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Abstract 

Our work is along the line of the work of B. Smith and P. Maes. 
We first discuss our notion of reflection in object-oriented con- 
current computation and then present a reflective object-oriented 
concurrent language ABCL/R.. We give several illustrative exam- 
ples of reflective programming such as (1) dynamic concurrent 
acquisition of “methods” from other objects, (2) monitoring the 
behavior of concurrently running objects, and (3) augmentation 
of the time warp mechanism to a concurrent system. Also the 
definition of a meta-circular interpreter of this language is given 
as the definition of a met&object. The language ABCL/R has 
been implemented. All .the examples given in this paper are run- 
ning on our ABCL /R system. 

1 Introduction 

Rejfection is the process of reasoning about and acting upon 
itselfll0][7]. A reflective computational system is a computa- 
tional system which exhibits reflective behavior. In a conven- 
tional system, computation is performed on data that represent 
(or model) entities which are external to the computational sys- 
tem. In contrast, a reflective computational system must contain 
some data that represent (or model) the structural and compu- 
tational aspects of the system itself. And such data must be ma 
nipulable within the system itself, and more importantly, changes 
made to such data must be causally reflected/connected to the 
actual computation being performed. 

B. Smith[ll] and other researchers(e.g.,[3][13][1]) investigated 
the power of computational reflection and emphasized its useful- 
ness. In particular, P. Maes has proposed a reflective system in 
the framework of object-oriented computing[S] and made good 
contributions to the fields of object-oriented programming and 
reflective computation. Her work, however, confined itself to se- 
quential systems, and did not consider systems where more than 
one object can be active simultaneously. 

Permission to copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage, 

the ACM copyright notice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the Association for 

Computing Machinery. To copy otherwise, or to republish, requires a fee and/ 
or specific permission. 

o 1988 ACM O-8979 l-284-5/88/0009/0306 $1.50 

Our present ‘work proposes a reflective system in the frame- 
work of object-oriented concurrent computing. This is one of our 
research results in the paradigm of “Object-Oriented Concurrent 
Programming”[16][5]. We expect that reflective facilities will be- 
come increasingly more important in concurrent computational 
systems such as (distributed) operating systems, realtime sys- 
tems, distributed simulation systems, distributed problem solv- 
ing systems, robot planning/controlling, etc. For reflective capa- 
bilities are indispensable when one tries to make the behavior of 
these systems more powerful and intelligent as well as control- 
lable by the user. 

In this paper, we first discuss our notion of reflection in 
object-oriented concurrent computing and then present a reilec- 
tive object-oriented concurrent language ABCL/R. We give sev- 
eral illustrative examples of reflective programming such as 

s dynamic concurrent acquisition of “methods” from other 
objects, 

s monitoring the behavior of concurrently running objects, 
and 

l augmentation of the time warp mechanism[G] to a concur- 
rent system. 

Also the definition of a meta-circular interpreter of this lan- 
guage is given as the definition of a meta-object. This language 
ABCL/R is an extension of our previously proposed language 
ABCL/1[14] and has been implemented. All the examples given 
in this paper are running on our ABCL/R system. 

The summary of our present work is given in the final section 
of this paper. 

2 Object-Oriented Concurrent Computa- 
tion Model 

In order to present the framework of our work, we first introduce 
an object-oriented concurrent computation model. This model is 
basically a submodel of our existing object-oriented concurrent 
computation model ABCM/1[14]. 

2.1 Overview of the Colnputation Model 

In our computation model, a system is a collection of o6jects - 
autonomous information processing agents. Each object has an 
individual serial computation power, and may have local persis- 
tent memory called a state memory. Functions and properties of 
a conceptual/physical entity in the problem domain are modeled 
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and represented as such an object. In order to use the functions 
and properties, a request message is sent to the object. When 
m object receives a message, if the message is acceptable to the 
object, it starts a sequence of actions which are requested by the 
message. 

