

Visual SDLC: Improving Requirements Engineering
for Object-Oriented Systems

Marc Raygoza

Visual SDLC
Aliso Viejo, CA 92656

marc@visualsdlc.com

ABSTRACT
In theory, requirements engineering solves many of
software engineering’s fundamental problems. The
stakeholders know what the developers are building, why
they are building it, when they are building it, and even to
some degree, how they are building it. If requirements
engineering resolves some of the basic communication
issues between IT and the business, why aren’t more
companies actively practicing this discipline? In practice,
requirements engineering is almost impractical without a
commercial automation tool. The critics argue that the
current automation tools do not convincingly demonstrate
its value proposition, or fulfill the longstanding promises
of the leading requirements engineering experts. This
paper describes how the enterprise software development
lifecycle management solution, Visual SDLC, addresses
some of the outstanding issues of the present requirements
engineering tools.

Categories and Subject Descriptors
D.2.2 [Software Engineering]:
Requirements/Specifications – elicitation methods,
languages, methodologies, tools

General Terms
Design, Documentation, Management, Reliability,
Standardization

Keywords
Enterprise Software Development Lifecycle Management,
Requirements Engineering, Software Development Life
Cycle, use cases, test cases

1. INTRODUCTION
Future requirements engineering tools need to provide
more functionality than capturing textual specifications,
and providing columnar-based tracability matrices. Since
requirements interact with every facet of the software
development lifecycle, requirements engineering tools
should inherently provide the same round-trip
functionality as enterprise lifecycle management software.

Visual SDLC’s objective is to resolve requirements
engineering issues, and in the process provide an intuitive
enterprise lifecycle management solution that:

• Cultivates cross-functional team interaction
• Promotes software specification reuse
• Enhances integration between textual specification

and modeling tools
• Promotes product lifecycle traceability
• Automates generation of object models from use

cases

2. SOLUTIONS

Cross-functional team interaction
Requirements engineering is an area of software
engineering that is more likely to involve more parts of
the business than any other software engineering
discipline. Business stakeholders provide the high-level
ideas. The analysts capture these ideas, and transform
them into meaningful requirements. The developers and
testers verify these requirements and then develop and
test, respectively. Visual SDLC enables software
development teams to collaborate collectively using a
requirements engineering workflow system that
cognitively traces the ideas to the final product.

Software specification reuse
Why should the term reuse be an exclusive concept to
programming languages? Visual SDLC facilitates
perpetual reuse of specifications. Some of the leading
commercial requirements engineering tools use general-
purpose tools, such as Microsoft Word ™, to capture its
software specifications. In Microsoft Word ™ to share
information between two documents, one must perform a
manual copy and paste between the source and target
documents. What happens when the specification’s
content in the source document is updated? Obviously,
the target document now has content that does not
coincide with the source. Our agile document
management solution manages the synchronicity of the
source and target documents. This ensures information is

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

112

disseminated properly, and developers are not reading
from an obsolete specification.

Integration between textual specification and
modeling tools
Couplings between textual specification and modeling
tools are immature and seldom used [1]. Engineers are
required to develop specification using two or more tools:
a tool for textual specifications and one or more tools for
model-oriented analysis and design [1]. Visual SDLC is
integrated lifecycle product that allows teams to visually
model and textually define the software system in a single
integrated environment. Hence, significantly minimizing
the risk of redundant work and artifacts.

Product lifecycle traceability
Traceability is an undisputable characteristic of robust
requirements engineering. There are two challenges with
traceability: usability and maintainability. Rightfully so,
most commercial requirements engineering products use a
table-based traceability matrix that permits a many-to-
many relationship. The graph data structure is appropriate
since the notion is to map any traceable link to another
traceable link. However, why does the underlying data
structure need to be synonymous with the user interface?
One of the basic problems experienced with a traditional
table-based traceability matrix is that requirement
specifiers almost blindly map high level ideas to
functional and non-functional specifications thus
defeating the purpose of traceability. Instead of assuring
proper requirements coverage, and traceability to
downstream specifications, it becomes an overlooked
report since everything traces to everything. Visual
SDLC provides an intuitive specification workflow that
demonstrates the power of both requirement and
document traceability. This presents a very powerful
quality assurance feature for developing complex object-
oriented systems.

Automatically generate object models from use cases
Migrating from use cases to object models still remains a
challenge for some developers. The leading cause for this
problem is poorly written use cases, and the level of
granularity necessary to start generating an object model.
This leaves a large margin of room of error for the
developer. To resolve this issue, Visual SDLC instills
proper use case development by providing a unique use
case parsing algorithm to ensure use cases comply with
simple active tense English sentences. Subsequently,
Visual SDLC performs noun+verb identification
extraction, and builds the object model automatically. The
notion is not to generate a perfect object model from the
use case specifcation; no lexical parsing program can
knowingly achieve such greatness, yet to automate a
meaningful percentage of the object model.

3. CONCLUSION
There is no “Silver Bullet” to improving requirements
engineering for object-oriented systems. The closet thing
could be bridging the ever prevalent communication gap
between IT and business. As object-oriented systems
become increasingly more complex and software
development teams become more geographically
dispersed, requirements engineering will only become
more challenging. Visual SDLC offers a unique solution
to address the outstanding and future requirements
engineering issues.

REFERENCES
[1] M. Weber and J. Weisbrod, Requirements Engineering

in Automotive Development: Experiences and
Challenges, IEEE Software, 20, 1 (January-February
2003), pp. 16-24.

[2] D. Leffingwell and D. Widrig, Managing Software
Requirements: A Use Case Approach, Addison
Wesley, 2003

[3] V. Leino, Documenting Requirements Traceability
Information: A Case Study, Helsinki University of
Technology, December 2001

113

