

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

Agile Architecture Methodology: Long Term Strategy Interleaved
with Short Term Tactics

Ethan Hadar
CA Labs, CA Inc.

Yokneam, Israel

+972-54-4752648
ethan.hadar@ca.com

Gabriel M Silberman
CA Labs, CA Inc.

New York, NY, USA

+1-212-415-6908
gabby.silberman@ca.com

Abstract
Tactical agile development and strategic architectural evo-
lution are viewed as opposite ends of the development
spectrum, with the long-term value of applying an architec-
ture-centric approach seemingly at odds with rapid devel-
opment, featuring its informal documentation activities.
The value of a long-term vision, or architecture, is particu-
larly high in the context of product integration and re-
search. However, there is also benefit in rapid and early
feedback on incremental deliverables, as featured in agile
development.

To extract the main benefits of both worlds we intro-
duce the CA Agile Architecture (C3A) method, targeted for
the architecture and design phases of the development life
cycle. Its foundation is the Reference and Implementation
Architecture, which features a lean one-page per compo-
nent contract, as well as several abstraction levels. The
C3A artifacts are governed by a cyclic process of architec-
tural evaluation and evolution, with accompanying coach-
ing and training activities.

This work-in-progress is being prototyped with three
product teams, varying in team size, product maturity and
complexity, and geographical location. C3A features a
common tactical-focused agenda for the functional and
system architectures, with minimally overlapping strategic
views.

Categories and Subject Descriptors D.2.7 [Distribution,
Maintenance, and Enhancement] Restructuring, reverse en-
gineering, and reengineering. D.2.10 [Design] Methodol gies,

Representation. D.2.11 [Software Architectures] Domain-specific
architectures. D.2.13 [Reusable Software] Reusable libraries, Reuse
models I.6.5 [Model Development] Modeling methodologies

General Terms Management, Design, Documentation

Keywords Reference Architecture, Architecture Centric Evolu-
tion, Design Reviews, UML.

1. Background
The concept of agility is having a considerable impact on the
practice of software design and architecture. Misunderstand-
ing and misuse of the lean documentation approach of Agile
development results in the lack of adequate architectural in-
formation [5] and strategic methodologies [2].

There is no argument that strategic reasoning, as captured
in an architectural blueprint, is of value. However, develop-
ment teams focused on the delivery of tactical short-term
solutions feel they cannot afford to be delayed by strategic
thinking. Therefore, they opt for quick evaluation tools for
their design approach [6] and are satisfied with a high-level
roadmap that can provide a tangible, incremental evolution to
the next feasible solution [7].

Development teams struggle to create a simplified archi-
tecture, one resilient to change, to preserve their critical intel-
lectual property (e.g., in the context of software product lines
[8]). Therefore they fail to benefit from the value of the ar-
chitecture-first approach as detailed by [3]. Furthermore, the
diversity of stakeholders and their various perspectives on
architecture [4] can also lead to confusion. Add to it the on-
going tactical adjustments triggered by influential customer
needs, as advocated by many agile approaches [1], and the
process may drift towards continuously changing require-
ments and instability.

In this work we aim to combine the quick feedback in de-
livering short incremental minor releases, as featured by an
agile process, with the architecture-provided long-term vi-

641

sion, thus producing an Agile Architecture methodology. To
be successful, such a methodology should:

(1) Provide a strategic reference architecture to illustrate
the vision in technical and functional terms.

(2) Provide an Implementation Architecture to scope
parts of the Reference Architecture into future re-
leases.

(3) Provide a technique for gap analysis between current
and envisioned states, thus constructing the incre-
mental releases.

(4) Use lean, minimal documentation, featuring different
levels of abstraction and separate perspectives for
each stakeholder, aligned along a single architectural
roadmap.

This paper illustrates the CA Agile Architecture (C3A)
methodology, as prototyped with three products and their
development teams. The prototypes varied from a new re-
lease of a mature product, through new product development,
to the integration of several existing products. Section 2 de-
tails the circumstances leading to the development of this
methodology. The C3A dimensions and artifacts are detailed
in sections 3. The C3A methodological steps are defined in
section 4, closing with the experience gained and conclusions
in sections 5 and 6. In the following the terms system and
product will be used interchangeably to mean a (complex)
software system under development.

2. Genesis – In the beginning
Prior to introducing our applied approach, it is important to
understand our Genesis. Why the classical approaches did
not work for us, and accordingly, how did we come up with
the new methodology?