Actions performed by an object are combinations of inquir- 
ing/updating the object’s local state memory, sending messages 
to other objects (including itself), creating new objects, and other 
symbolic/numerical operations. Basically, sequences of actions 
by objects in the system proceed asynchronously. This means 
that many objects perform their computation in parallel. In our 
model, the unit of concurrency is an object. Communication 
among objects and the synchronizatian of their computation are 

done only by message passing. Any two objects don’t share any 
data other than the names (addresses, or pointers) of other ob- 
jects. The state memory of each object cannot be accessed di- 
rectly by other objects, and only indirect accesses through mes- 
sages passing are permitted. 

Each object is always in one of the two modes: dormant and 
active. The mode of an object is dormant at creation time. It 
becomes active when it accepts a message and starts executing 
a sequence of actions for the message. When the execution com- 
pletes, and if no subsequent message has arrived, the object be- 
comes dormant. 

From the programming point of view, an object is the basic 
building block of program. A program is written as the behavior 
descriptions of objects 1 what actions to perform when received 
messages. The description of the behavior of an object is a col- 
lection of scripts (often called methods in other object-oriented 
languages), which consists of a message pattern and a sequence 
of actions. A script prescribes the sequence of actions by the ob- 
ject invoked when received a message that matches the message 
pattern of the script. 

2.2 Structure of an Object 

Since each object has a single serial processing power, it executes 
a script one at a time. Although messages can be received by an 
object which is in active mode, the execution of the scripts for the 
messages must be postponed until the current script execution 
completes. Therefore each object has a message queue to store 
incoming messages. (This message queue can be viewed as a part 
of the receiver memory state.) 

The structure of an object consists of a serial evaluator, a 
set of scripts, a state memory, and a message queue. This struc- 
ture itself can be regarded a a serial computational system. This 
structure of an object is a basic one. As will be seen in the subse- 
quent sections, we can build different structures for objects, and 
such structures can dynamically be changed by using reflective 
language facilities. 

2.3 Message Transmission 

All message transmission is asynchronous. There is no need for 
any handshaking to send/receive messages. This means that one 
can send messages whenever it wants, regardless of the current 
condition (mode) of the target object. When a message is sent to 
an object, it will be treated by the receiver object in the following 
way. 

1. Arrival: First, the message arrives at the receiver object. 
This event is called the and&of the messa.ge. The receiver starts 
processiilg of the aessage. It is assumed that once a message is 
transmitted, it is guaranteed to-arrive at the receiver (as long as 

the receiver exists). 

2. Receiuing: Next, the receiver object enqueues the arrived 
message in its message queue - this is the event of receiving the 
message. If the receiver is in dormant mode, it starts trying to 
accept the messages in the queue (see next). 

3. Acceptance: If the receiver is in dormant mode, it dequeues 
the first message in the queue, and checks to see whether the 
receiver can process it. To be more precise, the receiver tries to 
find an appropriate script for the message by pattern-matching. 
Acceptance of the message is the event in which the appropri- 
ate.script for the message is found. If the receiver accepts the 
message, it starts executing the script for the message. Other- 
wise, the message is simply ignored (In the language ABCL/R, 
a warning message is issued). 

4. End of Processing a Message: When the evaluation finishes, 
the receiver checks the queue to process subsequent messages. If 
the queue is empty, the receiver becomes dormant. 

