
tuple relation that flows from the “selectedRow” pin contains
only the ITEMNO attribute.

The Add Product and Edit Product page-designs (Fig-
ures 6–7) are conceptually similar to the Product Catalog
page-design, except that they use UPDATE DB and INSERT

DB blocks to represent the appropriate CRUD operation. The
“delete product” operation is implemented by directly incor-
porating a DELETE DB block into the Product Catalog page-
design. Since no PAGE TRANSITION block is enabled when
a product is deleted, the Product Catalog page is redisplayed
(no page-transition occurs).

4.2 Business Logic: Relational Algebra & Expressions

The CRUD examples of Section 4.1 show that WebRB has
the right set of database and GUI blocks for web-pages that
require no business logic. Now we show how WebRB al-
lows developers to incorporate moderate amounts of busi-
ness logic into their web-pages.

Using a visual programming language to specify business
logic in a general-purpose way can be difficult [24]. WebRB
is able to solve this problem because of the more constrained
semantics of its relational application domain. The operators
in the relational algebra ([6], Chapter 2) take at least one re-
lation as input and produce a relation as output. Using op-
erators such as JOIN, PROJECT, and UNION, allows WebRB
business logic to benefit from the close fit between the re-
lational algebra and the relational model used in the WebRB
database and GUI blocks.

290

Figure 5. HTML-TABLE Property-Editor

Figure 6. Add Product Page-Design and Web-Page

Consider Figure 8, a page-design for a Search web-page
interface to the PRODUCTS database table. The web-page
(Figure 9) allows users to search for a product “by name”

and retrieve information about that product. Unlike the Prod-
uct Catalog page, which retrieves the entire database table,
here the developer wants to retrieve only a specified subset

291

Figure 7. Edit Product Page-Design and Web-Page

of rows. There are two inputs to the page: “searchText” (the
text to search for), and “msg” (a message to be displayed).
When the page is first launched, these two inputs are empty
relations.

The developer first uses a JOIN block to compute a Carte-
sian product between searchText and the PRODUCTS table.
Since they have no common attributes, the searchText is
essentially appended to each row of PRODUCTS as a new
column. Then, the resulting relation is filtered by a WHERE

block, so that only tuples where the product NAME matches
the searchText are kept. Next, the result is JOINed with a
constant string (QTY = “1”) to set a default purchase quan-

tity to be displayed. Finally, the results are displayed in an
HTML-TABLE.

The WHERE block uses a tuple expression to specify that
only tuples that “match” the searchText string should be
selected from the PRODUCTS table. A tuple expression is
an expression whose input is a single tuple and whose re-
sult is a single value. Tuple expressions can include con-
stants, but differ from standard expressions in that their vari-
ables refer to attributes in the input tuple. Thus, the ex-
pression B+3 is interpreted as “the value of the attribute B

plus the constant 3”. More formally, constants and input at-
tributes are the terminal nodes of a WebRB expression tree.
The non-terminal nodes in a WebRB expression-tree may

292

Figure 8. Search Page-Design

Figure 9. Search Web-Page

be unary functions (e.g., unary minus, type conversion) or
binary functions (e.g., MATCH(), arithmetic sum, or CON-
CATENATE()). WebRB provides a library of node implemen-
tations to support commonly used functions and operators.

Figure 8 shows how WebRB uses EMBEDDED PAGE

blocks to achieve hierarchical page-design scaling. “Buy
product” is a chunk of “controller” function, for example,
that was factored out from the original design into a separate
“buy” EMBEDDED PAGE block. We discuss this EMBED-

293

DED PAGE in the context of how WebRB does exception
handling in Section 4.4. Figure 8 also includes a “search
UI” EMBEDDED PAGE block (Figure 10) which encapsulates
the web-page’s “view”. An application’s UI can thus be de-
signed by one developer independently of the business logic
or database access that is done by other developers. Work-
ing independently requires only that the developers agree on
the EMBEDDED PAGE API: i.e., the PAGE INPUT and PAGE

OUTPUT blocks.