2.1 The Development Team Perspective and Agile
Constraints
Software products are usually delivered to customers in ma-
jor release cycles. Within these major cycles, incremental
minor deliverables are produced, as well as hot fixes,
patches, service packs, and so on. Further, it is not unusual
for development teams working on the next release to be
occasionally directed to work on previous releases. These
assignments are either handled by members of the original
team that developed the previous release, or by a new and
dedicated tiger team. The number and variety of tasks, if not
handled carefully, may lead to delays in the next release
schedule.

The Agile approach tries to minimize these interferences
by shortening the time to value by frequent release cycles,
and benefits from the feedback of real customer experience.
However, in a large scale organization, aligning the different

products released is difficult, not to mention doing it in a
short timeframe.

Moreover, one must understand the conditions under
which the development teams operate. It is of utmost impor-
tance to deliver highest quality working code to QA. The
teams are constantly focused on execution. They must not be
derailed from their schedule commitments as their funda-
mental obligation to our customers. It means that any activity
labeled as “strategic”, “long term”, “theoretical”, “research”,
“visionary”, or similar is immediately suspected as hazardous
to the team’s schedule regardless of its importance.

2.2 The Strategic Architectural Perspective
Strategic (architectural) thinking is usually done at the early
stages of a project, followed by a tactical implementation.
However, in many cases, while executing the tactical tasks
one discovers new opportunities, and the question is whether
or not to pursue them, putting at risk deliverables of the
original project. If some of these opportunities had been ex-
posed early in the process, alternative solutions or different
directions may have been chosen.

Business strategists, product managers, chief architects
and the company thought leaders practice strategic activities
daily. However, when under time and resource constraints,
strategy takes a backseat to on-time product delivery. Com-
promises are made.

2.3 Conflicts of Interests in Existing
Methodologies
The time horizons of the strategic and tactical perspectives
conflict, namely, one cannot “design everything beforehand”
and use the waterfall top-down approach because high uncer-
tainty and instability. Moreover, due to critical task lists and
short-term goals, risky transient solutions (which may be
eventually refactored) are used.

Modeling exercises done at the beginning of a cycle might
be later forgotten simply because they are not needed in
every step. The code lives on, interfaces change and mature,
and the architecture perspective slowly becomes obsolete
knowledge.

On the other hand, when the same product keeps evolving
over time, the amount of detail conceals the essence of the
application. The number of abstraction levels is usually too
small, resulting in a wide gap between the highest (concep-
tual) and lowest (concrete) layers. Consider, for example, the
difficulty in maintaining an architecture, which maps from
requirements and use cases directly to application code,
while delivering the knowledge from one generation of de-
velopers to the next.

The dilemma is obvious. Should the team follow the stra-
tegic vision and keep on thinking what to do and where to go
while documenting their vision? Or, should they focus on the

642

daily deliverables and keep on executing the prioritized
tasks?

The obvious answer is both. However, how could they
accomplish this?

The truth of the matter is that Agile approaches do not
emphasize the architectural centric activities, but rather rapid
selection of tasks, rapid design sessions, with lean, or even
non-formal documentation. The dominant tools are white-
board, camera, PowerPoint slides, and the development suite.
Validation is done with clients and frequent testing.

On the other hand, Model Driven Architecture (MDA)
tools such as Magic Draw [9] from NoMagic and automatic
code comprehension such as Structure 101 from Headway
[10], are seldom used due to their perceived complexity and
lack of understanding of their tangible value. It is simply
easier for the developers to work on the low-level develop-
ment environment they are used to. They choose to do so
instead of mastering abstraction techniques, since their fel-
low developers communicate knowledge the same way. To
illustrate this point, complex program examples found on the
Web, even recently produced ones, are shown mostly as
code, without the use of either UML diagrams or artifacts.
Have you ever wondered why?

3. The CA Agile Architecture (C3A)
Dimensions
To effectively accommodate an architecture’s interested par-
ties, C3A must provide a common strategic vision of the
product(s) as well as an agile structure of loosely-coupled
components with accurately described interfaces. Moreover,
it should provide a perspective of both major and minor re-
leases, serving as the architectural blueprint for the develop-
ment team.

We believe the above would address the dichotomy be-
tween strategic thinkers and tactical implementers, which
may be traced to the following factors:

(1) Control over Abstraction Barriers: “how low should
we go?” Meaning, what is good enough documen-
tation in terms of granularity?

(2) Minimal Documentations and Artifacts: “where
should it be captured and how?” Or, how can we
keep this strategic effort to the minimum (documen-
tation) and maximize the impact on our tactical de-
liverables? Moreover, we must keep our strategic
concepts and tactical deliverables constantly
aligned.

(3) Synchronization Constraints: “when should we syn-
chronize?” In other words, what is the time horizon
of each architectural task?

