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Abstract 

A number of attempts have been made to ob- 
tain type systems for object-oriented programming. 
The view that lies common is “object-oriented pro- 

gramming = X-calculus + record.” Based on an 
analogous view “concurrent object-oriented pro- 

gramming = concurrent calculus + record,” we de- 
velop a static type system for concurrent object- 
oriented programming. We choose our own Higher- 

Order ACL as a basic concurrent calculus, and 

show that a concurrent object-oriented language 
can be easily encoded in the Higher-Order ACL ex- 

tended with record operations. Since Higher-Order 
ACL has a strong type system with a polymor- 

phic type inference mechanism, programs of the 
concurrent object-oriented language can be auto- 
matically type-checked by the encoding in Higher- 
Order ACL. Our approach can give clear accounts 
for complex mechanisms such as inheritance and 
method overriding within a simple framework. 

1 Introduction 

Why Type System for Concurrent Object- 
Oriented Programming? Significance of 

strong, static type systems has been widely recog- 
nized in the communities of functional program- 

ming and object-oriented programming. 
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Static type systems increase reliability and read- 
ability of programs, enhance code reuse by poly- 
morphic typing, and also provide useful compil- 
ing information. Moreover, static type systems 
with type inference mechanisms can liberate pro- 

grammers from the burden of writing complex 
type declarations, hence programmers can benefit 

from such type systems without any additional ef- 
forts compared with dynamically typed program- 

ming languages. All the above arguments should 
also hold in concurrent object-oriented program- 

ming. We argue that the above mentioned benefits 

have much more significance in concurrent object- 

oriented programming than in functional program- 

ming, because runtime debugging of concurrent 

object-oriented programs seems difficult, especially 
on muticomputers (imagine the burden of debug- 
ging by tracing ten thousands of concurrent objects 
at the same time!). 

How Can We Obtain Typed Concurrent 

Object-Oriented Programming? - From a 

Philosophical Point of View How can we sys- 
tematically develop a flexible, powerful type system 

for concurrent object-oriented programming? Ob- 
servation of the development of type systems[4] [13] 

for sequential object-oriented programming is of 
great help. Many successful previous developments 
were based on the extension of typed X-calculus. 
Although a number of powerful extensions of X- 
calculus including F< and F<” were investigated, 
the essence that lies common in those develop- 
ment is a view “typed object-oriented program- 
ming = typed X-calculus + record.” It is, there- 
fore, natural to develop typed concurrent object- 
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oriented programming based on a view “typed 

concurrent object-oriented programming = typed 

concurrent calculus + record.” This approach 
would provide a flexible and clear way for taking 
into account various mechanisms, including inheri- 

tance and method overriding, for typed concurrent 
object-oriented programming. Fortunately, work 
on typed concurrent calculi have recently made a 
great progress[?] [9][11][16]; it is time to make a de- 
velopment in concurrent programming analogous 

to that[l3] [4] of typed object-oriented program- 
ming in sequential programming. 

Higher-Order ACL - A Typed Concurrent 

Calculus based on Linear Logic1 We use our 
Higher-Order ACL[S] (in short, HACL) as a ba- 
sic concurrent calculus. HACL is a typed, higher- 
order extension of ACL[8][7] whose semantics is 
based on a fragment of linear logic[5]. HACL 

has an ML-style polymorphic type system. Thus 

there exists a simple unification-based type infer- 

ence algorithm. In this paper, we extend HACL 

with Ohori’s polymorphic record calculus[lO] and 
show that a typed concurrent object-oriented pro- 

gramming with mechanisms for inheritance and 

method overriding can be easily encoded in the ex- 
tended HACL. We can easily observe that a pro- 
gram is type error free if and only if the translated 
HACL program is type error free. In particular, 

there is a trivial embedding of Vasconcelos’ cal- 
culus objects[l7][15] into our HACL. Thus, HACL 
plays a significant role in developing typed concur- 

rent object-oriented programming similar to those 
played by X-calculus in developing typed sequential 

object-oriented programming. 

Inheritance and Method Overriding in Con- 
current Object-Oriented Programming - 
From Type-Theoretic Point of View Read- 
ers might fear that the introduction of inheritance 
and method overriding will require a more com- 
plex type system. In our approach, to incorpo- 
rate inheritance and method overriding, we need 

not modify the basic type system; we have only to 

‘In this paper, we do not assume readers’ familiarity with 
linear logic. 

refine the encoding into HACL. Therefore, the in- 
troduction of inheritance does not impose any es- 
sential problems; inheritance is just a matter of 

programming and fully captured by our type sys- 
tem. This fact is analogous to Pierce’s type system 

for object-oriented programming[l3], where inher- 

itance in functional object-oriented programming 

was treated as just a matter of programming and 
encoded in his basic object model. It is a stark con- 
trast to Vasconcelos’s object calculus[l’l]; his cal- 

culus does not provide such flexibility, hence the 
introduction of inheritance seems to require a ma- 

jor modification. 

What Can We Benefit From Our Type Sys- 

tem? Our development of a type-theoretic foun- 
dation for concurrent object-oriented programming 
will provide the following benefits: 

1. Since all type errors are detected statically, 

the burden of runtime debugging is highly re- 

duced. This is a great advantage because it 

is very difficult to debug concurrent programs 

on massively parallel processors. 

2. By a type inference mechanism, programmers 
are free from the burden of writing complex 
type declarations. 

. 3. Code reuse is enhanced by polymorphism. 

4. Some implementation techniques are naturally 

obtained by type inference. For example, in 
an efficient implementation[l4] of a concur- 

rent object-oriented language ABCL[19][18], a 
method lookup table plays an important role. 

We can naturally obtain entries of the table 
by type inference, even in the presence of in- 
heritance. That enables method-lookup to be 
performed in a constant time. 