4.3 Business Logic: Natural Join & Functions

The Shopping Cart page-design in Figure 11 introduces
other constructs to specify web-page business logic. The de-
veloper wants to display the contents of a user’s shopping
cart which is persistently stored in a database table. Fol-
lowing standard normalization techniques, only a product’s
ITEMNO and the quantity ordered are stored in the CART ta-
ble. In order to include product name and price information
(stored in the PRODUCTS table) in the HTML-TABLE, the de-
veloper uses a JOIN block to perform the “natural join” of
the two relations. Since the HTML-TABLE also includes a
column showing the sub-totals for each line-item in the cart
(the “extPrice” attribute), the developer uses a FUNCTION

block to calculate this value and add it to the HTML-TABLE’s
input relation.

FUNCTION blocks are WebRB’s solution to the problem of
how to implement functions using relational algebra. Con-
sider the operation of converting the string representation
of an integer (e.g., “42”) to the corresponding integer (42).
What is desired is a block with an input attribute of type
string (“42”), and an output attribute of type integer (42),
representing the converted value. In WebRB, this is accom-
plished by a FUNCTION block.

FUNCTION blocks define their output attributes in terms
of tuple-expressions (Section 4.2) applied to their input at-
tributes. In our example, the expression D = TOINT(STR)
specifies that “the function’s output attribute, D, is the re-
sult of applying the function TOINT (convert to integer) to
the value of the attribute STR”. More generally, a FUNCTION

block allows developers to create new attributes, specifying
that their value in terms of a tuple-expression that is applied
to each tuple in the input relation. A FUNCTION block’s out-
put is thus a relation containing only attributes which are
derived from the input relation via tuple expressions.

Developers can also use FUNCTION blocks to adapt re-
lations to match another block’s desired inputs. Examples
include: removing unneeded attributes (projection), creating
derived attributes, and type-conversion. As shown in Fig-
ure 11, input attributes may be propagated directly to the
output by specifying the trivial expression NAME = NAME.
This is done with the ITEMNO, NAME, and PRICE attributes.
The FUNCTION block also converts the quantity to a string
for display (QTYSTRING = VARCHAR(QTY)), and calculates
the line-item total (EXTPRICE = VARCHAR(QTY * DOU-
BLE(PRICE))) as a string. (Although not shown here, the ex-

pression C = B renames attribute B as C; input attributes are
removed from the output relation simply by not explicitly
specifying them as output attributes.)

4.4 Business Logic: Exception Handling

Under any application design paradigm, errors can be di-
vided into two classes: those that can be detected before
runtime, and those which are detected only at runtime. The
vast majority of WebRB errors can be detected while design-
ing the application, before running it. WebRB uses database
meta-data to validate that the names and types of relation at-
tributes associated with persistent model blocks are correct.
All block interconnections carry information about their re-
lation headers – the set of attribute names and types which
flow on the connection. This enables the WebRB design tools
to validate, before runtime, that output connections are com-
patible with the inputs that they are connected to. For exam-
ple, if the relation header of the “insert” input to the INSERT

DB block does not match the relation header of the block’s
model, the error is reported to the developer and the page-
design will not be executed. Similarly, attempts by a block
to access attributes that do not actually appear in the input
relation header, can be detected at design time.

Of course, user-provided input cannot be validated be-
fore the application actually executes. Some attribute type-
mismatches occur only for specific data-values and cannot
be detected at design-time. For example, in the example of
Section 4.3, D = TOINT(STR), the string “4t2” is not a le-
gal string version of any integer, and therefore cannot be
converted to an integer. WebRB therefore needs an excep-
tion model through which developers can specify how they
want the runtime to deal with such errors. Because WebRB
is a declarative data-flow language, it cannot use the excep-
tion model of imperative languages such as C++ and Java.
Like other declarative languages, WebRB does not have a
“flow of control” that can be altered by an exception. Our
solution is based on a Replacement Model approach [25] in
which an expression that is supplied with invalid inputs re-
turns a developer-supplied value as its output. This implies
that an expression always has an output that it can supply
to other blocks. WebRB inserts the developer-supplied “er-
ror value” into the output attribute whenever an error oc-
curs. As a convenience to the developer, the output rela-
tion of a FUNCTION block optionally associates an error
attribute with each developer-specified output attribute. Er-
ror attributes are string-typed, and contain the WebRB mes-
sage generated when the error occurred, e.g. “Invalid integer
value”. As a further convenience, FUNCTION blocks have a
boolean-relation “error” pin whose value is TRUE whenever
the output relation contains one or more tuples with an error
value.