2.4 Types of Message Trausmissions 

Our model has the following two types of message transmission 
(ABCM/l also has three types including the future type). 

l Past type: Suppose an object x sends a message to y in the 
course of computation. Then GZ does not wait for the message to 
be received by y, and continues the rest of computation imme- 
diately. Using the notation of our reilective language ABCL/R, 
this type of message transmission is written as: 

CT <= Ml or CT <= M Q RI 

where T, M, and R are the target object, message, and reply des- 
tination, respectively. The reply destination is an object to which 
the receiver can send a reply message, If the reply destination is 
not specified, the receiver regards NIL as the reply destination. 
(Sending messages to NIL causes no &ect.) 

l Now type: When an object x sends a message M to T, z 
waits for the message to be received by y and further waits for a 
reply from T to come, blocking the current script execution. A 
now type message transmission is written in ABCL/R as: 

CT <== Ml 

A now type message transmission looks similar to an ordinary 
remote procedure call, but it is different. In the case of now type, 
after sending the reply to z, T may continue its computation, and 
furthermore, T can ask another object y to send a reply to 2. 

3 Reflection in Our Model 

To realize reflection in a system based on our computation model, 
the causally connected self representation[l0][7] of the system 
must exist within the system. Since reflective computation de- 
pends on the way in which self representation is described, choos- 
ing the formalism of seif representation is the primary concern of 
building a reflective system. 

There are at least two approaches to build the self representa- 
tion of an object-oriented concurrent computational system. One 
is to aSsume the existence of a datum which is the causally con- 
nected self representation of the whole system, and the other is 
to introduce the self representation of each object in the system 
individually- Our approach is the latter one, The remarks on the 
former approach will be found in the cop&ding section. 
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As explained in the previous section, we can regard an object 
a~ a serial computational system. Thus we can build a represen- 
tation of an object as a representation of a serial computational 
system. The representation of an object contain the representa- 
tions of the message queue, the state memory, the set of scripts 
and the evaluator of the object. Besides this structural aspect, 
the computational aspect of the object - arrival, receiving, and 
acceptance of a message and the execution of a scripts - must 
be represented. Our approach is to represent each object as an 
o6ject called a meta-object. 

For each object 2, there exists a meta-object tz, which rep- 
resents both the structural and computational aspects of Z. tz 
contains the meta-level informaticn ?.bout Z. Meta-object 13: rep- 
resents the object z in a similar way that usual objects represent 
entities in the problem domain. z is called the denototioq of fz. 
The structure of z is represented as the data in the state mem- 
ory of Tz, and the computational aspects of z is described as the 
scripts (methods) of 12. The following points should be noted. 

l An object z and the information about z in tz are causally 
connected. Thus the data stored in tz always represent the cur- 
rent status of 2, and operations on the data cause the isomorphic 
effect on 2. 

a tz is an object. So ftz also exists. This means that op- 
erations on 12 are allowed. Thus, there is an infinite tower of 
meta-objects 12, m, mz, . . . for each object I. In the actual im- 
plementation, meta-objects are created when their access takes 
place (by lazy creation). 

l If one knows the name of z, it can always get the name of 
Tz, and vice versa. 

l The correspondence between objects and their meta-objects 
is one to one. That is, for each object 2, y, 5 E Y ++ 1~ EtY 

holds (Z is the identity relation). 

The concept of meta-objects in our model is similar to that of 
meta-objects in 3-KRS[i’][8]. In 3-KRS, structural/computatio- 
nal aspects of an object is also represented in its meta-object. 
But the way of modeling an object as its meta-object is different, 
because an object is a unit of concurrency in our computation 
model. 

In our model, the causal connection link between an object 
z and its meta-object tz is implicit - the changes in 2 cause 
the isomorphic changes to the data in tz not by the message 
transmission from z to tz (and vice versa). The reason is that 
the message transmission takes time, which requires the synchro- 
nization of z nnd 1~. As we will see in the Iater section, 1% is used 
as the “implementation” of I. 

Reflective computation in an object z is performed by z send- 
ing messages to its me&object tz. This enables z to inquire/mo- 
dify itself through Tz, because the structural/computational as- 
pects of x is represented in 1~ in a causally connected way. Note 
that appropriate scripts for operations on z must be prepared in 
tz. If 1~ doesn’t have such scripts, it is possible to modify 12 
using MZ to acquire such scripts. Such examples are found in 
Section 5. 

