
I M P U L S E - S 6
A S U B S T R A T E F O R O B J E C T - O R I E N T E D I N T E R F A C E D E S I G N

Reid G. Smith Rick Dinitz Paul Barth

Schlumberger-Doll Research
Old Quart3/Road

Ridgefield, CT 06877-4108
USA

A B S T R A C T

Impulse-86 provides a general and extensible substrate upon
which to construct a wide variety of interactive user in-

terfaces for developing, maintaining, and using knowledge-

based systems. The system is based on five major build-
ing blocks: Editor, Editor Windmu, PropertpDisplap, Menu,
and Operations. These building blocks are interconnected

via a uniform framework and each has a well-defined set of
responsibilities in an interface.

Customized interfaces can be designed by declaratively re-

placing some of the building blocks in existing Impulse-8fi

templates. Customization may involve a wide range of ac-

tivities, ranging from simple override of default values or

methods that control primitive operations (e.g., font se-
lection), to override of more central Impulse-86 methods
(e.g., template instantiation). Most customized interfaces

require some code to be written---to handle domain-specific
commands. However, in all cases, the Impulse-86 substrate
provides considerable leverage by taking care of the low-

level details of screen, mouse, and keyboard manipulation.

Impulse-86 is implemented in Strobe, a language that pro-
vides object-oriented programming support for Lisp. This

simplifies customization and extension.

1 I N T R O D U C T I O N

Domain-specific interactive editing tools make complex sys-

tems easier to construct, modify, maintain, and use. Gen-
eral editing tools, while very useful, are not always suffi-

cient. Interaction with knowledge-bued systems in partic-
ular can be made more effective if a specialized interface,

with knowledge of the domain, is used.

Impulse-g6 addresses the problem of building s wide va-
riety of sophisticated editing tools. Our goal is to enable

Permimon to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advanta~,
the ACM copyri~t notice and the title of the publication and its date appear,
and notice is given that copyitqi it by permhsion of the Auociation for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permi~on.

© 1986 ACM 0-89791-204-7/86/09(0)Oi67 75¢

developers and end users of knowledge-based systems to
design custom, domain-specific interfaces for their systems,

without a requirement for extensive expertise in interac-
tive graphics. Our approach is to provide an extensive set

of building blocks and a uniform framework for connecting

them.

In section 2 we describe the goals of Impulse-86. In sec-

tion 3 we discuss an example editor, and present the editing
knowledge and organization that give Impulse-86 its power.

In Section 4 we present two further editors that illustrate

the diversity possible using our substrate. In Section 6 we

discuss the effectiveness of Impulse-86 as a substrate for

user interface construction. We discuss utili ty of design-

ing Impulse-86 in an object-oriented paradigm in Section

6. Related work on user interfaces is discussed in section 7.

2 B A C K G R O U N D A N D G O A L S

We aspire towards the longer-term goal of providing a com-

mon knowledge-based interaction substrate to underly our
application systems. It is well-understood that good inter-

faces account for a sizable percentage of the overall code and

effort in many systems (see 112} for a knowledge-based sys-
tem example). Hence, if we are to reduce the cost of build-

ing interactive systems, and at the same t ime increase the
consistency and power of the interfaces that they present
to an end user, then one of the areas in which we must
concentrate our at tention is user interface design tools.

Throughout this paper we discuss Impulse-86 as a know,
ledge base editor. We take the point of view that the process

of editing may usefully be defined as any series of interac-
tions between a user and a system in which the user v / e ~

the state of the system, and controls or changes the state
of the system. An editor is an entity that mediates these
viewing and controlling interact ions--presenting the user

with a view of the system and effecting the desired con-
trol. This definition encompasses tradit ional text editing,
browsing, program development, debugging, and end-user
interaction.

September 1986 OOPSLA '86 Proceedings 167

z~ce~try
Sho~ ;qe~e~mcet

u~c ~¢he~ s,m~
setq " ~ *

Eow ~o(ets
~e*Jege

T

~L,."(I k4ult i~ Nh er

I GNAW: ~Jt~v-vt~

I m
cec0~e~J ~e¢ et~ B~I~I4~ILIL,.~FIEIr~ ~l~

OAVAVYgq: O J ~tnA~
VALUe: {JI TIIA~)n~. 141#S0

l I LII~Y~ J "UP: NIL
m~ Ll~JtJ'~O~31d: NIL

Adju~t~e~ St,~l,me A ~ T] s l t V ~ e

~lHruldellm~]

| ~ Y ~ " L-i " "

l qhltaVime ' ~
~ [7 ~] ~"~ " f f i ~ - - - - ~ ' ~

..- t im '~\ " . . ~

\ \ " - - p - \

Figure 1: Typical Impulse-86 Editing Session

A knowledge base editor should support different perspec-
tives corresponding to three types of user: developer/main-
tainer; domain specialist; and end user. An editor must
provide a reactive environment for developers; enable do-
main specialists to focus attention on the encoded domain
knowledge (while the editor hides the underlying represen-
tational mechanisms); and provide transparent and e,-,y-
to-use interfaces for end users.