For example, consider again Figure 9. After a search, the
user is given the option to purchase a specified quantity of
one of the products in the search results. The business logic
for this operation is contained in an EMBEDDED PAGE block

294

Figure 10. Search UI Page-Design

(Buy, Figure 12). The Buy block has two inputs: ItemNoQty
(the item number and quantity from the HTML-TABLE on the
Search page, and the buy enable, which is a boolean relation
indicating that the “Buy” button was pressed.

Since the Quantity comes from a text-entry field, the
value received by the Buy block is a string. This is converted
to an integer by the FUNCTION block on the center left. If
the Quantity that the user entered represents a valid integer,
the “error” pin from the FUNCTION block will be false. The
NOT block in the Buy block design is used to invert the sense
of the error pin (“no error”), and fed to a JOIN block along
with the “Buy” button signal. A JOIN between two boolean
relations is the same as a logical AND of the two values.
Thus, the item and quantity are inserted into the CART table
if and only if there is no conversion error and the “Buy”
button was pressed. This value is also fed to the “success”
output pin from the Buy block.

If an error occurs during the conversion when the “Buy”
button is pressed, a TRUE value is fed to the ”error” output
pin from the Buy page. Another FUNCTION block (top cen-
ter in Figure 12) builds an error message string, using the
function TEXT = CONCAT(“INVALID QUANTITY: ”, QTYS-
TRING). The message is fed to the “errorMsg” output from
the Buy page.

4.5 Session Data

Web applications often maintain state between HTTP re-
quests, usually called session data. WebRB does not have a
built-in mechanism for handling session data. However, ses-
sion data may be kept in a database table with the rest of the
application data. In order to support this approach, WebRB
will add a mechanism for accessing the session identifier.

This could be done by adding a block whose output is the
current session identifier.

While session data is not shared by concurrent users, and
is therefore not usually considered a concurrency issue, in
fact session data may be accessed by concurrent browser
requests from the same user. By using database tables to
implement session data, concurrent browser requests can be
safely supported.

5. Evaluation
In this section we substantiate our claim that WebRB can sig-
nificantly improve developer productivity for the subset of
web-applications for which it’s designed: multi-page inter-
active applications that primarily read and update relational
databases and include moderate amounts of business logic.

We begin by noting how the WebRB data-flow language,
and its consistent use of a relational API, allows developers
to easily express typical web-application tasks. For example,
consider a typical requirement to display the contents of
a database table. The imperative-embedding approach (see
Figure 2) requires that developers first issue the appropriate
query; and then iterate through the result-set, displaying one
tuple – and then one attribute – at a time. Figure 1B shows
how a WebRB developer simply wires the database table (via
a READ DB block) to the HTML-TABLE: the relation flows
on the wire with the HTML-TABLE extracting the attributes
it’s interested in “on the fly”. The task of acquiring and
iterating through the result-set is left to the WebRB runtime.
As shown by the use of JOIN and WHERE blocks in the
lower-left of Figure 9, the simplicity of using relational data
flow is maintained even when a developer must transform
data between the database source and the HTML-TABLE sink.

295

Figure 11. Shopping Cart Page-Design and Web-Page

In Section 5.1, we compare WebRB to well-known al-
ternatives for writing web-applications. We do this using
the Cognitive Dimensions [26] (CD) approach, following
the outline used in [24]. Cognitive Dimensions allows us
to quickly evaluate the usability of “information-based ar-
tifacts” without doing a detailed analysis. In some cases we
have identified deficiencies with WebRB. Unless otherwise
noted, we plan to address these as time permits. In Sec-
tion 5.2 we address specific issues of missing WebRB func-
tion.

5.1 Feature Analysis

For each feature, we contrast the WebRB approach with a
standard “imperative-embedding” approach, used by PHP,
Java, and other languages to generate dynamic web pages.
We also mention other systems, where a specific contribution
is noteworthy.

Abstraction Gradient: The WebRB language uses (Sec-
tion 2) a relatively small number of abstractions, including
relations, attributes, blocks, pins, and wires. The WebRB im-
plementation (Section 3) adds a moderate number of built-in
blocks, including algebra blocks (JOIN, NOT, FUNCTION,
and WHERE); constant blocks, database blocks (READ DB,

296

Figure 12. Buy Page-Design

INSERT DB, DELETE DB, and UPDATE DB); widget blocks
(TEXT-ENTRY, TEXT-LABEL, HTML-TABLE, and BUTTON);
and PAGE TRANSITION. WebRB allows developers to de-
fine their own new abstractions (user-defined blocks). CD
characterizes such behavior as abstraction tolerant.