5. Type information can be used for many kinds 
of optimizations. For example, we need not 
embed type information in messages, which re- 
duces both the size of messages and the cost 
of message handling. 

The rest of this paper is organized as follows. In 

section 2, we introduce an actor-based high-level 
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language and a base language based on HACL. 

We show that the high-level language is easily 
encoded in the base language and type-checked. 

Section 3 extends the language to incorporate in- 
heritance and accordingly refines the translation 
into Higher-Order ACL. Section 4 illustrates how 

method lookup table can be implemented using 
type information. Section 5 discusses related work 
and section 6 concludes this paper. 

2 An Actor-based Concurrent 

Object-Oriented Language 

In this section, we introduce two languages: a sur- 
face language SL1 and a base language BL1. SL1 is 

an actor-based[l] simple concurrent object-oriented 

language. BL1 is actually a subset of Higher-Order 
ACL extended with Ohori’s polymorphic record 

calculus[lO], into which the surface language is 
translated. We show a simple encoding of SL1 in 

BL1. Then, type inference is performed for BL1, 

and a program written in SL1 never causes type 

mismatch error if the translated program is well- 
typed. After that, we restrict the surface language 
so that an object may change its state but never 
changes its behavior. In the restricted language, we 

can ensure that well-typed programs never cause 
“message not understood” error. 

2.1 The Surface Language SL1 

We first introduce an actor-based language SL1. 

In the actor model, computations are performed 
by multiple agents called actors[l]. Each actor has 
its own mail address?-. Upon receiving a message, 
an actor sends some messages to other actors or to 
itself, create new actors, and specify the replace- 
ment behavior. 

For example, a class3 point can be defined as 
follows: 

(defclass (point x y) 

[getx (reply-adr) 

*We often use a term identifier for mail address 
‘In this paper, we use a term class in place of behavior. 

=> (send-to reply-adr x) 
(become (point x y)) 

kety (reply-ah) 
=> (send-to reply-adr y) 

(become (point x y)) 

[set (newx, newy) 

=> (become (point newx newy))]) 

An instance of class point has two state variables z 
and y, and handles three messages getz,gety and 
set. A message getz (gety, resp.) takes an argu- 
ment reply-a&, to which the point object sends the 

value of its state variable z (y, resp.). A message 
set takes two arguments newx and newy. When 

the point object receives the message, it updates 
its instance variables to newx and newy. 

An instance of class point can be created by the 

following expression: 

(let id :=new point (1.0, 2.0) in e). 

The above expression creates a new instance 
class point, and binds id to its identifier in e. 

The whole syntax of a class definition in SL 
given as follows: 

(cl-def) ::= (defclass ( (cl-name) (state-var)” ) 
(script)‘) 

(script) ::= [ (m-name) ( (var)* > => (action)* 1 
(action)::= (become (cl-name) ( (arg)* >> 

] (send-to (dest) (m-name) ( (arg)’ >> 
1 (send-to (dest) (arg) > 
] (let (var) := new (cl-name) ( (arg)‘) 

in (action) * ) 

of 

is 

{script) stands for a method definition. An expres- 

sion (send-to x m> sends an asynchronous mes- 
sage m to x. A message m is either a pair consisting 
of a method name to be invoked and arguments, or 
an argument itself. (argument} can be a functional 
expression composed of bound variables, constants, 
built-in and user-defined functions, let-statements, 

and the following synch-send-to expression: 

(synch-send-to (dest) (m-name) ( (arg)’ >> 

This creates a new address x, and sends a message 

(m-name) ( (arg)*, 2). Then, the expression is 

evaluated to a value returned to the new address 
x. This expression is used together with let expres- 

sions in the following form: 
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(let ((y (synch-send-to x m))> . ..>. 

For example, 

(let id := nev point(l.O, 2.0) in 
(let ((y (synch-send-to id getxO>) . . .) 

is evaluated to: 

(let ((y 1.0)) . . .> 

2.2 The Base Language BL1 

Now, we introduce the base language BL1, into 

which programs in SL1 are translated. 
The syntax of BL1 process expressions is sum- 

marized in Figure 1. Each process expression corre- 

sponds to some formula of linear logic. The second 

column shows this correspondence. Readers who 
are not familiar with linear logic can completely 

ignore this column. In the definition, z ranges over 
variables, P over process expressions, and R over 

process expressions of the form m(z1,. . . , z,)=>P. 

m is a variable z or a record field extraction s.E, 
where 2 is a field name. In the terminology of 

HACL, we often call m a message predicate.4 Mes- 
sage passing can be performed if the message pred- 
icates of a sender and a receiver are the same. For 

example, (m(l) I m(x) => n (x+1> 1 is evaluated 
as follows: 

(m(1) I m(x>=>n(x+l>> - n(l+l> - n(2) 

Choice (ml(x>=>n(x+l>>&(m2(x>x>n(x>> can re- 

ceive either a message ml or m2. Message predi- 
cates can be created by the $ operator. &c.P cre- 
ates a message predicate or a record of message 
predicates and binds x to it in P. Which of a 
message predicate or a record of message predi- 
cate is created is determined by the type inference 
system given later. For example, an expression 
$id.(id.m(l) I id.m(x) => n(x+l)) creates a 

record id of message predicates which contains at 

least a field m, then performs message passing using 

a message predicate id .m. Id is hidden to the out- 

side of the scope of $id. A proc statement defines 

‘The term“predicate” comes corn the fact that HACL 
is based on linear logic. Each message is represented by 
an atomic formula of linear logic, and m corresponds to a 
predicate. 

a recursive process just as a fun statement defines 

a recursive function in ML. 
The whole syntax of expressions, ranged over by 

e, is defined by: 

e ::= 5 1 c 1 ele2 1 Xx.e 
I (el, e2> I fst(e) I de) 
1 let 2 = el in e2 end 1 fixhe 

I(4 =el,..., I, = e,} 1 e.1 1 elQ{l = e2) 

I (elle2) I - I4h.e I?e 
) (ml (4)=>ei>& -. -&(mn(x>)=>en) 

where {Zl = el,. . . ,l, = e,} is a record whose 
value of li field is e;, e.E is a record extraction, and 

elQ(1 = ez} is a non-destructive field update. On 

the sequential part, our language is consistent with 

Ohori’s polymorphic record calculus[lO]. 

