
Structured Source Retrieval for Improving Software
Search during Program Comprehension Tasks

Brian Eddy
Department of Computer Science

The University of Alabama
bpeddy@crimson.ua.edu

Abstract
During the software maintenance and evolution phase, the major-
ity of a developer’s time is spent on programming comprehension
tasks. Feature location (i.e., finding the first location to make a
modification), impact analysis (i.e., determining what and to what
extent a program is affected by a change), and traceability (i.e., de-
termining where requirements are implemented in the program),
are all examples of such tasks. Recent research in the area of pro-
gram comprehension has focused on using textual information,
structural information (i.e., information regarding the creation and
use of objects and methods within the code), and execution traces
to develop tools that ease the burden on developers and decrease
the time spent in each task. Furthermore, new studies in automat-
ing these tasks have started using text retrieval techniques, such as
the vector space model (VSM), latent semantic indexing (LSI), and
latent Dirichlet allocation (LDA) for searching software. This doc-
toral symposium summary presents two promising areas for im-
proving existing techniques by combining structural information
with text retrieval. The first is a methodology for evaluating the use-
fulness of text obtained from a program by looking at the structural
location of terms (e.g., method name, comments, identifiers). The
second focuses on improving the existing text retrieval approaches
by providing more flexible queries (i.e., search strings). These two
areas are complementary to each other and may be combined.

1. Motivation for Structured Source Retrieval
Understanding a software system’s implementation is a crucial part
of a developer’s job. When developers are tasked with changing
the source code of a large or unfamiliar system, they must spend
considerable time and effort on program comprehension activities
to gain the knowledge needed to implement, correct, and complete
changes. Before any changes can be made, bugs fixed, or features
added, the developer must first understand the system’s implemen-
tation and locate source code elements specific to the current task.

Software maintenance and evolution accounts for 60-80% [1, 5]
of the cost and effort during the software life cycle, and during
this time, over half [8] of developer effort is taken up in trying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPLASH ’14, Oct 20-24 2014, Portland, OR, USA.
Copyright c© 2014 ACM 978-1-4503-3208-8/14/10. . . $15.00.
http://dx.doi.org/10.1145/2660252.2660253

to understand the software system. One common task involves
locating a source code element that is required for a change or
modification. This process, known as feature location, becomes
impractical to perform manually as the scale of modern software
systems increases. Existing search tools such as keyword searches
and regular expressions are limited as such techniques do not allow
for searching of synonyms (missing relevant results) or searching
for only a single meaning of a term when a term has multiple
meanings (resulting in irrelevant results) [4]. Given these problems
and the increasing size and complexity of software systems, the
need for more advanced tools to aid in program comprehension is
evident.

Thus, techniques and tools that can reduce the effort required
for these tasks are key to minimizing software costs. Many recent
studies into semi-automated techniques for program comprehen-
sion tasks are based on text retrieval (TR) methods that focus on
producing corpora of text extracted from source code and perform-
ing searches over the newly created model. Common TR-based
tools in the literature incorporate models such as latent semantic
indexing (LSI) [4] and latent Dirichlet allocation (LDA) [3].

Previous research into TR-based techniques have attempted to
combine textual information with multiple sources of structural
(e.g., dependency graphs) and dynamic information (e.g., execution
traces). By combining textual information with structural informa-
tion and dynamic information, researchers have found an improve-
ment over using textual information alone for some systems [10–
13]. There are two existing problems with this research area. First,
the research has focused on latent semantic indexing (LSI) and the
vector space model (VSM), discussed in more detail later. How-
ever, more sophisticated techniques such as latent Dirichlet alloca-
tion (LDA) and other topic-modeling techniques (e.g., probabilistic
LSI, Pachinko allocation, associative clustering) have been shown
to produce useful results in other domains along with program com-
prehension tasks. Second, there has not been much investigation
into the importance of each structural component (e.g., whether
method calls are as important as method names).