Of course a meta-object can receive messages from other ob- 
jects (other than its denotation). In a system that consists of a 
colIection of many objects, we can regard the meta-object of an 
object as the partial representation of the system. Thus the re- 
flective computation in the system is realized by sending messages 
to each other’s meta-object. Note that such message transmis- 
sions may take place concurrently in our computation model. 

4 Meta-objects and the Reflective Lan- 
guage ABCL/R 

The notion of meta-objectsis the key concept for the reflection in 
our computation model. ABCL/R - the description language 
of our model - is an object-oriented concurrent language with 
reflective architecture based on the notion of meta-objects. The 
sYnt= and basic features of the language are adopted from the 
language ABCL/1[14][15]. In th’ IS section, we describe the defini- 
tion of meta-object in details in terms of the language ABCL/R. 

4.1 Object Definition in ABCL/R 

In ABCL/R, an object definition is written in the following form. 
The value of the form is a newly created object the name of which 
is object-name. 

[object objecl-name 
(state variable-declaralion.. .) 
(script 

(=> message-paficm Q reply-dcsiinafion-variable 
from sender-variable 

(temporary variable-declaration.. .) 
behavior description) 

. . . . 13 

object-name is optional in the above definition. (state . . . > 
is the local state variable declaration. variable-de&n&on is ei- 
ther [variable := initial-value] or variable which is equivalent 
to [variable := nil]. [vuriuble := expression] is the expres- 
sion for assignment of the value of ezpression to variable. Each 
(=> message-pattern . . . > is the description of a script. The ob- 
ject defined in the above form accepts a message which matches 
a message-pattern. The reply destination and the sender ob- 
ject of an incoming message are bound to the variables reply- 
destination-variable and sender-variable, respectively. These two 
variables are optional. behavior description in each script descrip- 
tion is a sequence of actions, which are described as expressions of 
either object creation, message transmission, inquiring/modify- 
ing state memory (through state variables), or some other sym- 
bolic/numerical calculation (as Lisp expressions). (temporary 
. . . > is the declaration of temporary variables used in the script. 

4.2 Definition of a Meta-Object in ABCL/R 

As explained in Section 3, a meta-object TZ is an object which 
models the structural and computational aspects of an object x, 
and z is called the denotation of lx. 

4.2.1 Modeling the Structure of an Object 

Since an object 2 in our computation model consists of a set of 
scripts, a state memory, a local serial evaluator, and a message 
queue, the structural aspect of z is represented as the values of 
tz’s state variables scsiptset, state, evaluator, and queue, 
respectively. Using the ABCL/R notation, this structural aspect 
is described as the state-part of the definition of the meta-object 
TZ given in Figure 1. 

Each element in the value of scriptset is a script (repre- 
sented in a certain data structure, say, character strings), and 
the values of state and evaluator are objects which represent 
the state memory and the evaluator. The value of mode indi- 
cates the current mode of the denotation object, which is either 
:dormant or : active. 

308 OOPSLA ‘88 Proceedings September 25-30, 1988 



[object ; a meta-object 
(state [queue := a message queue1 

[state := a state object] 
[scripts& : = a list of scripts1 
[evaluator := an eoaluator obiecfl 
[mode := either :dormant or :activel) 

(script 
(=> [:message Message Reply-Dest Sender] ; messoge arrival 6 receiving 

[queue := (enqueue queue [Message Reply-Dest Sender])] 
(if (eq mode :dormant) then 

[mode := * : active] 
[Me <= :beginl)) 

(=> :begin ; acceptance d script ezecution 
(t.tForary mrs scr newenv [object := Me]> 

:= (first queue)] 
[queue := (dequeue queue)] 
[scr := (find-script (first MS) scriptset)] 
(if scr then ; acceptance 

[newenv := [env-gen <== [:new (script-alist mrs scr) state111 
;; pattern variables, reply d sender variables have been bound in newenv 
[evaluator <= [:do-prg (scr$body scr) newenv [den ~43 0 