2.3 Encoding SL1 in BL1 

The surface language SL1 can be easily encoded 
in BL1. For example, the point class definition is 
encoded into the following process definition: 

proc point (x, y) self = 
self.getx (reply-adr) => 

(reply-adr(x) I point (x, y> self) 
& self.gety (reply-a*) => 

(reply-adr(y) I point (x, y) self 1 

& self. set (neux, newy) => 

(point (neux, nevy) self > ; 

where we assume => binds tighter than &. The 

translated program is almost the same as the orig- 

inal class definition except that an extra argument 

self to point is introduced. self can be con- 
sidered an identifier of point, which was implicit 
in the surface language SLl. In BL1, it is imple- 
mented as a record whose field names are message 
names the object can handle. 

An instance creation: 

(let id := new point(l.O 2.0) in . ..> 

is encoded as 

$id.(point (1.0, 2.0) id I . ..>. 

Here, $ is used as an operator for identifier creation. 
The formal definition of the translation function 

from a class definition in SL1 to a process definition 

in BL1 is given in Figure 2. In the figure, E stands 
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Process Expression Linear Logic Formula Description 

I inaction 

m(el,. ..,e,) I P m el,... ,e,)‘BP sends a message m(er, . . . , e,), 
and then behaves like P 

m(x1,...x,) => P 3x1 * * * 3X,.(rn(Xl,. . . , x,)~ @ P) receives a message m(er , . . . , en), 
and then behaves like P[el/xl, . . . , en/x,] 

RI Wz RI @R2 behaves like RI or Rz 

PllP2 fi 'B p2 parallel composition 

$x.P Vx.P name creation 
?P ?P unbounded replication 

let procAxl...x,,=P fix(XA.Xxl. - . . Xx,.P)el . . . e, process definition 
in Ael . . . e, end (A is a name of newly defined process) 

Figure 1: Syntax of BLr process expressions 

3a((defclass ((cl-name) (state-var)*) (script)*)) =p rot (cl-name) ((state-var)*) self = 3,((scripts)); 

38(E) =- 
3S( [(m-name) ((var)* > => (action)*] (script)*)=(self. (m-name) (var)* => 3a((actions))) & 3S((script)+) 

3,(E) = - 
3a((become ((cl-name) (a&*)) (action)*) = ((cl-name) (arg)’ self) i 3a((action)*) 
3a((let 5 := new (cl-name) ((arg)) in (action)* 1) =$x.(((cl-name) (arg)’ a:> I 3a((action)*) 
30((send-to (dest) ( m name) ((arg)*)) (action)*) = (dest).(m-name) ((arg)‘) I 30((action)*) - 
3=( (send-to (dest) (arg))) =(dest) ((arg)) I 3*((action)*) 

Figure 2: Translation from SLr into BL1 

for an empty sequence. We regard P&- z P in the 

translation. An expression using synch-send-to: 

(let ((y (synch-send-to x m(el,...,en>>>> 

e> 

can be translated to: 

$adr.(x.m(el,...,en, adr) I adr(y) => e>. 

2.4 Type Inference 

Type inference is performed on BL1 programs. We 

say that a program of SLr is well-typed if the trans- 

lated BL1 program is well-typed. 

We introduce a set of kinds[lO], ranged over by 
Ic, as follows: 

k ::= u 1 (11 : 5-1,. . . ) I, : 7,) 

where T ranges over monotypes defined below. In- 
tuitively, U represents a set of all monotypes, while 

(I1 : 71 , . . . , I, : 7,) represents a set of record types 

of the form: (11 : 71,. . . , I, : T,, . . .}. Then, mono- 
types and polytypes are defined as follows: 

Definition 2.1 (monotypes, polytypes) A set 
of monotypes, ranged over by 7, and a set of poly- 
types, ranged over by 0, are given by the following 
syntax: 

T::=cr’b~o~T+T~TXT 
I(11 : r1,...,1,: Tn} 

CT ::= 7 1 vff :: k.u 

where (Y stands for type variables, b for base types, 

and o for the type of messages and processes. 

Intuitively, V’(Y :: k implies that (Y can be instanti- 
ated to any monotype in k. For example, a poly- 

type 
vo! :: (E : pp#p :: u.a 

represents a set of all monotypes of the form (1 : 
7, . . . }, i.e., any record that contains a field I of type 
T. We often just write “t/c? for “t/a :: U.” 
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Rules for type judgement, which consist of Icind- 
ing rules and typing rules, are given in Figure 3. A 
kinding statement is of the form K I- r :: k where 

a kind assignment K is a map from a finite set of 
type variables to kinds. It should be read as: “7 

has a kind k under a kind assignment K.” A typing 

statement is of the form K, I I- e : r where a type 

assignment I is a map from a finite set of variables 

to types. It should be read: “e has a type r under 
a kind assignment K and a type assignment 7.” 