Knowledge-based systems typically consist of many com-
plex structured objects, connected by several relationships,
and are intended to model richly structured domains (e.g.,
structural geology, process control software). As a result,
both the knowledge-based system developer and end user
are typically interested in interacting with three m~jor kinds
of entities: objects and their internal structure, relation-
'ships among objects, and complete systems of objects, rela-
tionships, and codewincluding their dynamic behavior. In
sections 3 and 4 we shall exhibit editing tools specialized
for each of these entities.

Based on the above considerations we have been led to
the following design goals for interfaces constructed with
Impuise-86:

Effective integration and use of high resolution bit-
map displays, pointing devices, and keyboard..

Flexible support for varied methods of user interac-
tion for both viewing and controlling systems (e.g.,
graphics, animation, menus, pointing and smart type-
in). The editor should support interaction with do-
main-specific information in a form no~ura/to an end
user familiar with the domain.

Unlimited interaction contexts for viewing and chang-
ing different parts of a system simultaneously. (Fig-
ure 1 is a snapshot of a typical screen with several
interaction contexts active.)

OrganizationAl support for customization and exten-
sion)

sSt~lJmtn defines extensibiUty relative to EMACS: "... the user
should be able to ~ld new editing commands m. chsnse old ones
to 6t his needs, while he is edit;,, 8" J16]. We 80 beyond command
extensibiJity, Limin8 for extenoibility with respect to what is viewed,
how it is viewed, amd how it m,y be ¢hused.

SStrobe !13,14,31 it u extension of lnteribp-D that supports object-
qriented prolp'tmmins, it hal adso been implemented in C u d in
Common Lisp.

168 OOPSLA ~6 Proceedings SepMmb~ 1986

Impulse-86 extends Impulse III], an editor designed to en-
hence the productivity of developers of knowledge-based
systems. Impulse has been in use at a number of centers
for the past three years, and has proven to be an effective
tool for creating, extending, and maintaining Strobe knowl-
edge bases and related code in the Interlisp-D program-
ming environment.: Impulse-86 is itself implemented as an
object-oriented program in Strobe. Like its predecessor, it
is the standard editor for Strobe knowledge bases, but now
supports development of end-user interfaces as well.

$ A B U I L D I N G B L O C K S A P P R O A C H TO

I N T E R F A C E D E S I G N

To enable easy construction of a wide variety of state-of-
the-art editing tools and interface styles, Impulse-86 is con-
ceived as a modular, extensibie interface construction kit.
We will see below that a user/developer can customize an~l
extend the behavior of an interface based on Impulse-86
by overriding default values and methods, and by special-
izing existing objects. In addition, Impulse-g6 makes use of
a well-defined set of message protocols for constructing an
interface. This affords a user the flexibility to make quite
radical changes in the operation of an interface by modify-
ing methods at different levels in the Impulse-g6 taxonomic
hierarchy.

In the following we discuss a canonical example. We then
present the Impulse-86 substrate, using the example as a

point of reference.

3.1 T H E O B J E C T E D I T O R

The object editor is used for editing a single Strobe object
and its internal structure. Figure 2 depicts a user's view of
the standard object editor; the object being edited encodes
geologic knowledge taken from the Dipmetcr Adt~sort sys-

tem [12].

The object is presented to the user in a window with at-
tached menus. The first five lines show the values of prop
erties that are common to all objects; the remaining lines
display the object's slots. 3 The name of a property or slot
is shown in boldface; if a slot has synonyms, they are en-
closed in curly braces; the slot's value (if any) is shown in
lightface, following a colon; (T) indicates that the slot is
inherited from s more general object. We have found these
conventions useful, but they are only defaults, A ~ can
define other ways to convey the same information (or other

information), overriding the defaults.