These factors led us to the main C3A dimensions, namely:
(1) levels of granularity; (2) number and nature of the arti-
facts; and (3) the time horizon of each artifact

3.1 Architecture Granularity and Abstraction
Barriers

Maintaining different levels of abstraction is crucial to reduc-
ing information overload. Moreover, we want to stop design-
ers from diving into too much detail, so imposing abstraction
barriers is essential. This is done by mandating only two ar-
chitectural levels but allowing additional (optional) levels.
The highest level of abstraction, featuring the minimum
amount of detail, is the requirements level and is referred to
as Level 0. At the other extreme of abstraction is the level
representing software creation, namely the code level de-
noted as Level n. The more abstract the architecture, the less
details it contains. Thus, Level 0 marks the software engi-
neering process starting point, and features minimal details.

The above levels, and some in between, are described in
the following.

3.1.1 Level 0 – The Modules Level
This level describes a system’s logically-separate and self-
maintained module, with distinct and disjoint functional re-
sponsibilities. It is captured in the Reference Architecture as
main modules, and its functionality is usually reflected by
one or more of the API (application programming interface),
SPI (server provided interfaces) and API for GUI (graphical
user interface). In the example shown in figure F-1, the Sta-
tistics Level 0 component (market as a UML package sym-
bol), provides the capability of statistical reports of
monitored information via the Reports Provider API.

For each Level 0 module, there is an accompanying one-
page document or contract (detailed in section3.2.1) that
describes the functionality and responsibility of the inter-
faces, rather than their technical details. The abstraction bar-
riers for the more detailed level are the Level 1 components
(market as the UML component symbol), described in gen-
eral functional terms. In addition, the overall system dataflow
may be outlined using Level 0 components, including logical
activation dependencies. Thus, the main concern of this level
is the system’s main modules and their responsibilities.

Figure F-1: Example of architecture granularity and abstrac-
tion barriers: Level 0 component (Statistics, market by UML
package symbol)) is a module that contains self-deployed
Level 1 components (Audit and Reports, market as UML

643

component symbol). The Level 2 internal components
(monitor, log, retrieve and such, market as UML Class sym-
bol) are not self- deployed and require a deployable unit.

Level 0 corresponds to the most abstract, and therefore
most stable, architecture according to the Stable Abstractions
Principle (SAP) in a component-based design methodology
[2]. Thus, Level 0, as the name suggests, should not contain
any implementation details.

3.1.2 Level 1 – The Components Level
This level focuses on the inner system components of Level
0. It provides the same structure of information as Level 0,
but with higher granularity and more transparent abstraction
barriers. These barriers are represented by the detailed inter-
faces, including parameters, protocols and messages, chan-
nels and ports. Level 1 focuses on usability, robustness
around boundary conditions and fault tolerance, as well as
providing a generic and expandable interface. The spotlight
of this level is on a good interface design and a clear separa-
tion of functional concerns.
The abstraction barriers for this level are deployment capa-
bilities. Each Level 1 component is self-deployed, thus it
may be replaced locally without the need to re-install a full
Level 0 component.
In figure F-1, there are two main Level 1 components, Audit
and Reports. The Audit component defines a SPI called Data
Gateway that monitors external data, as well as an Internal
API called iLog consumed by the Reports component. The
published API Reports Provider of the Reports component is
externalized by the Level 0 Statistics component.

3.1.3 Levels 2 to n – The Technology and Design
Levels
These optional levels deal mainly with a component’s inter-
faces and their boundary implementation, according to de-
sign patterns such as façades, factories, bridges and proxies.
In practical terms, Level 2 and beyond effectively represent
the iterative construction, up to writing of the code, of the
interfaces in Level 1.

Notice that in order to complete the Level 1 interface one
usually performs a top-down analysis of its functionality,
followed by a bottom-up collection of the interface's parame-
ters. You start with “what needs to be done,” followed by
“what is required to accomplish it.” The main concern of this
level is with the proper application of design patterns. How-
ever, in many cases, it is of importance to understand the

internals and flow interactions of the Level 1 component, in
order to realize the use cases.

In our running example, the Audit Level 1 component
contains the Monitor and Log Level 2 components, market as
UML class symbols. The Reports Level 1 component con-
tains a sequential dependency between Retrieve, Categories,
Filter and Publish Level 2 components, aiming at organizing
the logged information for specific report consumers.

Within Level 3 and beyond, one will encounter additional
interfaces among internal components.