In the typing rules, Const is a set of pairs (c, a) 
where c is a constant and ~7 is its polytype. We 
assume Const contains at least the following op- 
erators: 

I, k : o--to-o 
?: o--to 
fix: va :: U.(cY + a) + a 

A monotype r is called a genen’c instance[lO] 
of a polytype ‘da1 :: kl. * * V’a, :: k,.+ if 7 = 

+1/w - . . ,7,/o,] for some monotypes 71,. . . , r, 

such that 

q5 I- TV :: ki[q/al, . . . ,Tn/an] for all i(1 5 i 2 n) 

PropType, ranged over by TV, is a subset of 
monotypes defined by the following syntax: 

TP ::=O~T-+Tp~{E1:Tpl,...,z,:Tp,} 

where 7 ranges over the set of monotypes. 
We say that an expression e is well-typed if 

44-e : r for some r, where 4 is a map whose 

domain is an empty set. The following theorem 

ensures that well-typed programs never cause type 

mismatch error. 

Proposition 2.1 (subject reduction) If 
K,Ibe:: ande-e’, thenK,Ike’:~, where 

- is a transition relation. 

Moreover, there exists a type inference algorithm 
which recovers the most general type for any well- 
typed term. 

Proposition 2.2 There is an algorithm which, 

given any untyped term e, outputs its principal typ- 

ing if it is well-typed, OT reports failure otherwise. 

Kinding Rules 

Kkr:: U for all 7 
ICI-t:: (I1 : q,...,I,: Tn) 
if t E dam(K), K(t) = (11 : Tl,. . . ,l, : Tn,. . .) 
KtT{zl:rl)...) E,:Tn )... }::(11:71,..., 1,X”) 

Typing Rules 

(const) K, 7 t- c : T if (c, g) E Con& and 7 
is a generic instance of U 
tvaj K, 7 + 2 : 7- if x E dom(;r), I(X) = 7. 

K, 7 k e:! el x : 72 
x = el in e2 end : TZ 

K 7km:r~x~--xr,+o, 
K, 7j x1 w Tl,..., x,wT”}t-e:o 

K, 7 I- m(x1,. . . , 2,) => e : 0 

($) w T E PropTYpe 

(record) 
K,II-ei:Ti l<i<n 

K,7l-{(II=el ,..., E,=e,}Y{1y:71 ,..., 1,:~~) 

(field) 
K,ll-e:rl Kl-q :: 13r2 

ICY/- 1 
’ e* : r2 kT;d;fy! 

: 3-l &II-e2:72 Kl-rl::(l:r2) 
K,7ke10 l=e2 :rl 

Figure 3: Typing Rules for BLr 

The proof is immediate from the result on Ohori’s 
polymorphic record calculus[lO]. 

We have already implemented a type inference 
system. The algorithm for type inference is a sim- 
ple extension of Ohori’s type inference algorithm 
for his polymorphic record calculus. For example, 
a type of the process point given in the previous 
subsection can be inferred as follows: 

proc point (x, y) self = . . . ; 
(* Type writer style is user’s input. *> 

vaJ point = proc: ‘*‘b->‘c::{getx:(‘a->o)->o, gety:(‘b- 

>o)->o, set:‘a*‘b->o}->o 

(* Slanted style is system’s output. *) 

The system’s output says that point has a type: 

Vff.V/?.V7 :: (gets : (cr -+ 0) + 0,gety : (/3 -+ 0) + 

0,se-t : a x p + o).a x /3 + 7 + 0. 
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The inferred type indicates that point takes a pair 

of values of type Q and p as its first argument, 
and a record of type {getz : (CY + o) + o,gety : 

(p + o) ---f o, set : (Y x p + 0,. . .} as its second 

argument self. The type of self implies that a 

message set takes a pair of values of type CY and 
p, while a message getx takes a message predicate 

which takes a value of type cr as an argument. By 
combining with the translation of SLr into BLr, 
SLr programs are statically type-checked. 

Well-typed programs so far do NOT ensure that 
no “message not understood” error occurs. For ex- 
ample, the following expression, which creates an 
instance of class point and sends to it a message 
move, 

(let id:= new point(l.O, 2.0) in 
(send-to id move(l.O, 1.0))) 

is well-typed, because it is translated to: 

$id.(point (1.0,2.0) id I id.move(l.0,i.O)) 

vd it = proc : 0 

During type inference, a type of the form: 

{getx : (real -+ 0) + 0,gety : (real + 0) + 

0,set : real x real + 0,move : real X real -+ 

0,. , . 1 
is associated to id. 

The fact that “message not understood” error 

cannot be detected is less problematic in the case 

of asynchronozls message passing. We can imple- 

ment concurrent objects so that undefined mes- 

sages never raise runtime error; they are just en- 

queued forever and never processed. For practi- 

cal purposes of ensuring program correctness, we 

would like to detect such errors. We will present a 
solution in the next subsection. 

2.5 Detection of “Message Not Under- 
stood” Errors 

Although “message not understood” error causes 
no problem in the implementation, one might want 
to ensure that no “message not understood” error 
occurs. It is better to statically detect it as an er- 
ror, for the safety of concurrent programs. We can 
assure it by restricting the language so that each 
object may change its states but never changes its 
behavior; the replacement behavior of “become” [l] 

operation must be always what it was. An impor- 
tant point about this restriction is that all message 
names each object handles are completely known 
syntactically. Under this restriction, for example, 
we can translate point in the previous section into 
the following BLr program: 

proc point(x,y) self:Cgetx:‘a,gety:‘b,set:‘c)= 
self .getx(reply)=> 

(reply(x) I pointcx, y) self) 
8 self.gety(reply)=> 

(reply(y) I point(x, y) self) 
& self.set(newx, neuy) => 

(point (neux,newy) self 1; 

val point = proc: ‘a*‘b->{getx:(‘a->o)->o, gety:(‘b- 
>o)->o, set:‘a*‘b->o}->o 

The only difference with the translation in the pre- 
vious subsection is that a type specification for an 
argument self is explicitly attached. This specifi- 
cation says that self is a record consisting of just 
three fields getx, gety and set. Please notice that 
this specification can be automatically generated by 
the translation function; the system can syntacti- 
cally find that point handles three methods getx, 
gety and set. Under this refined translation, no 
“message not understood” error occurs if the trans- 
lated program is well-typed, because an identifier 
of each object is a record whose field names are 
just the message names it can receive. In order 
to send a message, a sender must extract a corre- 
sponding field from the identifier of the receiver. 
Therefore, the sender can send only messages the 
receiver can handle. For example, suppose that 
some object sends a message move to an instance 
of class point: 