We note, however, that although many developers have
already worked with relational databases, they have proba-
bly not worked with formal relational algebra – even though
it is the basis for relational database systems. Thus, the use
of relational algebra in WebRB represents a significant ab-
straction gradient for many developers.

Imperative embedding approaches include the abstrac-
tions of the basic language (e.g., variables, statements, ex-
pressions, control structures, arrays, exceptions, classes,
methods), as well as abstractions introduced by the libraries
used to build the application. For example, each language
has a library which is used for database access (e.g., PDO
for PHP, JDBC for Java). Other abstractions may be used for
HTML page construction, such as Smarty [27] for PHP, and
JSP for Java.

Closeness of Mapping: WebRB provides excellent closeness-
of-mapping for the GUI portion of applications. In the de-
sign view, widgets are shown in the same location and with
the same appearance they will have in the runtime view.
Also, the WebRB wires provide a close visual mapping to
the dataflow of the system.

The closeness-of-mapping for the database tables and al-
gebra blocks is less clear. Although they provide a close
mapping to relational algebra, relational algebra may not
map well to the problem domain. For example, a “search”

operation requires the use of a JOIN block, and optionally a
WHERE block. Although this makes sense from the stand-
point of relational algebra, it does not map closely to the
desired “search” operation.

For imperative embedded approaches, closeness of map-
ping for web application GUIs is typically poor. The imper-
ative code is generating HTML, which does not have a close
mapping to the GUI that will be seen in the web browser. Vi-
sual design tools, such as Dreamweaver, help with this prob-
lem, but typically have trouble with generation of dynamic
pages, and round-tripping between visual and imperative de-
signs. Developers are often forced to do a “first-cut” using
the visual design tool, and then manually modify the result
as they add business logic with imperative code.

Imperative access to databases also has poor closeness of
mapping. Virtually all database access is initiated via SQL,
which does not map closely to the database design. Read
operations return a result set, which is accessed a single cell
at a time using function/method calls. Tools such as DDS-
Pro let the developer work in a more closely mapped domain.

Consistency: WebRB attempts to be very consistent. All
blocks, pins, and wires use a relation data-type, and any in-
put may be connected to any output. Imperative languages
have varying degrees of consistency, but typically a devel-
oper cannot infer anything about unknown parts of the lan-
guage from the known parts.

Diffuseness/Terseness: WebRB has many of the diffuseness
problems described in [24]. In particular, the visual repre-
sentation of relational algebra and model components re-
quires more design-screen real estate than comparable text-

297

based languages (e.g. SQL). However, WebRB’s EMBEDDED

PAGE blocks mitigate this problem somewhat, since devel-
opers can use them to factor complexity of a page-design.
Imperative languages such as PHP and Java are generally
considered to be less diffuse than visual languages such as
WebRB.

Error-Proneness: We have identified some common error
scenarios with WebRB designs. For example, some of the
widgets (e.g. TEXT-ENTRY and TEXT-LABEL) use a default
attribute name, and developers forget to change it to what
they want to use. However, such errors are quickly detected
by the WebRB validation algorithms.

Imperative languages are well known for providing op-
portunities for “slips” (where the developer ends up doing
something they didn’t mean to do). Well-known examples
include mistyped variable names and mismatched parenthe-
ses or braces [24].

Hard Mental Operations: WebRB has a lower demand on
cognitive resources than non-visual systems. For example,
visible wires are used to route data to and from the widgets.
In contrast, many non-visual systems require the developer
to remember the association between widgets and (separate)
code.

On the other hand, many developers may find the use of
relational algebra to be a hard mental operation. The popu-
larity of visual query systems [18] indicates that the visual
domain is popular for at least some relational operations.
However, the use of relational algebra for all “controller”
operations may be problematic.

Using imperative code to generate GUIs is certainly a
hard mental operation. The developer must continually map
between the HTML domain and the visual domain. Visual
design tools are a considerable improvement.