3.2 The Agile Architecture Artifacts
The C3A methodology addresses the different points of view
by providing just two architectural perspectives. The first is
for product management and integration architects, which
deals with “what” to build and for whom. The second is for
the system architects (product, frameworks, and common
components) focused on “how” to build and what to reuse.
The specific perspectives of developers, architects, develop-
ment and product management, as well as business strate-
gists, are all linked in just a single diagrammatic blueprint,
shining the spotlight on their respective architectural con-
cerns, namely: integrations, functional, system and cross
concerns. The missing details are simply handled elsewhere,
according to stakeholder-specific best practices. Tools,
documents or tacit knowledge are all acceptable, as long as
the majority of the organization’s teams are C3A-aligned.

To fulfill this minimalist approach, the C3A methodology
uses the Reference Architecture (RA) diagram to represent
the strategic structure and function of the product’s major
release. A mapped-upon Implementation Architecture (IA)
diagram, illustrating the status and scope of the nearest (in
time) minor release, complements the RA.

Consider our previous example mapped into RA as it
might exist in an enterprise Reporting application (figure F-
2), such as the one from Business Objects [11]. It requires
streaming data (collected by the Audit component by the
Data Gateway Interface), filtering and aggregation engines
(within the Reports component), a data warehouse and
OLAP servers (within the Level 0 Storage component), re-
port builders and a report user interfaces portals (within the
Trend Analysis and Periodic Reports Level 1 components),
and so on. Some of the functionality is consumed in remote
activation using Web Services for Remote Portlets (WSRP)
within the SOA Supported Portlets Level 0 component.
Naturally, the security concerns will be handled by the enter-
prise level framework of Access Control and Single Sign On
Level 0 components.

644

Figure F-2: Example of reference architecture for enterprise
reporting system.

An IA for an instance of this example might include the
exact selection of third party technology for the OLAP and
warehouse servers, and proprietary engines developed in
house, which will implement the Audit and Reports, as well
as ready-made portals for the functional architecture layer
from an existing solution.

 Each of the components in the system is described in a
single, one-page document that provides functional and tech-
nical information. These two artifacts, a diagram and a set of
single page documents, are all the architectural documents
provided beyond the actual code and internal code documen-
tation. The RA will have a set of Level 0 component con-

tracts, while the IA will have a similar set of Level 1
contracts. Each such contract is a written agreement between
the component owner, its consumers and suppliers, on the
type and nature of the component provided and required ser-
vices, as detailed below. They are built according to re-
quirements documents provided by product management,
and assist in the QA testing specifications as well as provide
information for technical publications.

The RA and the Level 0 one-page component contracts
are living documents between major releases, representing
the architecture evolution, and usually are kept constant for
the minor revisions. The IA and the Level 1 contracts are
snapshots of the evolving architecture and may change be-
tween minor revisions.

3.2.1 The One-Page Component Contract
This lean approach to documenting architectures in an ag-

ile environment requires avoiding duplicated documentation.
One of the possible techniques works by minimizing the
amount of information documented outside the code scope.
However, since component owners do not own the overall
system architecture, they need a simple contract that isolates
their component’s responsibility. Moreover, the contract
provides a quick understanding on all the major issues that
could affect integration among components.

If possible, the Level 0 component is handled by a team
lead and the team developers handle the inner Level 1 com-
ponents. For that matter, the team architect (may be the same
person as the team lead) owns the full Reference and Imple-
mentation Architectures.

The main items to be listed in the one-page contract are:
• Name – the component name

• Ownership – the team member responsible for the com-
ponent delivery.

• Responsibility – a brief description of the component re-
sponsibility. This should be no more that 3-5 sentences
long, i.e., the functional perspective.

• Requestors – a list of the external components that re-
quest a service from this one using its API/SPI/UI.

• Dependency- a list of the external components activated
by this component. It may include a dependency on a
common data structure such as an external persistency
system.

• Deployment – a short description of the deployment re-
quirements. It can be a link to an external Deployment
Description file.

645

• API – the detailed responsibility of each separate inter-
face, or connectivity and activation protocols, based on
the level of granularity (0, 1, or 2).

• Data structure – a description of the component’s respon-
sibility manifested by its underlying logical structure,
namely, the internal system architecture. Although some
methodologies claim this is not good practice, in many
cases external users of the component need the detail to
understand its functionality. Consider the case in which
the component provides workflow services. Knowing the
inner workflow steps, could provide an understanding of
the underlying process, its invariants, and its capabilities,
specifically if one would like to use unpublished (yet) ca-
pabilities and APIs.

• Scalability – limitations on the component’s capabilities,
or mechanisms for overcoming them. For example, is the
number of transactions limited, or would replicating the
same component add to the overall capabilities.

• Performance requirements –the required criteria, or de-
facto capability that a single component instance in its
loaded condition will provide.