(let id := new point(l.0, 2.0) in 
(send-to id move(l.O, 1.0))) 

This expression is translated into the following 
BLr program: 

$id.(point(l.0,2.0) id I id.move(l.0,i.O)); 

Type Mismatch Error on variable id 

Since point has a type 

Va.V@.a x p + (gets : (~2 + 0) -+ 0, 

gety : (p + 0) + 0, set : Q x /3 + 0) -+ 0, 

the expression point (1 .O, 2 .O> id in the above 

program requires id to be of type {getx : 
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(real -+ 0) + 0,gety : (real + 0) t 0,set : 

real x real -+ 0). Therefore, the field selection 
id.move violates the type of id. Thus, all “mes- 

sage not understood” errors are statically detected 
by the type inference system; that is, well-typed 

programs cannot cause “message not understood” 

error. 
Readers might think it is too restrictive that con- 

current objects must not change its behavior. It is 
very easy to relax this condition so that objects 
can change its behavior as far as it is capable of 
handling the same set of messages, because the de- 
tection of “message not understood” errors is real- 
ized by only attaching the explicit type declaration 
to self. For example, consider the following one- 
place buffer object: 

(defclass (ebuffer) 
[put (x reply) => (send-to reply 0) 

(become (fbuffer x))]) 
(defclass (fbuffer x) 

[get (reply) => (send-to reply x> 
(become (ebuffer))]) 

It can be defined in BL1 by: 

proc ebuffer self:{get:‘a, put:‘b) = 
self .put(x, reply) => 

(reply0 I fbuffer (x> self) 
and fbuffer x self = 

self.get(reply) => 
(reply(x) I ebuffer self) 

By attaching the type constraints 
(get : ‘a, put : ‘b) to self, we can ensure that 
messages except for get and put are never sent, 
to the one-place buffer object. 

3 Inheritance 

In this section, we extend the language SL1 in the 

previous section and accordingly refine the trans- 
lation step by step, to incorporate an inheritance 

mechanism. 

3.1 Simple Inheritance 

In this subsection, we introduce a simple inheri- 
tance mechanism. Other mechanisms associated 

with inheritance, such as serf and super variables 

and method overriding, will be treated in the sub- 
sequent subsections. 

First, we extend the surface language SL1 so that 

superclass, from which its subclass inherit meth- 
ods and state variables (or, instance variables in 
the terminology of Smalltalk), can be specified in 
the class definition. We assume that the superclass 
must be previously defined. 

Before showing the encoding of inheritance, we 
also extend the base language BL1 by introducing 

the following record coercion operator: 

coerce{11 ,...rL}{h,...,Ln}: 
Va14fan.({ll : ck1,...,1” : an} 

+ (I1 : (Yl,..., I, : a,}) where m 5 n 

By inheritance, we assume that a process (i.e., 

instance) of some subclass handles newly defined 

methods and those its superclass handles. We also 
assume that instance variables in a superclass is 

hidden to its subclasses; the instance of a subclass 

can access instance variables of its superclass only 
via message passing. We demonstrate the encoding 
of this kind of inheritance by using the class point 
introduced in the previous section. 

Let, us consider a colored point object, which 
has an instance variable c holding a color number 
as well as x- and y-coordinates x and y. A class 
cpoint of colored point objects can be defined as 
a subclass of point: 

(defclass (cpoint c :inherit point) 
[setc(neuc) => (become (cpoint neuc))] 
[getc(reply) => (send-to reply c> 

(become (cpoint c> )I > 

point is declared as a superclass by using a key- 
word : inherit. An instance of class cpoint has 
five methods; three methods set, getx, and gety 
are inherited from the superclass, and two methods 
setc and getc are newly defined. An instance of 
cpoint whose color number is 1 and coordinate is 
(1.0,2.0), is created by the following expression: 

(let id := new cpoint(l,point(l.0,2.0)) 
in . ..I 

The above definition is translated into the fol- 
lowing HACL process definitions: 

proc cpoint’ c self = 
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self.setc newt => cpoint’ newt self proc point2’ self = 
& self.getc reply => (reply c I cpoint’ c self); self.move (dx, dy) => 

val cpoint’ = proc: ‘a->‘b::{setc:‘a->o, getc:(‘a->o)- 
>o}->o 

proc cpoint c p self:(set:‘a,getx:‘b, 
gety:‘c,setc:‘d,getc:‘e)= 

let super= 
coerce<set, getx, gety, setc, getc3 

(set, getx, gety3Cself) 
in (p super I cpoint’ c self) end; 

val cpoint = proc: ‘a->({set:‘b, getx:‘c, gety:‘d}->o)- 
>{set:‘b, getx:‘c, gety:‘d, setc:‘a->o, getc:(‘a->o)->o}- 
>o 
An instance creation is encoded as: 

$id.(new-cpoint (1, 1.0, 2.0) id 1 . ..I 

where new-cpoint is defined by: 

proc new-cpoint (c, x, y> self = 
cpoint c (point (x, y>) self; 

va.l new-cpoint = proc: ‘~‘b*‘c -> {set:‘b*‘c->o, 

getx:(‘b->o)->o, gety:(‘c->o)->o, setcz’a->o, getc:(‘a- 

>o)->o}->o 

An instance of subclass is encoded as a concur- 

rent composition of an instance of its superclass 
and newly added component. Figure 4 illustrates 
the structure of a cpoint object. The object, is 
internally composed of two subobjects, namely, an 

object of superclass point and a newly added com- 

ponent cpo int ’ . Please notice that the opera- 
tor coerce can be automatically inserted from the 

types of point and self. 
Let us look at another example of inheritance. 