The goal of the research presented in this doctoral symposium
summary is to investigate how new structural weighting schemes
(i.e., schemes that give varying weights to different structural com-
ponents) affects the results of text retrieval as it applies to software
maintenance tasks. The research plan will study two different tech-
niques. The first combines structural weighting with LDA as an ad-
hoc preprocessing step. The second integrates structural weighting
directly into a structured text retrieval approach based on language
modeling. We believe this work will lead to more relevant results
and as discussed in Section 3.2, lead to a more flexible retrieval
process for the developer.

13

2. Problems of Interest
We are currently working on studying the effects of structural
weighting schemes on LDA and finishing the development of tool
support for the structured source retrieval approach. The main prob-
lems are discussed in this section.

2.1 RP1: Determining the effects of structural weighting
schemes on LDA.

TR models operate on corpora. A corpus is a set of documents
containing all text associated with the document after it has un-
dergone a set of text transformations (i.e., preprocessing steps).
Each document in one of these corpora contains the text associated
with a single source code entity, typically a method. TR techniques
such as LSI and VSM have shown to have their results improved
when combined with additional structural and dynamic informa-
tion [7, 9, 10, 13]. We propose to investigate the effect of different
weighting schemes for LDA. Term weighting is a common prepro-
cessing step. These weighting schemes will take into account the
structural location (e.g., parameter, comment, method name) of a
term in source documents.

One criticism of the use of advanced topic modeling approaches
on source code is that terms are more sparse than in natural lan-
guage documents. For instance, the most relevant topic to a method
may be the one that describes the method’s behavior. However,
terms for that topic may be limited to the method name and pa-
rameters and it is common for the method name to be limited to
the method’s signature. In such a case, placing higher importance
on the terms in the method name may result in higher probability
of a document being associated with the correct topic(s). However,
this does not necessarily indicate that other terms should be dis-
regarded. Emphasizing certain terms (e.g., method names) while
deemphasizing others (e.g., method calls) may lead to a better topic
model.

2.2 RP2: Determining how various weighting schemes affect
structured source retrieval in language models for
software maintenance tasks.

RP1 focuses on a traditional TR technique (LDA). Traditional tech-
niques treat documents as unordered collections of terms without
structure. However, not all documents are unstructured. For in-
stance, a scientific article may be broken into the title, the abstract,
the sections, the paragraphs, and the sentences. Words may appear
in multiple components of the document or in a single component
of the document. The approach of performing information retrieval
by breaking documents into fragments based on the structure of
the document, and either returning the most relevant fragments as
a result of a query or using the fragments to find the most rele-
vant documents, is known as structured document retrieval [6].
The structure of a document may be either explicitly defined using
a mark-up language (e.g., XML) or derived.

We have investigated an approach to structured document re-
trieval on source code by deriving structure from the position and
origin of the terms (e.g. method signature, method body, com-
ments). Structured source retrieval techniques allow for new query-
ing methodologies. For instance, a developer may have an under-
standing of what terms relate to method names and class names,
and what terms refer to variables or fields. A developer might also
have expectations of what context a term is used. Allowing a more
robust query system that allows developer input may increase the
likelihood of returning relevant results. Current queries used in
software search do not allow for order of terms or for varying levels
of emphasis on different structural components.

We will first finish a study of the benefits and consequences
of the structured source retrieval technique and then investigate the

combination of structured source retrieval with structural weighting
from RP1.

3. The Approach
In this section, we describe the approach to structural weighting
as well as our approach to structured document retrieval. We will
first study the effects of structural weighting on LDA, then develop
the tools needed for the structured document retrieval approach
and study the effects of structural weighting on that technique.
Once both parts are completed, we will compare the results of both
approaches.

3.1 Structural Weighting
Structural weighting was introduced for LDA by Bassett and
Kraft [2]. In their study, they focused on various weighting schemes
of method names and method calls by changing term counts during
the creation of the corpus. They found that by changing the count
of certain terms, it was possible to achieve more accurate results
with LDA.