• Alerts and Errors – a list of alerts and error conditions not
explicitly linked with the business process as exposed by
the API. An example might be writing into a log file or
sending a message via an event mechanism.

• Technology – details of technology which affects the im-
plementation capabilities, specifically when using third
party utilities and libraries. This section is critical for in-
tegrators to understand the technological limitations in
connecting to the API/SPI/UI.

3.2.2 Reference Architecture
The Reference Architecture (RA) diagram depicts the aggre-
gated responsibilities of the different stakeholders, the Level
0 and Level 1 components, as well as the dependencies
among them.

The RA is a living, evolving document, capturing a wish
list of building blocks. It functions as a reference point on
“what we should have,” not necessarily that we will ever
have it all.

The RA elements, illustrated using a conceptual example
provided in figure F-3 are (1) the RA layers; (2) Level 0 and
Level 1 (RA) components; (3) visionary components; and (4)
optional Level 2 components. These are further elaborated in
the following.

The Reference Architecture Layers
Each of the four layers, market with UML package symbol,
illustrated as light yellow boxes in the figure, encapsulates a
different stakeholder perspective.

The External Business Integration layer is important for
the business analysts, to leverage the system’s integration
capabilities with other (external) systems. The Functional
Architecture layer represents the SPI/API and UI as pre-
sented to the product consumers. This layer, usually within
the responsibility of the functional architects or product man-
agement, also provides a common understanding with QA,
since it encapsulates all the integration points within the
product, making it easier to test. The System Architecture
layer, as the name suggests, exhibits the system’s computa-
tional engines, without any external GUI elements. It is this
layer’s responsibility to implement the functionalities de-
scribed in the previous layer. The Cross-Concerns System
Architecture layer provides internal services to the system
which are not part of the direct functional value-added fea-
tures, but rather a part of its internal infrastructure. This last
layer, similarly to the System Architecture layer, is under the
responsibility of the system architect.

RA Components
Each of the layers contains components at the highest ab-
straction level. In figure F-3, the Level 0 components are
colored in light blue. At this point, the one-page documents
are created for each of the Level 0 components.

The Level 1 components are light green boxes within the
different layers of figure F-3. In a new product where the
code is generated after the architectural foundations are laid
down, these components would describe actual code pack-
ages. With existing products, reverse engineering tools and
processes may extract this information by harvesting tacit
knowledge and examining the product’s code.

Visionary or Strategic Research Components
The purple boxes, or darker ones gray levels printing, in
some of the layers of figure F-3 represent areas where new,
higher risk capabilities might be added. These are considered
under research and strategic evaluation. Their presence
serves to align the location and value of these new capabili-
ties with the overall product architecture, and fosters debate
on the value of a certain new capability, and what area(s) of
the architecture may be impacted.

646

Figure F-3: An Example of a Reference Architecture. The
light blue UML package boxes represent the Level 0 compo-
nents; the green UML components are the Level 1 compo-
nents; and the orange boxes UML class element, show the
optional Level 2 components of the system architecture. Pur-
ple darker boxes represent visionary or strategic components.

Having components representing visionary capabilities in

the RA does not guarantee their inclusion in the product.
They may be deleted as a result of new discoveries, changing
priorities, schedule and/or resource constraints. The rest of
the RA is tacitly accepted to be on the product roadmap, as
approved by product management.

Figure F-4: An example of a scoped IA. The darker green
boxes are the Level 1 components involved in a major re-
lease, and those in darker blue show optional Level 2 com-
ponents specific to a minor release.

Requirements change and evolve, as do organizational needs,
such as the increasing use of common components and the
maturing of visionary research, causing the RA to evolve as
well. For example, visionary research components may
change their (purple) color when they are judged mature
enough to be scheduled for prioritized implementation. Al-
ternatively, they may be considered too risky and removed
altogether from the RA blueprint.

Such actions should be considered very carefully, since
they shape the future of the product. In the discussion leading
to these decisions, all stakeholders should participate and
collaborate to reach an agreed-upon common vision.

647

3.2.3 The Implementation Architecture
Implementation Architecture deals with the current release
under construction. Thus, it is important to highlight to the
team, what components are undergoing change, or added to
the system, e.g. the scope of the immediate release cycle.
Accordingly, a different coloring scheme is used, overlaying
the RA, to mark the components of the IA. For example,
figure F-4 shows the scope of the IA, with dark green mark-
ing the participating Level 1 components and the dark blue
showing the affected Level 2 components.
Notice that this overlay affects both Level 0 and Level 1
components.