Progeny
Ancestry

KB Steuct. GraPhS
Show References

Rename Object

Create Slot
Unceched Slots

Inspect Vnlue
Setq Value

Rename Slot
Delete this Slot

Edit FAcets
Message

LnteFault
NormnlFeultl

StHke/SlipF suit

Object: NoreslFeult
Synonyms:
Oroope:
Type: CLASS
EdltlKl: 1S-Sap-84 13:ee:es ely: REID
Picture:

l.hil1~llgWillaock {OovnthrovnB lock}:
VmerOl, turtkmAel~on:
BrecciAReglolt {CrushedZone}:
FeultPMne:
LownrDl~t ur tionRegton:
FootWallBock {Upthrovn5 lock}:
Strike:
Fault Angle {Hade}:
OlrectionToOownthrownSlock:

~ a u l t l n o :
Draw: OravFault
InstantlAte: Instant lo teFaul t

RulsNFR1 RuleNFR$ RulaNFR4 RuleNFR6 RulaNFR7)
(RuleNFR6 RuleNFR9 RuleNFRli) RuleNFR11

RuleNFR12)
Note(e): The SpeclaL~e ru les can be attempted to r e f i n e

the c l a s s i f i c a t i o n of a f a u l t .

Figure 2: Object Editor

IM~rk of Schlumberger .

Sin Strobe, the SmMItalk concepts of instance variables, clam vari.
~bles, and methods Lre MI encoded u slots.

September 1986 OOPSLA '86 Proceedings 169

The command menus enable a user to rename or destroy the
object, change any of the slots, create new slots, delete or
rename slots---standard editing operations. A small mark
to the right of a command indicates the existence of sub-
commands that extend the functionality of that command.
We have adopted the discipline that a left mouse button st'-
lection invokes the command shown, while a middle mouse
button selection pops up a menu of subcommands.

Two menus show the objects most closely related "(taxo-
nomically) to the object being edited; they can be used to
invoke a new editing context in which one of those relatives
is the center of attention.

Items may be mouse-selected in the display as arguments to
a command. Selections (or foci) are indicated by different
styles of highlighting. As with other defaults, the highlight
styles may be changed by the user.

3.2 T H E I M P U L S E - S 6 S U B S T R A T E

The substrate contains five major building blocks: Ed/-
tor, Editor Window, PropertyDisplall, Menu, and Opera-
tions. Each building block, or part, is a Strobe object in the
Impulse knowledge base. Each embodies special knowledge
that enables it to fulfill a particular role in an interface
(these are described below). The user of Impuise-86 can
customize and extend the behavior of an existing interface
by modifying or specializing the structure of some of its
building blocks.

Some parts are instantiable--a new instance is created each
time the part is used; nwn-instontiable parts are analogous
to re-entrant code--they contain no changeable data, so
separate instances would be redundant. Instantiable parts
have an editee--the domain focus--typically a part of the
knowledge base being edited.'

Ed i to r : The editor is the central object. It mediates in-
teractions between the user and the editee--its parts
constitute the interface. Editor instances are cloned
from an editor class by template instantiation. By in-
stantiating a separate editor for each editee, Impulee-
86 enables an unlimited number of independent inter-
action contexts to exist simultaneously.

Editors have components drawn from any of the five
major classes (or from additional classes defined by a
user). Editors are explicitly permitted to have other
editors as components (and so on, in a recursive fash-
ion). This enables the construction of an editor whose
subeditor structure parallels the substructure of its

' A n ' l o f o u to the Smallt-I~ model [1].

editee. Knowledge about the way composites are struc-
tured in the application domain may therefore be em-
bedded in the structure of its interfaces. We will later
consider some of the ways in which this knowledge can
be put to use.

Figure 3 shows the editor structure for the class of
object editors. Each object editor instance is gener-
ated from this template. Figure 4 shows the instance
corresponding to the object editor shown in figure 2.
In both graphs, an arc indicates that the object on
the right is a component of the object on the left.
Instantiated components are shown in lightface; non-
instantiated components are in boldface.

In our example, 0bJectEdi tor and SlotEdLtor are
both editors. Each Strobe object has associated prop-
erties (e.g., name, synonyms) and a set of slots. The
0bJectEdLtor mediates interactions with the object-
specific properties, while the S1otEdltor mediates
interactions with the slots.

• / 0bJectEdltorWindow

/ / / / ob~ t o * * q . m ~ y

f/'//ObJ~t[dhe~o~y
0bJectEdlter ~ / glcetlEdherWInllow

obl~ts~t,ok~y
~ s ~ ° ~ d ' t ° r ' ~ saotedito,.cwnmancme,m

~ Obiec~dltorOpera tlom

Figure 3: Components Structure of the Object Editor

/ c ~ I K ~ y
l l O b J e ~ ~ y

/ / / o b ~ z q m o ~ a v

~ OblectlEdltorWlndow.0416

. ~'SlotlEdltoK:ommendMenu.0418
~ \ ~'saote~o,.O~atJom
~ObjectlEdltorCommlmdMenu.0419
\\~OblectancestorsMenu-0420
~ObJe¢tSpecieflzlfionsMenu.0421
~Obk.=~a~rOl~ratiom