[cant ignore ; Ihe value of the evalua2ion is ignored 
[object <= :end]ll 

else ; cannot accept 
:;a; “Cannot handle the message ‘A” (first MS)) 

= :end])) 
(=> :end ; :ermination of the execution 

(if (not (empty? queue)) then 
[Me <T : beginI 

else 
[mode := : dormant] ) ) 

-a The folIowing scripts are crumples of special scripts for meta-Ieuel operations 
i’=> :queue ; inquiring about the message queue 

!queue) ; returns the ualue of queue 
(=> C:script Message] ; inquiring about the script whose pattern matches Message 

! (f ind-script Message scriptset)) ; returns the found script 
. ..)I 

Figure 1: Definition of A Meta-Object 

4.2.2 Modeling the Behavior of an Object 

Besides the structural aspect, the meta-object tz models the com- 
putational aspect of its denotation - arrival, receiving, and ac: 
ceptance of messages, and execution of scripts. This aspect is 
described in the ABCL/R notation as the script-part of the 
definition in Figure 1. 

The following is a more precise description of what was ex- 
plained,in Section 2.3 in terms of the ABCL/R notation. Suppose 
a message M is sent to an object z. 

1. Arrival of a Message: The arrival of a message M at the 
object z is represented by acceptance of a message C:message 
M R Sl by F. R is the reply destination of M, and S is the 
sender object of M. 

2. Receiving a Message (See the script for C:message . . .I): 
When Tz accepts the message C:message M R SI, it enqueues 
the triple CM R Sl to the message queue - the value of the 
variable queue. This represents the situation where the object z 
receives the message M. If z is in dormant mode - the value of 
the state variablemode in t3c is : dormant, then tz sends a message 
: begin to itself. 

3. Acceptance of u Message (See the script for :begin): tz 
dequeues one triple CM R Sl from the queue. If there is an 
appropriate script d for M in scriptset (acceptance), 1~ exe- 
cutes the body of u (see next). If there is no script for M, it 

just ignores this and sends : end to itself after issuing a warning 
message. 

4. Ezecution of (1 Script: First, tz creates a new environment 
- which binds the contents of M to the pattern variables of U, 
R to the reply variable of u, and S to the sender variable of u -, 
then evaluates the body of.0 under the new environment using 
the evaluator object. 

5. After a Script Ezecution (See the script for :end): When 
the execution of the script completes, a message :end is sent to 
t.z. Then tz checks the queue, and starts processing of subsequent 
messages if the queue is not empty (by sending a message :begin 
to itself). 

Let us look at the script execution more closely. A new envi- 
ronment is created by the environment generator object env-gen 
from the a-list of pattern variables/vaIues and the state object. 
The evaluator object evaluator is activated by receiving a mes- 
sage [:do Ezp Enu Me-ptr] , where Ezp is the expression to be 
evaluated, Enu is the environment object, and Me-ptr is the ob- 
ject in which the evaluation takes place. The following expression 

in Figure 1 is executed at the end of the execution of the script 
for : begin. 

[evaluator <= t:do-prg (scrtbcdy ser.) nswanv [den WI 
@ [coat ignore [object <= :end]II 
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Message [ :do-prg . . .1 is used instead of [: do . . .] , and 
this is used to evaluate the list of expressions (the value of (sc~$- 
body scr>) and the result is the value of the last expression of 
the list (like progn of Lisp). The value of the variable Me is 
the meta-object itself (Such variables are often named “self” in 
other languages), and [den Mel (this form is explained in a later 
section) is the denotation of the meta-object. 

Since a past type message transmission is used, the execution 
of the script for :begin immediately completes after the execu- 
tion of the above expression, and the mode of the meta-object 
becomes dormant. The result of the evaluation is passed to the 
reply destination of the message, which is expressed as [cant 
. . . 1. Note that the form 

Ccont message-patfern script-description] 

is syntactically equivalent to the following form. 