In this example, the IA represents an existing system.
Even though the RA (figure F-3) indicates the b1 and b2
Level 1 components should be distinct, the scope of the IA
does not have the corresponding Level 2 b13 and b14 com-
ponents. Moreover, in figure F-4 b1 and b2 in Level 1 are
merged, and they are thus aggregated in the IA as one, with a
new Level 1 wrapper component termed Level 1 b. A simple
comparison of the models in figures F-3 and F-4 highlights
the gaps between the RA and IA. These gaps will exist until
the architectures converge. Ideally this should happen by the
IA aligning to the RA, but unfortunately, due to tactical con-
strains, sometimes the RA will change according to the IA.

It is possible for the IA to contain components not present
on the RA simply due to legacy code. This gap between
“what we have” and “what is important for the product evo-
lution” should eventually disappear as the result of refactor-
ing activities during successive incremental releases.
Moreover, if the existing product features the RA functional-
ity, but it is structured differently, we will map the compo-
nents in an aggregated intermediate (to be refactored)
component. This component represents the difference be-
tween the ideal RA and that of the existing implementation.

In an agile development cycle, tasks are scoped and se-
lected from a prioritized “to do” list of features and func-
tionalities. The C3A diagrams clearly highlight any backlog
IA features relative to the RA, thus creating a common un-
derstanding among the various stakeholders. This enables
better tradeoffs in balancing of resources and effort among
the Level 1 components, the possible scope for the next mi-
nor release, as well as alignment of the product’s vision to
customers’ needs.

3.3 The Time Horizon
Putting the artifacts and the level of granularity on a time
scale is important for synchronizing the different activities.
The question to be answered here is when should we update
and re-align the vision with the tactical needs of the artifacts.

Figure F-5: An example of the C3A dimensions: Artifacts,
Granularity levels, and the Time Horizon as related to the
product releases and development activities.

Since the granularity of Level 1 components is higher

than the granularity of those in Level 0, separate IAs (for
different teams) may exist for a given RA. Consequently, for
each IA there may be several ongoing agile implementation
efforts focused on Level 2 and beyond.

Figure F-5 illustrates the temporal relationship among the
Reference and Implementation Architectures, and Agile Cy-
cle sessions. In this example, the RA is updated every 18
months, the IA every 7-8 months, and the agile cycle ses-
sions last 2-3 months. However, it is important to note that
any major issues appearing during a Level 2 design session
should be propagated to the encompassing Level 1 IA.

4. The Agile Architecture Methodology Steps
Putting it all together in a structured manner requires follow-
ing step-by-step instructions during product evolution. The
methodology steps define what activity should be done
when, and what level of detail is needed.
In our methodology, we employ a 7-step “LOW RISK”
process, which stands for “Listen and Observe, Watch, Re-
flect, Improve, Scrutinize, and Kick Start”. As illustrated in
Figure F-6, they are organized in two connected cyclic
phases: Evaluation (Listen, Observe and Watch), a Reflec-
tion binding step to close the outer cycle, and an Evolution
(Improve, Scrutinize, and Kick Start) inner cycle.

648

Figure F-6: The C3A LOW RISK process for evaluation of
the reference architecture and evolution of the implementa-
tion architecture. It is comprised of 6 steps linked with a re-
flection step.

The LOW RISK steps are:
1. Evaluate (focusing on the RA)

1.1. Listen and Observe:
1.1.1. Collect architectural documents, technical

publications, manuals, PowerPoint presenta-
tions as well as tacit knowledge.

1.1.2. Capture the first conceptual architecture
into a RA, according to the perspectives lay-
ers, and define the Level 0 components.

1.2. Watch
1.2.1. Learn what other products are building, as

well as new emerging technologies and solu-
tions.

1.3. Reflect on your Architecture Design:
1.3.1. Validate the overall functionality and sys-

tem modules with a steering committee of
system and functional architects, practice en-
gineers, support engineers, product manage-
ment, and development management.

1.3.2. Detail the status of the visionary research
modules on the next RA cycle, while main-
taining the present RA unchanged for the
current IA release, thus preventing it from
being derailed by uncertain components.

1.3.3. Highlight design patterns recommended
for the more detailed levels.

2. Evolve (focusing on the IA)
2.1. Improve:

2.1.1. With every Level 0 owner, define and
document the Level 1 components. For new
products, this will be an abstract design activ-
ity, while in existing systems we recommend
the use of Model Driven Architecture (MDA)
tools such as Magic Draw or RSM.

2.1.2. Repeat 2.1.1 until all Level 1 components
are mapped correctly on the RA.

2.1.3. Start implementing the internal IA minor
releases.

2.2. Scrutinize:
2.2.1. Map or provide gap analysis for two dif-

ferent minor IA releases relative to the next
major RA release.