We add a method move to the point class. 

(defclass (point2 :inherit point) 
[movecdx, dy) => 
(let ((x (synch-send-to self getx()>> 

(y (synch-send-to self gety0 > >> 
(send-to self set(x+dx, y+dy)) 
(become (point21 > )I> 

In the method body of move, messages getx and 
gety are sent to self. self is a pseudo variable 
used as an address of the called object itself, as in 
other object-oriented languages (e.g. Smalltalk). 
In this subsection, since we do not consider method 
overriding, the above definition is translated as fol- 
lows: 

$adrl.(self.getx adri I 
adrl x => $adr:!.(self.gety adr2 I 

adr2 y => (self.set(x+dx+O.O,y+dy+O.O) 
I point2’ self)>>; 

va.l point2’ = proc: ‘a::{move:real*reaJ->o, getx:(reaJ- 
>o)->o, gety:(real->o)->o, set:reaJ*rea.L>o}->o 

proc point2 p self:{set:‘a,getx:‘b, 
gety : ‘c ‘move : ‘d3= 

let super= 
coerce{set, getx, gety, move3 

{set, getx, gety)(self) 
in (point2’ self I p super) end; 

vd point2 = proc: ({getx:(real->o)->o, gety:(real-> o)- 

.Zlreal*reaJ->oj->o)->{ move:real*reaL>o, getx:(real- 
>o)->o, gety:(reaL>o)->o, set:real*reaJ->o}->o 

proc new-point2 (x, y> self = 
point2 (point (x, y)> self; 

val point2 = proc: ‘a* ‘b -> { move:real*real- 

>o, getx:(reaJ->o)->o, gety:(reai->o)->o, set:real*real- 

>o}->o 

An instance of point2 is a concurrent composition 

of point and point2’. Please note that in the 
presence of method overriding, the above encoding 

of self would be incorrect. 

Although we do not give a formal definition of 

the translation function, it is obvious from the 
above examples that we can encode the language 

with an inheritance mechanism into the base lan- 
guage BL1. 

3.2 Self and Method Overriding 

Up to now, method overriding has been forbidden, 

that is, we could not redefine a method of its su- 
perclass. In order to allow method overriding, we 

must refine the encoding of a pseudo variable self. 
In usual object-oriented languages like Smalltalk, 
variable self in the class definition does not nec- 
essarily refer to the identifier (which is a record of 
message predicates in HACL) of that class itself, 
but may refer to an identifier of its subclass that 
has not yet been defined. Therefore, we need to 
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Figure 4: Conceptual structure of a cpoint object 

distinguish self and the identifier of the defined 

class. We use a variable methods for the latter. 

The idea of the refined encoding is to pass 
both methods and self to a class as a parameter. 
methods is used to refer to the method bodies of 
that class, while self is used in the method bodies 
to refer to the called object, which may be a sub- 
class of the class currently executing the method. 
The encoding in the previous subsection is refined 
as follows: 

proc point (x,y) methods:<set:‘a, 
getx:‘b, gety:‘c) self= 

methods.set (neux, neuy) => 
(point (newx, newy) methods self) 

& methods.getx reply => 
(reply x I point (x, y) methods self) 

& methods.gety reply => 
(reply y I point (x, y) methods self); 

VaJ point = proc: ‘iW:‘b->{set:‘a*‘b->o, getx:(‘a->o)- 
>o, gety:(‘a->o)->o}->‘c->o 

proc pointa’ methods self = 
methods.move(dx, dy) => 

$adrl.(self.getx adrl I 
adrl(x)=> $adr2.(self.gety adr2 I 

adr2(y)=>(self.set (x+dx+O.O, y+dy+O.O) 
I point2’ self))); 

val point2’ = proc: ‘a::{move:red*reaZ->o}-> 
‘b::{getx:(reaI->o)-> 0, gety:(reaJ->o)->o, set:real*real- 
>o}->o 

proc point2 point methods:<set:‘a, 
getx:‘b, gety:‘c, move:‘d) self = 

let super= 
coerce(set, getx, gety, move) 

{set, getx, gety)(methods) 
in (point super self I pointa’ methods self); 

val point2 = proc: ({getxz’a gety:‘b, set:‘c}-> 
‘d::{getx:(re&>o)->o, gety:(reaJ->o)->o, set:reaJ*reaL 
>o} ->o)->{move:real*resJ->o, getxz’a, gety:‘b, set:‘c}- 
>‘d->o 

In the above, an additional argument self is at- 
tached to each process. Since point can handle 
only messages set, getx and gety, methods is co- 
erced when applied to point. An instance is cre- 
ated by binding both methods and self to a new 
identifier: 

proc new-point2 (x, y) self = 
point2 (point (x, y>> self self; 

val new-point2 = proc: real*real -> {set:real*red->o, 
getx:(real->o)->o, gety:(real->o)->o, move:reaf*real- 
>o}->o 

$id.(new_point2 (1.0, 2.0) id I . ..). 