Figure 4: An Object Editor Instance

E d i t o r W i n d o w : The editor window manages the screen
context of a collection of editors. It is responsible for
performing the usual window operations (e.g., scrolling,
repainting, reshaping). It also maintains a correspon-
dence between editees and the window regions in which

170 OOPSLA '86 Proceedings Sel~ember 1986

the editees are displayed. This enables both data se-
lection by mouse pointing and efficient update when

parts of an overall domain structure are changed. The
window also records ,loci--items selected by the user

as arguments to a command.

Each editor may have at most one window among its
components. When an editor has subeditors, some
or all may share the same window, or utilize sepa-

rate windows. Figure 4 shows that 0bJ e c t E d i t o r and

S l o t E d i t o r instances both share the same instance
of 0bj ec tEdi tor¥indow.

P r o p e r t y D l s p l a y : The property display presents a view

of an editee in a window. Impulse-86 has a num-
ber of different kinds of display, each implementing

a distinctive visual stylemand a user can define new

types of display. A property display sets up the corre-
spondence between its editee and the window regions

in which the editee is displayed. As noted above,

the correspondence is maintained by the window. A

property may also be active (i.e., the display that

it produces may contain a region (or set of regions)

sensitive to mouse selection).

There are six displays in the object editor example.

The first five are components of 0b jec tEd l to r ; each

displays one of the five properties associated with the

object itself. The sixth (0bJectSlotsVisplay) is a
component of S lo tEd i to r ; it iterates over all of the
slots. 5 Each of these displays prints a single line in

the 0bJ actEditorWindow.

Menu: Menus are messengers between the user and an ed-

itor. In this capacity, menus display information in

a restricted format, and may invoke interactions via
mouse selection. Menus may be unique to a partic-

ular editor or shared among a collection of editors.
Impulse-86 provides a large number of built-in menu

styles, ranging from the static menus shown in figure 2

to pop-up and pushbutton menus.

The 0bJec tEd i to r has one command menu and two

other menus that display the immediate relatives of
the editee object (from which a new editing context

can be invoked). The S l o t E d i t o r has one command
menu. When a selection is made in a command menu,
the menu sends a message to its associated editor,

requesting the selected command. The responsibility
for executing the command lies with the editor.

The separation between 0bJec tEd i to r and SlotEd-
i t o r is used to advantage for indicating which com-

mands are appropriate to a user-selected item in the
editor window. For example, when an object-specific

SEaeh display is typicLIly responsible for one edit~. However, displays
(indeed, say component) etm be itsrtted ovm" a list of edit~.

property has been selected, Impulse-86 grays over the

menu of slot-related commands. This helps to focus
the attention of the user on the relevant commands.

Ope ra t i ons : Methods that perform the commands defined

for an editor are grouped in operations objects. These

methods are invoked by a message from the editor.

ObJsctEdi torOpera t ions knows how to execute the
commands listed in the ObJectEditorCommandMenu;

S lo tEd i to rOpera t ions knows how to execute the
commands listed in the SZotEditorCommandNenu. For

example, when the S l o t E d i t o r receives a message
that the user buttoned Rename Slo% it relays that

message to S lo tEd i to rOpera t ions , which has a method

that actually renames the slot.

In addition to the five major building blocks, there are a few

minor building blocks. For example, Impulse-86 provides

high-level support for keyboard interaction through TTY-
Interaction Windows. Audio output, which we have only

begun to explore, also falls into this category.

The number of building block classes is less important than

the organizing principle: Partition Responsibilitll. While

the editor object is responsible for mediating interaction,

we distinguish between v/ew and control (or change) activ-
ities. We further partition responsibility for view activities

into display and locus, corresponding to the roles of prop-
erty displays and windows. We partition responsibility for

control activities into select and ezecnte, corresponding to
the roles of menus and operations. Separating menus from

the operations they invoke permits us to invoke the same

operations via menu, typein, function invocation, or mes-

sage from a remote processor.

Our strategy is to maximize opportunities for sharing user

interface code. The correct partition pays off by virtually

eliminating duplication of effort. This also encourages con-

sistency among user interface designs I7,15].

4 A D D I T I O N A L E X A M P L E S

We mentioned earlier that developers and end-users of know-

ledge-based systems interact with their systems at. the three
levels of (i) individual objects and their structure, (ii) re-
lationships among objects, and (iii) the behavior of whole
systems. The object editor is one example of a tool for

editing at the object level. In this section we illustrate the

range of extensibility provided by Impulse-86. We present
a graph editor for interacting at the relationship level, and
a datafiow editor for the system behavior level.