2.2.2. Carefully adjust the IA while trying not to
break the RA vision.

2.2.3. If not possible, and critical differences be-
tween the IA and RA are identified, then
pause and mitigate the impact on the RA. Re-
turn to step 2.

2.3. Kick Start:
2.3.1. If none of the original plans changed,

modify the IA minor release plans to match
the current RA, and execute on the imple-
mentation architecture

2.4. Reflect (again)
2.4.1. Estimate the effect of the IA on the next

RA release, and propagate any gaps to the
latest IA.

2.4.2. If needed run the Evaluation cycle again
(adapt the RA)

2.4.3. If there are no major changes, continue
with the next Evolution cycle (Evolve the IA)

These conceptual cycles enable us to focus on major and

minor releases, while constantly evolving and using the same
artifacts as a common base.

5. Experience Gained
The C3A methodology, a work-in-progress, has been proto-
typed in the context of three diverse products and their de-
velopment teams. The first prototype targets an altogether
new product, the second works on a new release of a mature
product, and the third applies to the integration of several
existing products. The same methodology applies for all
these product categories with slight adjustments.

The new product is intended to produce value in a short
period of time, meaning it features an aggressive schedule
with rapid agile cycles. For this case we chose a single Im-
plementation Architecture and performed a gap analysis with
respect to the Reference Architecture, followed by two agile
cycles. The reflection step (fifth in the C3A methodology, as
presented in Section 4), dealing with adjustments to the Im-
plementation Architecture, is done in proximity to the next
minor release. The RA portion of the visionary research was
postponed until the completion of the first IA.

Our work in the context of the new release for a mature
product focuses on capturing the tacit knowledge of the RA
as present within the development team, and validating it
logically against the existing product. However, the level of
detail in the IA is limited to the next release scope only.

649

Meaning, this is not a complete documentation exercise, but
rather one focused on evolution. The agile Level 2 design
sessions are run in a lean framework thanks to the vast ex-
perience and expertise of the team members.

The integration product requires changes to be imple-
mented in other products as well. This mandates a detailed
RA to elicit the needs and vision of the product to external
stakeholders. Naturally, the IA in this case is more heavily
focused on the integration and functionality layers of the
product than on the system layers.

We use Magic Draw and UML to capture the architecture
documents, and Word files for the one-page contracts. Each
component has a separate page for better control. Later on,
all separate pages are collected into a release.

The one-page contracts describe each component’s cur-
rent capabilities, not what needs to be done in the next re-
lease. This essentially makes their collection a reference
document that evolves and matures over time, maintaining
the Architecture Knowledge.

We soon found out that in order to manage this minimal
level of architecture activity, some basic training was needed.
Depending on the number of developers participating and
their geographical location, we used one of three approaches,
as outlined below.

1. We conducted a practical design workshop for
the remote five-member team developing the
new product, while providing on-the-job train-
ing. An expert captured the observations during
the debates, and while doing so, explained the
symbolic notation as well as the methodology.
The construction of the RA continued in remote
design activities, limited to 2 hours each.

2. For the local ten-member team working on the
next release of a mature project we asked three
experts to build an initial RA which was then the
subject of a brief review with an external expert.
We then debated the accuracy of the RA during
a four-day educational session with the whole
team. This was followed by the team building
the IAs working in small groups.

3. The integration product team featured the most
globally dispersed membership. In this case, we
worked with the leading architects, conducting
on-the-fly training and basic assistance, dividing
the task of constructing the RA among three in-
dividuals. One captured the functional perspec-
tive, one the conceptual, and one captured the
system perspective. All perspectives were com-
bined by the system architect into the single RA.

What we learned from our experience with remote teams

is the need to keep the architectures as simple as possible.
The higher the number of artifacts and perspectives, the
harder it is to make progress. It is difficult enough to lead a

strategic agenda, which gets even more so when doing it
remotely.

It was interesting to observe how the application of ab-
straction barriers and the four layers caused the various RA
consumers to focus their attention. Because of the separation
of concerns, product management leaders were primarily
interested in the functional layer. They ensured each of their
demands was being considered and conceptually manifested.
Development managers were interested in the Level 0 com-
ponents to assist them in constructing teams and owners,
whereas the developers themselves were focused on the
Level 1 components and the one-page artifact, detailing the
exact needs and constrains of the functional and non-
functional requirements of a deployable unit.

However, this narrow focusing could have distracted the
individuals from seeing the overall picture. This was miti-
gated by periodic peer reviews when the system was evalu-
ated, and every time the implementation architecture was
changed.