There is still work to be completed on this idea. We will ex-
pand upon the previous research by focusing on other terms that
will likely lead to an overall improvement in relevant results. There
are a number of different structural components at both the method
and the class level. Prior research has focused mainly on the method
level for text retrieval tasks. At the method level, different weights
can be placed on the following components: parameters, string lit-
erals, local variables, method calls, annotations, class or interface
references, method names, in-line comments, block comments.
Each of these components may be weighted individually or as a
group with other items on the list. Previous experience has shown
that there are two things that need to be considered: the individual
component alone and the interaction between components.

A document in LDA is a collection of terms appearing in that
document. Weights will be introduced to LDA through the use
of scalar multiples that increase or decrease the number of times
certain terms appear in these collections. A weighting scheme is
then expressed as the scalar multiple for each component. By using
scalar multiples and weighting the components differently, LDA
may be modified to increase the probablity that certain terms will be
associated with a particular document. We believe certain elements
are more important to a method. For instance, method names are
more important than method calls as they describe the behavior
of the method itself, while a method call may be to a supporting
object such as a logger or only a sub step of the method’s behavior.
By raising the weights on these terms we emphasize what we
believe to be important, while deemphasizing what we believe to
be unimportant. This produces results where methods with terms
appearing in the method names are places higher than methods with
terms appearing in the method calls.

Investigating this idea will start by focusing on a small subset
of the components that are believed to have a high likelihood to
influence the results. The initial focus will be on the leading com-
ments, method names, parameters, and body comments. It is be-
lieved that leading comments are often used to explain the purpose
of the method in natural language and therefore have a high rele-
vance to the software search. Parameters are the inputs to the func-
tions. Combined with the method name, they help to clarify the
main responsibility of the method or help clarify which method is
most relevant to a query amongst a set of overloaded methods. We
will study these components by first identifying appropriate lev-
els for the scalars applied to each component, then systematically
changing the weights of each of these terms individually and as
linear combinations, then performing feature location on multiple
open source software systems (jEdit, JabRef, Eclipse). We will use

14

statistical analysis to identify significance of an effective change
and to identify interactions among the components.

3.2 Structured Source Retrieval
Structural Weighting offers the possibility of improvement in tradi-
tional TR-based techniques. However, structured source retrieval
differs from traditional techniques by building structured docu-
ments from source code.

Structured document retrieval divides the terms in a document
into multiple components where each component is a structural
field of the document. For instance, a document could be divided
into the title and the body of the document. For source code where
documents are typically methods in the software system, the doc-
ument could be divided in multiple different ways. One method
could split the method signature, method body, and comments into
different components. Another might only use the method signature
and method body. Yet, another might split the method signature,
method identifiers, method literals, and method comments. While
there are several ways to perform this splitting, a finer granular-
ity leads to more flexibility when querying but also leads to more
complexity in the retrieval model. Research will need to be done to
determine the best way of forming structured method documents.

Once the source code has been converted into structured docu-
ments, tools exist for indexing such documents. Indri1 is a search
engine developed as part of the Lemur project between the Univer-
sity of Massachusetts and Carnegie Mellon University. The search
engine supports structured query documents and provides the user
of the system with a flexible model for defining fields and other
attributes of a document in the corpus. The system uses a combi-
nation of language modeling and inference networks as the search
engine’s retrieval model. We will adapt our source code model to
be searchable by Indri’s search engine.

The Indri query language allows for a wide variety of options.
The simplest queries in Indri take the form:

#combine(side1 computes Point)

The # signifies a query, combine means to search for the terms to-
gether in a document, while the query is provided in the parenthe-
ses. For such a query, each term in the query is given equal weight-
ing and the query is issued across all fields. This query does not
make use of the structured document, but instead uses the document
as a collection of words similar to the traditional TR approaches. A
more advanced query would be of the form:

#weight(2.0 #combine[signature](area) 1.0
#combine[body](area))

In the example query, the developer has given greater weight to
documents with “area” appearing in the method signature versus
the method body. Perhaps the developer knows the method they
want computes an area, so they believe that “area” is likely to be
in the method name. They want to see methods with “area” in the
method name before other possible choices. In the example given,
area has twice the effect on the final score when it appears in the
signature compared to the body. If we treat b as the belief score
(i.e., how likely we believe the document will return this word) then
an example of the overall score for a document given the example
query might be 0.67 ∗ log(b(#combine[signature](area))) +
0.33 ∗ log(b(#combine[body](area))).