Hidden Dependencies: WebRB contains hidden dependen-
cies, which arise from the hierarchical composition style of
the design environment. At a local level (intra-page), it is
easy to see dependencies between blocks, because depen-
dent blocks must be connected by wires. However, between
pages, it is more difficult to see dependencies. For exam-
ple, there is no automated way to find out which blocks ref-
erence a particular block. Also, WebRB allows multiple in-
stances of database blocks to reference the same database
table. Thus, it is not obvious that the input to an UPDATE DB

block on Page A affects the next output of a READ DB block
on Page B. These limitations can be addressed by enhance-
ments to the development system.

Imperative languages such as PHP and Java certainly suf-
fer from hidden dependencies. In the language itself, there
is no way to determine the inbound linkages (e.g., there is
no way to determine who calls a function). This is typically
addressed by design tools such as Eclipse [28], which can
search for dependencies and display them for the developer.

Premature Commitment: Like most visual programming
languages, WebRB suffers from premature commitment with
regard to layout [24]. We address this by making it very easy
to move blocks (low viscosity). Premature Commitment also
arises at table creation time, because all the attributes and
their types must be specified, and cannot be changed without
deleting and recreating the table.

Non-visual imperative languages also suffer from prema-
ture commitment. Typical workarounds are decoupling (in-
terim versions, or “Plan to throw one away” [29]), and leav-
ing place-holders in the code and going back later to fill them
in later [24].

Progressive Evaluation: WebRB has excellent support for
Progressive Evaluation. The current page displayed in the
editor may be validated at any time. Any page without fatal
validation errors may be immediately executed at any time.

With imperative languages, progressive evaluation is de-
pendent on the development tools in use. High-end IDEs
such as Eclipse support incremental compilation and quick
launching of applications.

Secondary notation: WebRB provides some support for
secondary notation. Developers may place and group the
blocks on their designs to make the function more appar-
ent. WebRB also supports annotations, which consist of text
strings that are visible on the design page, but are not visible
on the runtime page.

Imperative text languages provide some opportunities for
secondary notation. The most obvious example is comments
(escape from formalism) and indentation (redundant recod-
ing) [26]. Opportunities for more expressiveness are limited
by the one-dimensional nature of text coding.

Viscosity: WebRB has low viscosity for many types of
changes. For example, blocks may easy by moved by drag-
ging with the mouse, and any attached wires will “rubber
band” to follow the block. Additional features would be
helpful for reducing viscosity. For example, the ability to
select a set of blocks and convert them to an embedded
block (refactoring), and the ability to move multiple selected
blocks in unison.

For imperative text languages, the “raw” viscosity is
fairly high. For example, changing the name of a variable
requires finding all the uses of that variable and changing
them. Refactoring a piece of code into a separate func-
tion/method requires cutting, pasting, and a lot of cleanup
work. For GUIs described by text (e.g. HTML), the viscosity
is even higher, because editing takes place in the non-visual
domain. Design tools (IDEs) are vital for reducing viscosity
in textual languages.

Visibility: WebRB provides good visibility at the page
level, since all the blocks and data flows (wires) are easily
seen. Many of the blocks provide a visual indication of their
property settings. For example, database blocks display their
table name and attribute names, FUNCTION blocks display

298

a subset of their mapping function(s), and WHERE blocks
display their condition expression. However, some blocks
potentially have so many properties that displaying all of
them would require too much screen real-estate (e.g. there
is no limit on how many mapping functions a FUNCTION

block may have).
Construction of GUIs with imperative code often leads

to visibility problems. For example, GUI event-handling is
often implemented by attaching small pieces of code to GUI
widgets (e.g. the onclick attribute in HTML). Crucial pieces
of an application’s function are thus diffused, making it hard
to modify the application. Visual design tools do not help
much with this problem, because they do not have a good
approach for managing this complexity.

5.2 Areas For Improvement

WebRB is both an approach for building web-applications –
using a visual, data-flow, relational DSL – and an implemen-
tation [22] of this approach. Although our implementation
is certainly missing certain features, the examples of Sec-
tion 4 show that it already can be used to write non-trivial
web-applications. We therefore distinguish between missing
features that can easily be added to the implementation and
features that require redesigning WebRB itself.