[object 
(script (=> message-pattern script-description))] 

The notation [cant . . .] is intended to be used as the continu- 
ation of the evaluation which accepts the evaluation result and 
does the rest of the task. The result of the script evaluation is 
bound to a variable ignore and just ignored (the variable ignore 
is not used in the body), and the rest of the task is to send a 
message :end to the meta-object which is bound to a variable 
object. 

4.2.3 lnherent Concurrency 

Suppose the meta-object 1% has accepted a message :begin and 
the evaluation of the corresponding script has been started by 
evaluat )r. Since this evaluation is triggered by a past type 
message transmission, now tz changes to dormant mode and stays 
in dormant mode until a message :end is sent to 1% from the 
continuation object ( [cant . . .I) of the evaluator. (Note that 
if the evaluator object is executing a script, the mode of z can 
be active even when tz is in dormant mode.) Thus tz can accept 
the next C:message . . .] without waiting for the completion of 
the current script execution. 

This corresponds to the fact that z can receive messages while 
z is in active mode (asynchrony described in 2.3). The fact is 
called the inherent concurrency of the object Z. 

To model the behavior of an object correctly, it must be guar- 
anteed that the execution of the object’s scripts takes place one 
at a time. We can see that this is guaranteed by the meta-object 
definition: once a message :begin is sent to the meta-object tz, 
the next : begin message will not be sent until a message : end is 
sent to 7~. (The value of variable mode becomes :dormant only 
after the script for :end has been executed.) 

The definition in Figure 1 also says that messages arriving at 
the denotation z are simply enqueued when z is in active mode, 
and the search of the scriptset by tz is postponed until the cur- 
rent script execution completes. For more detailed explanation, 
see [12]. 

4.3 Meta Circularity of Objects 

In ABCL/R, to satisfy the requirement of the causal connec- 
tion between an object z and its meta-object tz, Tz is used as 
the actual implementation of 5. That is, the contents of the state 
variables of tz - a message queue, a set of scripts, a state object, 
and an evaluator object of z - are used for the actual compu- 
tation of I. The arrival, receiving and acceptance of messages 

are performed as we have seen before. Moreover, the evaluation 
of scripts is carried out by the evaluator object, which is also an 
ordinary object of ABCL/R. Thus every object of ABCL/R is 
implemented in a meta-circular way as its meta-object. 

The definition of the meta-object in Figure 1 is used in de- 
fault. In ABCL/R, we can specify other meta-object instead of 
this in the object definition. An example of a non-default meta- 
object is described in 6.4. 

A message transmission to an object z is defined in terms of 
its meta-object tz. The form 

cz <= m 6 rl 

in the script of an object y, which is the sender of the message 
m, will be reduced to (interpreted as) 

CTz <= C:message m r yll 

when the above form is evaluated by the evaluator of y. In the 
definition of the evaluator object, the part for the evaluation of a 
message transmission expression is actually defined as above. (Of 
course, it is possible to access the meta-object of the evaluator 
object.) 

Because a meta-object tz is also an object, there exists an 
object Qz which is a meta-object of tz. This implies that tz 
is implemented in flz in the same way as z is implemented in 
tz. This situation induces an infinite tower of meta-objects for 
each objects, but in the actual implementation, we can avoid the 
infinite tower by the lazy creation of meta-objects. 

5 Reflective Programming Facilities in 
ABCL/R 

This section explains language facilities for reflection in ABCL/R 
using simple examples. 