By weighting the query, developers are more likely to retrieve
the results they want. While developers may manually weight their
queries, we also wish to identify queries that may return higher
results for developers that are less familiar with the system or sug-
gest queries that may produce more relevant results to the devel-

1 http://www.lemurproject.org/indri/

oper. The focus of this research is on using the weighted queries to
produce more relevant results.

4. Evaluation Methodology
To evaluate our structural weighting schemes and our structured
source retrieval approach, we will use established benchmarks in
the field of feature location. We will begin by repeating the study
conducted by Bassett and Kraft [2]. Then we will expand our study
to look at terms from the method signature, the leading comments,
and body comments. We believe these components are the most
likely to lead to more relevant results. We will perform statistical
testing to look for significant effects between different weighting
schemes and factor analysis to identify any interactions.

Once we have completed our work on LDA, we will finish de-
velopment of the tools needed for our structured document retrieval
technique. We will use a methodology similar to that of study-
ing structural weighting on LDA to study the effects of different
weighted queries. We will then compare the results of the two dif-
ferent approaches (structural weighting with LDA and structured
source retrieval). Finally, we will assess whether either of these
techniques results in an improvement over traditional TR-based
techniques on impact analysis.

References
[1] G. Alkhatib. The maintenance problem of application software: an

empirical analysis. Journal of Software Maintenance: Research and
Practice, 4(2):83–104, 1992.

[2] B. Bassett and N. A. Kraft. Structural information based term weight-
ing in text retrieval for feature location. In Program Comprehension
(ICPC), 2013 IEEE 21st International Conference on, pages 133–141.
IEEE, 2013.

[3] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[4] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society
of Information Science, 41:391–407, 1990.

[5] L. Erlikh. Leveraging legacy system dollars for e-business. IEEE IT
Pro, pages 17–23, May/June 2000.

[6] M. Lalmas and R. Baeza-Yates. Structured Document Retrieval.
Springer US, 2009.

[7] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich. Feature location
via information retrieval based filtering of a single scenario execution
trace. In Proceedings of the 22nd International Conference on Auto-
mated Software Engineering, pages 234–243, 2007.

[8] H. Müller, J. Jahnke, D. Smith, M.-A. Storey, S. Tilley, and K. Wong.
Reverse engineering: A roadmap. In Proceedings of the Future of
Software Engineering, pages 47–60, June 2000.

[9] D. Poshyvanyk, Y. Gueheneuc, A. Marcus, G. Antoniol, and V. Ra-
jlich. Feature location using probabilistic ranking of methods based
on execution scenarios and information retrieval. IEEE Transactions
on Software Engineering, 33(6):420–432, June 2007.

[10] M. Revelle, B. Dit, and D. Poshyvanyk. Using data fusion and web
mining to support feature location in software. In Proceedings of 18th
IEEE International Conference on Program Comprehension, pages
14–23, Braga, Portugal, July 2010.

[11] G. Scanniello and A. Marcus. Clustering support for static concept
location in source code. In Proceedings of the 19th IEEE International
Conference on Program Comprehension, 2011.

[12] P. Shao and R. K. Smith. Feature location by ir modules and call graph.
In Proceedings of the 47th Annual Southeast Regional Conference,
pages 70:1–70:4, Clemson, South Carolina, 2009. ISBN 978-1-60558-
421-8.

[13] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang. SNIAFL: Towards a
static noninteractive approach to feature location. ACM Transactions
of Software Engineering Methodologies, 15(2):195–226, 2006.

15