Modifying the visual presentation: Developers can stati-
cally position GUI widgets at the desired “x, y” locations.
The property editor in WebRB’s visual editor gives develop-
ers control of some aspects of a web-page’s GUI, such as
a page’s foreground and background colors. However, a de-
veloper cannot specify the color of non-text GUI widgets
such as table elements, nor control style (fonts, or location)
dynamically. We believe that, in a web-application environ-
ment, visual presentation issues should be addressed with
HTML/CSS technologies. Thus, by allowing developers to
supply their own style-sheets, visual presentation issues that
are orthogonal to WebRB can be solved using a familiar tech-
nology.

More GUI blocks: WebRB currently includes HTML-TABLE,
BUTTON, TEXT-ENTRY and TEXT-LABEL GUI blocks, but
does not include “image” or “link” blocks. We plan to sup-
port these blocks as well using the same approach in which
we wrap a relational API around a HTML widget’s interface.

Integration with AJAX-based frameworks: WebRB applica-
tion deployment is done through a server loading individ-
ual page-designs; managing inter-page navigation and data-
flow; interrogating a page-design for its HTML; and sending
the HTML to be rendered in a standard web-browser (Sec-
tion 3.2). In this approach, the web-browser does not use
“AJAX” techniques [30] such as caching application state or
executing business logic. We note that AJAX techniques are
primarily concerned with function placement. For example,
many techniques move function into the browser to improve
response time. WebRB is primarily concerned with applica-
tion function, not placement, and thus is largely orthogonal

to AJAX. Thus WebRB could incorporate AJAX concepts
without requiring fundamental changes. For example, block
execution could be done in the browser.

Interfacing with imperative code: A more fundamental
weakness of WebRB is that it’s “self-contained” and has no
interface to arbitrary imperative code (e.g., business logic
written in PHP and Java). Although WebRB’s use of rela-
tional algebra and tuple-expressions does support applica-
tions with small or moderate amounts of business logic,
completely restricting access to other code is problematic.
To address this restriction, we first observe that the diffi-
culty does not lie in how the visual WebRB environment
can interface to non-visual function. WebRB blocks such as
the persistent database blocks very effectively wrap non-
visual function. Instead, the issue is how can a functional or
declarative programming language such as WebRB interface
with an imperative programming language. Our (unimple-
mented) solution to this problem is to allow imperative code
in a WebRB page-design so long as it is encapsulated in a
functional and relational API. As shown by the persistent
database blocks, this can be done – even for operations that
change system state – as long as well-defined relational in-
puts and outputs can be abstracted from the imperative code.
Although this approach does not allow arbitrary pieces of
imperative code, it significantly relaxes the “all-or-nothing”
WebRB constraint.

6. Summary
In this paper we identified a ubiquitous set of applications
that we termed “relational web-applications”. These are dy-
namic web-applications that:

1. Read relational databases and present the data in a GUI;

2. Update relational databases based on a user’s interaction
with the GUI;

3. Perform transformations of the relational data which re-
quire only simple or moderately complex business logic.

We identified a number of problems with imperative-embedding
– the most popular approach for constructing relational web-
applications, and introduced WebRB as a visual domain-
specific language that solves these problems. Because We-
bRB is designed for, and limited to, construction of relational
web-applications, it is able to successfully use visual pro-
gramming techniques to improve productivity without suf-
fering from the scaling issues that are often associated with
visual programming languages. WebRB blocks have the right
level of abstraction for common database read and write op-
erations, and its use of relational algebra provides a good
fit between moderately complex business logic and the ap-
plication’s data. Using a detailed set of web-page examples,
we substantiated these claims by evaluating WebRB across a
large number of language dimensions. Also, we showed that
WebRB provides sufficient functionality to implement any

299

relational web-application with moderately complex busi-
ness logic.

We have not yet done any analysis of the runtime per-
formance of WebRB. However, we feel that 1) productivity
improvements will offset the additional runtime costs; 2) it
should be possible for WebRB designs to be compiled to
efficient runtime constructs; and 3) much of the work can
be pushed down to the database. In the current implementa-
tion [22], there are no noticeable response-time delays, even
though the runtime implementation has not been optimized
at all.

References
[1] David McFarland. Dreamweaver MX 2004: The Missing

Manual. O’Reilly Media, 2003. ISBN: 0596006314.