Relevant maturity was reached during different time-
frames. After 6 months, the integration team RA was rele-
vantly stable but not mature, due to cross product debates
and discussions, as well as additional activities extraneous to
the C3A. The new product reached stable maturity of the RA
after 4 months while constantly adapting the architecture
based on feedback from implementing the first release. The
mature product, reached maturity within 2 months, focusing
on new areas of the next release, and conducting proof-of-
concept projects, aiming at validating our initial assumptions.

The new product refactored its existing IA, based on a
better understanding of future value, as elicited by the C3A
process. The mature product team materialized three new
modules and capabilities based on the analysis conducted for
the entire product, focusing on external integrations.

In order to elaborate the methodology, we provided a
coaching and training plan, in which the product architect
builds the architecture, while being mentored by an external
(experienced) architect. The team is provided with tutorials
and educational materials such as papers, power point pres-
entations and handbooks. Iterative team discussions in the
form of peer reviews facilitate the design activities. While
working on the architecture, the teams concurrently sug-
gested means for adjusting the 7 steps of the methodology
denoted as LOW RISK (Listen and Observe, Watch, Re-
flect, Improve, Scrutinize, and Kick Start), thus impacting
the evaluation and evolution of their architecture-centric ap-
proach.

6. Conclusions
In this paper we presented our CA Agile Architecture (C3A)
methodology for bridging the gap between strategic thinking
and tactical agile implementations in a development organi-

650

zation. It is based on Reference and Implementation Archi-
tecture diagrams, a set of one-page architecture component
contracts, and an encompassing methodology to align the
scheduling and granularity of all architectural activities.

C3A enables mapping of visionary research within the
system architecture domain, resulting in the clear identifica-
tion of its functional value and its underlying system impact.
By conducting a gap analysis between the evolving Refer-
ence Architecture and snapshots of the Implementation Ar-
chitecture, the stakeholders can track their respective agendas
using the same blueprint, understand how far or near they are
from their targets, fostering change discussions and mitigat-
ing risks.

The structure of the different C3A artifacts imposes ab-
straction barriers on the architecture’s granularity levels,
while interweaving visionary and strategic directions.

Beyond expanding this methodology to more products
within our organization, as well as to the community in large,
the experience we gained gave us some ideas on directions
for further exploration. These include the modeling of non-
functional requirements affecting the RA architecture, cus-
tomization constraints regarding product deployment, as well
as means to provide inner integrations with wrapped prod-
ucts.

Consequently, based on the modular structure of C3A, its
evaluation and evolution process, and the ability to adapt its
lean C3A artifacts, the teams can effectively implement an
agile architecture without being derailed by changing strate-
gic needs.

7. References
[1] Alexander, L.; Beck K, “Point/Counterpoint”, Software, IEEE,

Volume 24, Issue 2, March-April 2007 Page(s):62 - 65
[2] Albin S.T., “The Art of Software Architecture: Design Methods

and Techniques”, Wiley; ISBN-10: 0471228869, 2003
[3] Booch, G., The Economics of Architecture-First”, Software,

IEEE, Volume 24, Issue 5, Sept.-Oct. 2007 Page(s):18 – 20
[4] Booch, G. “The Irrelevance of Architecture”, Software, IEEE,

Volume 24, Issue 3, May-June 2007 Page(s):10 - 11
[5] Clements P., Bachmann F., Bass L., Garlan D., Ivers J., Little

R., Nord R., Stafford J., “Documenting Software Architec-
tures: Views and Beyond”, Addison-Wesley, ISBN-10:
0201703726, 2002

[6] Hadar E. and Hadar I., “Effective Preparation for Design Review
- Using UML Arrow Checklist Leveraged on the Gurus’
Knowledge”, International Conference on Object Oriented
Programming, Systems, Languages and Applications, OOP-
SLA 2007, Montreal Canada, October 21-25, 2007

[7] Hadar E. and Perreira M., “Web Services Variation Façade –
Domain Specific Reference Architecture for Increasing Inte-
gration Usability”, IEEE International Conference on Web
Services (ICWS 2007), Salt-Lake City, July 2007

[8] Northrop L.M., Clements P.C., A Framework for Software
Product Line Practice, Version 5.0, from
http://www.sei.cmu.edu/productlines/framework.html, ex-
tracted on March 17, 2007.

[9] Magic Draw Modeling tool, No Magic software company,
http://magicdraw.com/, referenced on July 27, 2008.

[10] Structure 101 Modeling tool, headways software,
http://www.headwaysoftware.com/products/structure101/index
.php, referenced on July 27, 2008.

[11] Reporting tool from business objects, an SAP company,
http://www.businessobjects.com/ referenced on July 27, 2008.

651

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