Now, let us consider method overriding. We de- 
fine a new class point3 by redefining methods getx 
and gety of point2: 

(defclass (point3 :inherit point2) 
[getxkeply) => (send-to super getykeply)) 

(become (point3) )I 
[gety(reply) => (send-to super getxkeply)) 

(become (point3))l) 
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A variable super is used to invoke a method of the 
superclass. This is encoded in HACL as follows: 

proc point3’ methods super = 
methods.getx reply => 

(super.gety reply I point3’ methods super) 
& methods.gety reply => 

(super.getx reply I point3’ methods super); 

val point3’ = proc: ‘a::{getx:‘b->o, getyr’c->o}-> 
‘d::{getx:‘c->o, gety:‘b->o}->o 

proc point3 p2 methods:Cset:‘a, getx:‘b, 
gety:‘c, move:‘d) self = 

$super-getx.$super-gety.( 
let super=(getx=sup_getx,gety=sup_gety3 

\/coerce{set, getx, gety, move3 
(set, move3Cmethods) 

in (point3’ methods super 
I p2 super self) end; 

val point3 = proc: ((set:‘a, getx:‘b->o, gety:‘c- 
>o, move:‘d}->‘e->o) ->{set:‘a, getxz’c->o, getyz’b->o, 
move:‘d}-> ‘e->o 

proc new-point3 (x, y> self = 
point3 (point2 (point (x, y))) self self; 

val new-point3 = proc: reaf*real-> {set:real*real->o, 
getx:(real->o)->o, gety:(red->o)->o, move:reaJ*rea.l- 

>o}->o 

An operator \/ represents a record concatenation. 
Since methods getx and gety are overridden, dif- 
ferent message predicates are created and assigned 
to fields getx and gety of a record super. If a 

message move is sent to an instance of point3 for 

example, a method dispatch goes as follows: First, 

the method defined in point2 is invoked. Then, 
during an execution of the method body, a mes- 
sage getx is sent to self. Since self refers to 
an instance of point3, the method getx defined in 

point3 is invoked, which in turn causes the method 

gety defined in point to be invoked. 

4 Implementation 

This section discusses an implementation tech- 

nique for the language derived from type in- 

ference. We concentrate on an implementation 

of message passing mechanism. In particular, 
we can make a method dispatch table so that 
method lookup is performed in a constant time. 

ABCL/onAPlOOO[l4][19] incorporated a similar 

mechanism and achieved high-performance mes- 

sage passing on multicomputers. Although our lan- 
guage is more complicated because of inheritance 

and method overriding, our type system allows a 
satisfactorily efficient implementation of message 

passing. 

First, a message predicate m can be represented 
as a pointer to the message handler specialized for 

m. Then, sending a message m(~r,. . . ,v,) just 

causes the corresponding message handler to be 
invoked with arguments ~1,. . . ,v,. (Notice that 
within the same processor node, this is almost the 
same as a local function invocation.) In the previ- 

ous sections, an identifier of a process was encoded 

in the base language as a record of message pred- 

icates. It is, therefore, implemented as a reference 

to a method dispatch table, that is, a record of 
message handlers. By type inference, each record 
is compiled to just an array. 

Implementation of message passing is slightly 
different depending on whether we allow inheri- 
tance or not. Without inheritance, the sender of 
a message first computes a reference to the mes- 

sage handler by using a reference to the receiver’s 

method dispatch table and the index for the mes- 
sage handler to be invoked, and then sends it with 

the message arguments. The index for the message 

handler can be directly computed using Ohori’s 

compilation method for a record calcnlus[lO]. 

In order to incorporate inheritance, we must effi- 
ciently implement record coercion operations. We 
refine a method dispatch table as a pair consisting 
of an array of message handlers and an indirect in- 
dex table to access it. Then, a coercion operator 

has only to create a new index table. 

Figure 5 illustrates how method dispatch tables 
are created. The figure shows what happens when 
we create a point3 process by 

$self. (new-point3 (1.0, 2.0) self I . . .> . 

Creation of method dispatch tables goes as follows: 
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(b) create super in point3 
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(c) insta.ll message handlers for getx and gety in point3’ 

(e) install a message handler for move in point2’ 
point3: :self 

set I 

(f) install message handlers for set, getx, and gety in point 

point.3 :self 
set I 

point3: :super 
point2::super /I /’ 

set 
i3et.x 
aety 

move 

Figure 5: Creation of method dispatch table 
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1. Initially, self is created by the operator $ (see 
Figure 5(a)). From the type of new-point3, 
we know that self is a record consisting of 

four fields set, getx, gety and move. There- 
fore, an array of size 4 is created. At this mo- 

ment, since a message handler for each mes- 
sage is not ready, a procedure for enqueueing 

incoming messages is placed in each entry of 
the method lookup table. 

2. point3 is invoked and super is created by ap- 

plying coercion and record concatenation. The 
result is shown in Figure 5(b). 

3. point3 ’ is invoked, and message handlers for 

getx and gety are placed (Figure 5(c)). 

4. point2 is invoked, and super is created by 
coercion. Because the coerced record can be 

shared with super in point3, self points to 
the same structure as super in point3 points 

(Figure 5(d)). 

5. point2’ is invoked and a message handler 

move is placed (Figure 5(e)). 

6. point is invoked, and message handlers set, 

getx and gety are placed (Figure 5(f)). 