September 1986 OOPSLA '86 Proceedings " 171

Clear ~,elections

Set May Chilcire~
Set Max Detoth

~eset
ExDand

Force Leaves
Don't St~ow

Acid Generalization
Remove GeneralizatiOn

I

L•mmu••
/ , c t ~ b ~ o . [1 t]

m°v~ ~ ' ~ ° * v a r ~ / / E ~ o r (14]
L ~ I / o p e r , ~ , [to)

~ W l l m o w c h ~ 111
~ , ~ , , r o N n ~ v ~ y r_61
~ ' V ~ k , w [a)

\
~ EditorOlol~le

Figure 5: Graph Editor: Specialization 'Relationships in
Impulse

4.1 G R A P H E D I T O R

Graphs are a natural representation for viewing relation-
ships between and among several objects in a system. Im-
puise-86 provides a simplified, object-oriented interface to
the Interlisp-D GRAPHER package [2], so users can edit re-
lationships from a global viewpoint.

A graph editor displays some or all of the objects tied
together by a relationship; the graph editor in figure 5
shows a taxonomic hierarchy, with inheritance flowing to
the right. Each node represents one object; numbers in
square brackets indicate the number of specializations not
shown. Graph editors are like other editors with regard to
defaults and loci.

The graph editor enables the user to see and rearrange the
global structure of the system as implied by the graphed
relationship. The user can add or delete links, and can
easily invoke an editing context that shows more detail for
any object in the graph.

The graph editor is a specialization of the object editor. It
has a new kind of property display (to display the graph
itself), two new static command menus (shown on the left
of the editor window in figure 5), and a new set of opera-
tions. A user may further customize the graph editor with
respect to fonts, layout (e.g., vertical vs horizontal), link
types (e.g., dashed vs solid), node display (e.g. bitmaps
vs names), and so on. These customizations require no
more than simple declarative changes to default values. In
addition, Impuise-86 allows for construction of KB Strue-
ture Graphs. To construct such a graph the user specifies
a function that, given an object, will generate its successor
objects one graphic link away (e.g., according to a port-o/
relationship as in figures 3 and 4, or a taxonomic relation-
ship as in figure 5). Impulse-86 takes care of the mechanics
of displaying the transitive closure of the graph generator
function, together with the rest of the interface.

4.2 D A T A F L O W E D I T O R

The datsfiow editor (figure 6) is a more radical departure
from our original object editor example. It uses animated
icons to convey the dynamic behavior of a Stream Machine s
datafiow program. The user sees all the pieces of a Stream
Machine program: large rectangles represent computation
modules, rows of small boxes represent data streams, arcs
represent read and write connections between modules and
streamn, dots t q the stream item currently being read, and
characters printed inside the small boxes show data val-
ues on the streams. Stream Machine programs are created
and modified in this graphical Inn&maze. The user connects
modules and stre,~'m, by connecting their icon counterparts
on the screen.

As the program runs, the picture is repeatedly updated to
show the new data values on the streams, the positions be-
ins read, and which modules are blocked waiting for data.
The user can invoke new interaction contexts to see details
of any computation module, stream or read/write connec-
tion.

The datafiow editor was implemented by creatins s number
of new property display objects (e.g., lines, boxes), together
with a set of menus and operations specific to animation.
The Impuise-86 property display and editor window objects
already support the notion of a correspondence between
editees and two-dimensional screen regions.

eThe Stream Machine iS] is z coane-srldned d~tsRow system in which
prosrame consist of severeJ concurrently executing modules commn,
nicnting via s t reams of dLtt . The modules are t~,quenti~l prosrams.

172 OOPSLA ~6 Proceedings September 1986

Module
Input

Output
Port
Gate

Shspe
Move
Elide
Hide

Delete

I SLT/Dernult iplexer 1
3e~ I " ' 13e21

3.512e814o2 I
In StartTime L ~

I I~lt•'lr~m

Figure 6: Datsflow Editor

5 E F F E C T I V E N E S S OF T H E S U B S T R A T E

One of our goals for Impulse-86 is that the substrate make
it easy to build manl/domain-specific interfaces. The object
editor, graph editor and dataflow editor are all implemented
on a single substrate. They seem very different on the sur-
face. The object editor looks at a single object, the other
two look at several objects as bound by one or more rela-
tionships. The graph editor employs a pre-existing ps~kage
for manipulating graphs, the other two are independent
of outside packages. The dataflow editor dynamically sni-
mates the functioning of a system, the other two do not.