5.1 Sending Messages to Meta-Objects 

In ABCL/R, tz can be accessed as the value of the special form 
[meta z], and the value of [den tz] is I. Thus, for each ob- 
ject z, beta [den tzll z tz and [den beta ~11 E z al- 
ways holds. Access to tz enables the inquiry and/or modification 
of components of z if tz has scripts appropriate for those opera- 
tions (e.g., scripts for :queue and C:script Message1 in Figure 

1). 
Let us look at a small program example in which meta-objects 

are accessed. Suppose that there is a group of objects consisting 
of the manager object M and some worker objects WI, Wz,. - . . 
Each Wi can receive a message of pattern [: job job-type :param 
parameter], which is the request for a job of job-type with pa- 
rameter (Figure 2). 

: queue [:add-script . ..I 

[:job . ..I 

Figure 2: Manager and Workers 
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M constantly monitors each worker Wi, and if M notices 
that IV; receives requests of a particular job type (e.g., job 1) 
very frequently, M gives Wi a new script for [: job 1 :param 
parameter] which is an optimized script for the job type 1. This 
is realized by accessing fWi from M. For example, to know the 
messages received by Wi, A4 can simply send a message to TWi 
as 

[Cmeta Wil <== : qUeU.31 

and also to add the new script for the job type 1, M can send a 
message to TWi as 

[[meta WiI <== [:add-script 
‘(=> c:job 1 :pa.ram paromefer-vat] 

body of the script)11 

Note that this script extension of Wi by M can be done while 
Wi is executing its jobs - the performance of the whole system 
is gradually improved while the system is working. 

5.2 Reflective Functiolls 

Beside [met a . . . I and [den . . .I, there is another language 
feature which facilitates reflective programming in ABCL/R. That 
is reflective functions, which are similar to the reflective proce- 
dures in 3-LispIll]. In 3-Lisp, the unevaluated call-time argu- 
ments (as in fexprs of the old-fashioned Lisp), call-time envi- 
ronment, and call-time continuation can be accessed in arbitrary 
place/time using reflective procedures. The triple (arguments, 

environment, and continuation) represents the %napshot” of a 
serial computation of 3-Lisp. 

The number of the formal parameters of a reflective function 
in ABCL/R is always five, and they are bound to the list of call- 
time (unevaluated) arguments, the call-time environment (as an 
object), the call-time continuation (as an object), the caller ob- 
ject which has invoked the reflective function, and the evaluator 
object, respectively. 

As an example of the use of (user-defined) reflective functions, 
let us look at the the following definition of a reflective func- 
tion. This function is actually a definition of a now-type message 
transmission, namely, the in<ocation of this function, (now-send 
2’ M), is equivalent to the execution of [Z’ <== Ml. 

(define (nov-send args env cant caller eval) reflect 
[oval <= [:do-seq args env called 0 

Ccont CTarget Hessagsl 
[Cm&a Target] 

<= C:mrssagr Hessage cant caller3111) 

The evaluation of the form (now-send ‘2’ M) is performed 
at the level of the evaluator as in S-Lisp. Let E, be an evaluator 
object of an object z. Since E, is an object, there is a meta- 
object tEz. So tEz has an evaluator, and it is an evaluator of 
E,, namely EE%. If the above expression is invoked as the part 
of a script of z, then the formal parameters are bound to the 
following values: args=(T MI, env=environment object in JY, 
cont=continuation object, caller=%, and eval=E,. First, the 
value of the args is evaluated and the elements of the result 
is bound to Target and Message. Then a message containing 
Message, cant and caller is sent to the meta-object of Target. 
Note that the abbreviation form [cant . . .I explained in 4.2.2 
is used. 

6 Reflective Programming in ABCL/R 

In this section, we will present several characteristic examples 
of reflective programming in ABCL/R. First, we explain the ba- 
sic methods for dynamically modifying objects. Then we will 
show that the dynamic acquisition (or dynamic “inheritance”) 
of scripts from other objects are concisely programmed at the 
user-level by using the means of dynamic modification. Further- 
more, we illustrate how an object can monitor other concurrently 
running object’s behavior. In this example, the meta-object of 
the meta-object of an object is involved. Also we will briefly 
explain the implementation of the timewarp mechanism[G] using 
reflective features of the language ABCL/R. The reader should 
be reininded that all the computations illustrated by these exam- 
ples are performed in the framework of concurrent computation. 