Thus, an implementation of method lookup tables 
for a concurrent object-oriented language is not a 

hacking task at all, but naturally derived from en- 

coding of the language and type inference in HACL 

extended with polymorphic record calculu~.~ 

5 Discussions 

As far as the authors know, this is the first at- 
tempt to obtain a type system for concurrent 
object-oriented programming by directly extend- 
ing typed concurrent calculus[9][11][16]. Most 
closely related is Vasconcelos’ work on a calcu- 
lus of objects[l7][15]. Although his type system 

‘For the sake of simplicity, we illustrated a naive scheme 
for the creation of method dispatch tables. The defect of this 
scheme is that a method dispatch table is created for each 
object, not for class. Actually, method dispatch tables can 
be shared among objects of the same class, using a similar 
scheme incorporated in ABCL/onAP1000[14]. 

seems to be inspired by work on typed concurrent 
calculus[l6], it stands alone and is not a direct ex- 
tension of concurrent calculus. On the other hand, 
our type system is directly obtained by encoding 
a concurrent object-oriented language in a concur- 

rent calculus extended with record operations. One 
of major advantages of our approach is its flexibil- 

ity. We first gave a type system for a concurrent 
object-oriented language without inheritance, and 

later refined it to incorporate inheritance by just 

refining the translation; we need not modify the ba- 

sic type system of concurrent calculus. This is not 

the case in Vasconcelos’ system: In order to al- 
low inheritance, his system seems to require major 
changes in the type system. Our approach can, 
therefore, account for a much wider range of mech- 
anisms of concurrent object-oriented programming 
with less efforts. In fact, we can easily embed 

Vasconcelos’ calculus of objects into Higher-Order 

ACL (see Appendix A). 

The reason we chose Ohori’s record calculus in 

extending Higher-Order ACL is that it was sim- 
ple and powerful enough to capture mechanisms 

treated in this paper. Moreover, Ohori’s record 
calculus is shown to be efficiently implemented[lO]. 
On the other hand, although Higher-Order ACL 
extended with recent sophisticated type systems for 
object-oriented languages[l3] is powerful and might 

be necessary to capture more complex mechanisms 

for concurrent object-oriented programming, there 

seems no established way for implementing it re- 

ally efficiently. Pierce and Turner’s recent work 
on PICT[12], m h w ‘c is a concurrent language based 

on Milner’s A-calculus, is going into this direction. 
At least, it does not provides much insight on im- 
plementation techniques for the existing concur- 
rent object-oriented languages. Our research aim is 

not only to design ‘yet another concurrent object- 
oriented language’ but to investigate foundations 

of language design, types, program analysis, and 
implementation techniques for concurrent object- 

oriented languages, through HACL. 

Some work has been done to support object- 

oriented programming style based on traditional 

concurrent logic programming[6]. The purpose of 
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this paper is not only to provide our specific lan- 

guage HACL with object-oriented programming fa- 

cilities, but also to give foundations on type sys- 

tems and implementation techniques for a wide 
range of (non-logical) concurrent object-oriented 

programming languages. Traditional concurrent 
logic programming does not seem to meet this re- 
quirement, because of several gaps, for example, 
a gap between stream-based communication and 
address-oriented communication; in order to realize 

many-to-one communication as in Actors, explicit 
stream merge operations are required. 

Our ACL[8] [7] is initially inspired by Andreoli 
and Pares&i’s L0[2][3], and developed as a nat- 
ural framework to capture actor-based concurrent 
object-oriented programming. The encoding of in- 

heritance in the simpler case of without method 

overriding is essentially the same as that proposed 

in [2] (although they might look quite different from 

each other). However, the introduction of higher- 
order processes together with the name creation 

operator enhanced the encapsulation mechanism, 
and enabled method overriding. 

6 Conclusion 

This paper developed a type system for concur- 

rent object-oriented programming from the type 

system of Higher-Order ACL, in a similar man- 

ner to the development of typed object-oriented 

programming from X-calculus. We first gave the 
translation of a simple concurrent object-oriented 
language into Higher-Order ACL, and then refined 
it step by step to capture more complex mecha- 
nisms like inheritance and self and super pseudo 
variables. An advantage of such an approach is 
that we can capture a wide range of mechanisms 

for concurrent object-oriented programming with- 
out modifying the underlying concurrent calculus 

and its type system. We have also shown that type 
inference naturally realizes an efficient implemen- 

tation for message passing mechanisms. The type 
inference system and interpreter for Higher-Order 

ACL extended with polymorphic record calculus 

have been already implemented6. Its compiler is 

currently under development. As for the design of 

concurrent object-oriented languages, much work is 

left to be done. For example, it is possible to sepa- 
rate a specification and an implementation of each 

class by utilizing higher-order processes of HACL. 
Future work also includes the implementation of 
a new high-performance concurrent object-oriented 
language on massively parallel processors, based on 
this work. 
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Appendix A Encoding of Vas- 

concelos’ calculus of objects 

into Higher-Order ACL 

This section gives an encoding of Vasconcelos’ calculus 
of objects[l7] into the Higher-Order ACL extended with 
record calculus. 

A set of processes, ranged over by P, in Vasconcelos’ 
calculus is given as follows: 

P ::= a al(g) (sends a message l(Z) to a) 
] aD[li(z~).Pi&~~~&l,,(z~).P,,] (receives a message 

li(vf:) and then becomes P;[,-i/,-i]) 
] 9, P2 (parallel composition) 
] (vx)P (scope restriction) 
I!: ((rep??) 

inac ion 

where v’ stands for a sequence vi,. . . , v,. 
Vasconcelos’ calculus can be obviously encoded as fol- 

lows: 

F(a a l(G)) = a.l(g) 
.F(a P [ll(~i).P~&...&ln(~~).Pn]) = 

a.li(zi)=> F(Pl)& .-- & a.ln(x>) => F(P,) 
wherea:{li:ri,...,l,:r,} 

for some ri,...,rn...(*) 

Vl,P2) = F’(S) I W2) 
F((vx)P) = $x.3(P) 
F(!P) = ?F(P) 
F(0) = - 

where the condition (*) is attached to the translated 
expression as a partial specification of the type of a as 
follows: 

(a:Cli:‘al,..., ln:‘an)).li x => Pi 
& . . . 
& a.ln x => Pn 

It is trivial that P is well-typed in Vasconcelos’ calculus 
if and only if F(P) is well typed in the extended Higher- 
Order ACL. Thus, Vasconcelos’ calculus of objects can 
be considered an instance of the extended Higher-Order 
ACL. 
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