Yet there is much that all three examples share. Each ere-
ates and maintains interaction contexts. Each displays its
editee to the user through windows. Each receives com-
mands from the user through menus and/or typein. Each
executes commands that control the state of its editee.

These commonalites and differences are captured by Impulse-
86. The commonalites are reflected by the m~or building
blocks of the Impulse knowledge base; the differences are
evident from the number of objects under each msjor class. 7

YAt the time of thim writinll , there ~re &pproxim&te~y 50 objects in
the PropertyD/splsy h ie r~hy and ,pproxim&tely 85 objects in the
Men• h ie r~hy of ImpulIe-86.

Impulse-86 users have built a variety of interfaces that fall
into three main cluses. The object editor is a member of
the general class of structured object editors. Other mere-
bess of this class are specialized for particular kinds of oh-
jeers in various domains (e.g., a rule editor for rules written
for Strobe's rule interpreter 131, a module editor for declar-
atively specified tasks [15 I).s The graph editor is the parent
of a number of specializations; each implements a different
strategy for handling information overload. The datallow
editor was generalized to a'subsystem of Impulse.86 called
GROW [9]. GROW has been used to build animated editors
for other domains.

It is noteworthy that each customized interface typically
required only a few hours to build, and none required more
than a week. Most were built by modifying existing Impulse-
86 editors or by connecting existing parts.

We attribute the short development times for these in-
terfaces to the particular set of behaviors encapsulated in
Impulse-86 building blocks. The designer is insulated from
the details of manipulating bitmaps, windows, mouse in-
teractions, typein streams, and menus- - I /O details which

Slmp•be-S6 u/lows • •set t,o indicate n mapping between • clu8 of
objects in • domidn knowiedle bwJe u d un editor clue. The mnppm 8
miy .Iso be dynamically determined.

September 1986 OOPSLA '86 Proceedings 173

traditionally require painstaking attention. Attention can
therefore be concentrated on what the customized interface
should look like, what information it should show the user,
and what commands the user should be able to request.

The correct design for a specialized interface depends on the
specific application system--it determines what is impor-
tant to be able to view and control. Therefore, the devel-
opers and users of Strobe knowledge-based systems are in
the best position to design interfaces customized for those
systems. Impulse-86 enhances productivity by giving these
people the ability to design and implement special purpose
interfaces.

Three features of the Impulse-86 substrate contribute to
this ability. The five classes of building blocks are quite
general, covering a wide range of interaction styles. Im-
plementation as an object-oriented system makes it easy
to specialize and modify, lmpuise-86 contains a number of
archetypical interfaces; modifying one of these is an effec-
tive strategy for creating a new interface.

Impulse-86 is the standard interface to Strobe-based sys-
tems. A community of knowledge base developers and end
users at Schlumberger uses Impulse-86 tools every day. In
addition, Impulse-86 is used as the interface to its own
knowledge base--to customize and extend it for a partic-
ular application. The toolkit is mature enough to support
the end-user interface for the Dipmetsr Advisor system (in-
cluding scrolling log graphics), as well as the control-panel
interface to the well-logging environment described in 115].

6 I M P U L S E - 8 6 AS AN O B J E C T - O R I E N T E D

P R O G R A M

Impulse-86 is itself a large object-oriented program, writ-
ten in Strobe. In this section we discuss the features and
techniques of the object-oriented paradigm that we found
especially useful in our implementation.

6.1 I N H E R I T A N C E

Without the modularity and inheritance provided by ob-
ject-oriented programming, Impulse-86 would be inconceiv-
able. A bushy taxonomy embodies the behavioral common-
alities and differences among the five m~or building blocks
and their specializations. As expected, inheritance keeps
the size of the system manageable while enabling enormous
diversity. Inheritance allows us to capture in a unified sys-
tem a wide range of interaction styles possible with a so-
phisticated personal workstation.

6.2 M I X I N S

Mixins via multiple inheritance are the mainstay of the
Menu building block. Menu behavior is an amalgam of
features that lie on several orthogonal dimensions:

• does the menu remain on the screen, or does it appear

and disappear?

, does a selection from that menu indicate a choice, or
invoke a command?

• how many items can the user select at once -one or

many?

• does the selection remain highlighted when the user

re]eases the mouse button?

• which Lisp package implements the menu at a low

level?