[2] IBM Rational Application Developer for Websphere Soft-
ware Version 6.0. http://www-8.ibm.com/software/

includes/pdf/rat_app_dev_LoRes.pdf, 2006. Publica-
tion number GC34-2464-00.

[3] Ruby on rails. http://www.rubyonrails.org/, 2007.

[4] C. J. Date and Hugh Darwen. A Guide to SQL Standard.
Addison-Wesley, 4rth edition, 1996. ISBN: 0201964260.

[5] Wikipedia. Event loop. http://en.wikipedia.org/w/

index.php?title=Event_loop&oldid=89348024, 2006.

[6] C.J. Date and H. Darwen. Databases, Types and the
Relational Model (3rd Edition). Addison-Wesley, Boston,
MA, 2006.

[7] Peter Van Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. MIT Press, Cambridge,
Mass, 2004.

[8] Antony J. T. Davie. Introduction to Functional Programming
Systems Using Haskell. Cambridge University Press, 1992.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Francisco, CA, USA,
1993.

[10] Brian T. Bennett, Bill Hahm, Avraham Leff, Thomas A.
Mikalsen, Kevin Rasmus, James T. Rayfield, and Isabelle
Rouvellou. A Distributed Object Oriented Framework to
Offer Transactional Support for Long Running Business
Processes. In ACM Middleware, pages 331–348, 2000.

[11] Wayne Citrin, Michael Doherty, and Benjamin Zorn. Formal
semantics of control in a completely visual programming
language. Proc. Symposium on Visual Languages, pages
208–215, 1994.

[12] P.T. Cox, F.R. Giles, and T. Pietrzykowski. Prograph: a step
towards liberating programming from textual conditioning.
IEEE Workshop on Visual Languages, pages 150 – 156, 1989.

[13] M.M. Burnett and A.L. Ambler. A declarative approach to
event-handling in visual programming languages. Proc. IEEE
Workshop on Visual Languages, pages 34–40, 1992.

[14] James Duncan Davidson. Learning Cocoa with Objective-C,
Second Edition. O’Reilly, Sebastopol, CA, USA, 2002.

[15] JavaServer Faces Technology. http://java.sun.com/

javaee/javaserverfaces/, 2007.

[16] MyEclipseIDE. http://www.myeclipseide.com/, 2007.

[17] M. M. Zloof. Query-by-example: a data base language. IBM
Systems Journal, 16(4), 1977.

[18] Tiziana Catarci, Maria F. Costabile, Stefano Levialdi, and
Carlo Batini. Visual query systems for databases: A survey.
Journal of Visual Languages & Computing, 8(2), April 1997.

[19] Database design studio. http://www.dds-pro.com/

products/main.html, 2006.

[20] Relational Persistence for Java and .NET. http://www.

hibernate.org/, 2007.

[21] Enterprise Javabeans Technology. http://java.sun.com/
products/ejb/, 2007.

[22] IBM alphaWorks Services: Web Relational Blocks. http:

//services.alphaworks.ibm.com/webrb/, 2006.

[23] M.M Burnett, M.J. Baker, C. Bohus, P. Carlson, S. Yang,
and P. Van Zee. Scaling up visual programming languages.
Computer, 28:45 – 54, March 1995.

[24] T. R. G. Green and M. Petre. Usability analysis of
visual programming environments: a ’cognitive dimensions’
framework. J. Visual Languages and Computing, 7(2):131–
174, 1996.

[25] S. Yemini and D. Berry. A modular verifiable exception
handling mechanism. ACM Transactions on Programming
Languages and Systems (TOPLAS), 1985.

[26] Thomas Green and Alan Blackwell. Cognitive dimensions of
information artefacts: a tutorial. http://www.cl.cam.ac.
uk/~afb21/CognitiveDimensions/CDtutorial.pdf,
October 1998.

[27] Smarty : Template engine. http://smarty.php.net/,
2007.

[28] Eclipse Project. http://www.eclipse.org/eclipse,
2006.

[29] Frederick P. Brooks. The Mythical Man-Month: Essays on
Software Engineering, 20th Anniversary Edition. Addison-
Wesley Professional, 1995.

[30] Justin Gehtland, Dion Almaer, and Ben Galbraith. Pragmatic
Ajax: A Web 2.0 Primer. Pragmatic Bookshelf, 2006.

300

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