Each menu combines mixins chosen from the range of pos-
sible features in each dimension. Figure 7 shows a portion
of the menu taxonomic hierarchy.

k~nm ~v~mlck~mu \
st , tk:my~mZ¢ <~st , tk :M, nu [S] ~

m l ~ e M e n u ...- t~olc~ienu [3 |~ .~

- - \ m.m,~ t,,e ~ ' ~'~ DynamlcMenuToolMihnu~ [2) - ' : " [t 6]

" * l~ ,mBut tonM,nu [I]--r.ontrolP,nePuml~ttonkhnu

Figure 7: A Portion of the Menu Hierarchy.

174 OOPSLA '86 Proceedings September 1986

Mixins are also used to make PropertyDisplsys sensitive to
mouse selection, and to attach menus to certain Property-
Displays.

6.3 P O L Y M O R P H I S M

The ability of different objects to respond to the same pro-
tocols with varying behavior is called polymorphism [61.
Impulse-86 utilizes a uniform set of protocols over all five
classes of building blocks. This enables extremely general
code for starting up an interaction context, putting win-
dows and menus on the screen, printing information in win-
dows, and so on.

Further polymorphism is evident among the building block
classes. There are several dozen kinds of Menu that can
be used in Impulse-g6 editing tools. Each presents a differ-
ent interface to the user, but all share the same protocols
(e.g., creation, display, mouse selection). Similarly, there
are dozens of PropertyDieplays. Each prints information to
the screen in a different format, but they too share proto-
cols (e.g., positioning, printing).

Each successive revision of Impulse has had a finer grain size
for protocols than its predecessor. As we continue to sepa-
rate functions that were previously bundled together, more
protocols are added to the repertoire. This unbundling in-
creases the generality of the interface tool kit; the number
of possible behaviors grows combinatorially. At the same
time, inherited default values tame this explosion, so the
designers need not face an overwhelming number of choices
at every turn.

Consider the subclasses of PropertyDisplays that indent,
print a caption in one font, print a v~lue in another fonL
and finally emit a new line. Originally, these responded
to a single protocol that formatted the datum and printed
the line in a window. This was unbundled by creating new
protocols--one to indent by a specified length, one to print
the caption, one to print the value, one to emit a new line if
required, and one to invoke some combination of the others.
Where there was once a single possible behavior, there are
now many; each behavior is specified by a combination of
choices from four dimensions (i.e., indent, caption, value,
and new line). One result is the ability to more readily han-
dle intermixed single and multiple column displays. Moving
to a finer granularity helped expose these further opportu-
nities for polymorphism and extensions to functionality.

T R E L A T E D W O R K

Other groups are currently working on systems that sup-
port construction of interactive interfaces. The GUIDON-
WATCH system II0] demonstrates the utility of a user in-
terface tuned to the operation of a particular class of con-
sultation systems. The authors note that knowledge-base
editors originally intended for use by the knowledge base
developer/maintainer are typically inappropriate interfaces
for the end user. Impulse-86 offers a substrate that bridges
the gap between the tools required by a developer/main-
tainer, by a domain specialist, and by an end user. Its
extensibility further enables it to support the construction
of specialized interfaces for each type of user.

The SIG system 15] is much closer to Lmpulse-86. Built
on top of Smalltalk-80 [I], it too offers an exteusible ker-
nel that supports generation of interactive displays. In the
terminology of [5], SIG emphasizes the v/ew aspect of inter-
action; it addresses the control aspect in a less structured
manner. In contrast, we have found it useful in Impulse-86
to provide a considerable amount of structure to support
the control aspect of interaction as well as the view as-
pect. We have also found it useful to provide s relatively
fine-grained structure--numerous behaviors, organized into
five categories--to support user extension. Finally, we have
found it useful to make the editor the kernel concept that
unifies both the view and control upec ts of user interac-
tion.

Closest to Impulse-S6 in spirit is EZWin [41, an object-
oriented editing system which provides three object classes
for constructing editors. The E• Win class corresponds to
an Impuise-8e Editor object. This object represents the en-
tire editor structure, including the window, a process for
handling interaction, and the various Command and Pre-
sentation objects available in the editor. Comm~nd ob-
jects correspond roughly to Impulse-8fi Nenu and Opera-
t i o n s objects; Presentation objects correspond to Impulse-
86 P roper tyViep lay - . Although the two systems have
similarities, there are several important differences. "EZWin
systems are basically editors for graphical objects." 14, p.
186] Systems constructed in Impulse-g6 are interfaces for
knowledge-based systems; the interaction objects and rou-
tines are completely separate from the knowledge-base be-
ing edited. This separation allows the interface and appli-
cation to be modified independently and supports the reuse
of interfaces with different knowledge-based systems. An-
other difference between the systems is the scope of inter-
action management. EZWin supports interaction within a
single editor, while Impulse-86 provides support for an edit-
ing session, which includes interaction with (and among)
many, varied editors. For example, several editors may view
the same object simultaneously (figure 1). Impulse-86 sup-
ports connected structures of subeditors and supereditors

September 1986 OOPSLA '86 Proceedings 175

that can be managed (i.e., created, deleted, updated) as
a whole. A final difference is the separation of Menu and
Opera t ions objects in Impulse-86. Operations may be in-
voked by any type of interface, including menus, type-in, or
even a running program. We have found this quite useful
when changing interfaces to a program.

8 S U M M A R Y

Impulse-S6 provides a set of building blocks for construct-
ing a wide variety of domain-specific interlaces for know-
legs-based systems. The kit contains five major building
blocks which implement a full range of interaction activ-
isles The substrate enables developers and end users of
knowledge-based systems--who are not interactive graph-
ics specialists--to design specialized interfaces for their sys-
tems. Such domain-specific editing interlaces are essential
tools for developing and maintaining knowledge-based sys-
tems.

One indicator of the ease with which interfaces can be im-
plemented in Impuise-86 is the growing collection of special
purpose editors and tools to animate system behavior. We
attr ibute this to a clear organization of interface knowledge,
a flexible object-oriented implementation, and a diverse set
of archetypical interfaces that a designer can customize or
specialize.

A C K N O W L E D G E M E N T S :

Impuise-86 is a direct descendant of the first two versions of
Impulse, both of which were designed and implemented by
Erie Schoen. Bob Young and Mike Kleyn made numerous
suggestions for the new design. David Barstow, Tins D. F.
Dinitz, Sol Greenspan, Elaine Kant and Bob Young read
drafts of this paper, adding greatly to the coherence and
flow of the final manuscript.

R E F E R E N C E S

[1} Adele Goldberg. SMALLTALK-80: The lntcraetiec
Programming Environment. Addison-Wesley, Read-
ing, MA., 1984.

[2] Lisp Library Packages Manual. Xerox Artificial Intel-
ligence Systems, Pasadena, CA, December 1985.

[31 G. M. E. Lafue and R. G. Smith. A modular tool
kit for knowledge management. In Proceedings of the
Ninth International Joint Conference on Artificial In.
teUigcnce, pages 46-62, August 1986.

[4] H. Lieberman. There's more to menu systems than
meets the screen. Computer Graphics, 19(3):181-189,
July 1085.

!5i D. Maier, P. Nordquist, and M. Groesman. Display-
ing database objects. In Proceedings of the First In-
ternational Conference on Ezpert Database Systems,
pages 15-30, April 1086.

i6! Mark Stefik and Daniel G. Bobrow. Object-oriented
programming: themes and variations. AI Magam'nc,
6(4):40-62, 1086.

[71 D. A. Norman. Design principles for human-computer
interfaces. In Procesdinfs o[the CH! 1988 Conference
on Human Factors In Computer Systems, pages I - I0 ,
ACM-SIGCHI, December 1983.

IS] Paul Barth and Scott Guthery and David Barstow.
The Stream Machine: a data flow architecture for real-
time applications. In Eighth International Conference
on Software Engineering, pages 103-110, London, Eng-
land, September 1985.

[91 Paul S. BatCh. Grow: an object-oriented approach to
graphical editing and animation. 1986. (to appear).

[10] M. H. Richer and W. J. Clancey. GUIDON-WATCH:
a graphic interface for viewing a knowledge-based
system. IEEE Computer Graphics and applications,
S(ll):Sl-e4, 1986.

[11] E. Schoen and R. G. Smith. Impulse: s display-
oriented editor for Strobe. In Proeeedin#s of the Na-
tional Conference on Artificial Intelligence, pages 3 ~ -
368, August 1983.

112] R. G. Smith. On the development of commercial ex-
pert systems. AI Magaz/ne, 6(3):61-73, Fall 1984.

[13] R. G. Smith. Strobe: support for structured object
knowledge representation. In Proceedings of the Eighth
International Joint Conference on Artificial Intelli-
gence, pages 856-868, August 1983.

[14] R. G. Smith. Structured Object Programming In
Strobe. Research Note SYS-g4-08, Schlumberger-Doll
Research, March 1984.

[16] R. G. Smith, G. M. g. Lafue, E. Schoen, and S. C.
Vestal. Declarative task description as a user inter-
face structuring mechanism. Computer, 17(0):20-38,
September 1984.

[16] R. M. Stallman. EMAC$: The Eztensiblc, Customis-
able, Self.Documenting Displall Editor, pages 300- 325.
McGraw-Hill, New York, 1984.

176 OOPSLA '86 Proceedings Sel~mber 1986