6.1 Dyllamic Modification of Objects 

AS we have seen, the internal structure of an object can be ma- 
nipulated as data in the meta-object of the object. In the default 
meta-object of an object, some special scripts which manipulate 
the internal structure of the denotation object (queue, scripts, 
state, and evaluator) are provided. For example, the following 
messages can be acceptable by the default meta-object. 

[ :add-script s] : Adds a new script s to the denotation 
object of the target meta-object. 

[:script ml : Returns a script whose message pattern 
matches m. 

[:delete-script ml : Deletes a script whose message 
pattern matches m. 

:state : Returns the object which represents the state 
memory of the denotation of tbe target object. 

Let us look at how these messages are used. First, to add a 
new script to the object z: 

CCmeta rl <== C:add-script ‘(=> [:foo xl body-of-script)11 

Now z can accept messages that match the pattern C:foo Xl. 
Before adding this script, if z already has a script whose pattern 
matches [: foo Xl, this newly added script is used instead of the 
old one. But the old script still remains and when the new one 
is deleted, the old one will be used again. 

[beta 21 <== [:script [:foo l]]] 
==c. (=> C:foo xl body-of-script) 

(The right hand side of “a” is the value of the expression on 
the left hand side.) The result is the script added before. The 
execution of the following form deletes it. 

CCmeta 21 <== C:delete-script C:foo 1111 

In addition, it is possible to access the object which represents 
the state memory by: 

CS := CCmeta 21 <== :&ate]] 

Variable s is bound to the state memory of z represented as the 
state object of I. To know the value of a variable, a message 
C:value variable-name] is used as follows. 

[s <t= C:valus ‘XII =$ 1 

In this example, the value of the state variable X of z is 1. To 
create a new variable binding in the state memory, the.foIlowing 
will do. 

Ca <== C:add-binding ‘Y 10011 
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Then r ha a new state variable Y with its value being loo. If the 
binding of Y already exists before adding, the old one is hidden 
by the new binding. The old binding remains but cannot be 
accessed until the new one is deleted. 

Using these special scripts of the default meta-objects and 
state objects, we can write the code to modify the scripts and 
the state memory of an object dynamically, and such modification 
can be done while the object being modified is running. The 
examples described below use these special scripts effectively. 

6.2 Dynamic Acquisition (Inheritance) of Scripts 

Suppose an object r has received a message M, but z does not 

have any script for M. If x has the following script: 

(=> message-paiicrn-jot-M 0 reply-var from sender-var 
(inherit msg-pattern-for-M reply-var sender-var y t)) 

x can inherit (acquire) the script for the message M from another 
object y. (What really happens when the above script is executed 
is: tz gets the script dynamically from ty and then Tz starts 
execution with the environment (state memory and evaluator) of 
x as if the script were z’s local one.) 

inherit is a reflective function whose caller object acquires 
(inherits) scripts from a specified object. The first, second, and 
third arguments of inherit are the message, reply destination, 
and the sender, respectively. The fourth argument is the source 
of inheritance, which is an object (y) from which the caller (z) 
inherits a script. If the last argument is a non-nil value, the script 
inherited is stored in the caller object as its own script. Then 
the caller object can process the subsequent messages of the same 
pattern using the newly acquired script, and now it doesn’t need 

to inherit the script for the same message pattern. The following 
is the definition of the function inherit. 

(define (inherit args env cant caller oval) reflect 
Ceval <= kdo-seq args env caller] Q 

Ccont [Hessage Reply Sender Inherit-Source Cache?] 
(let f (scr ELmeta Inhrrit-Source1 

c== C: script Hassags 1) 
(if scr than 

[oval <= [:do-prg (acrtbody scr) 
Cenv-gm 

<== [:neo (script-alist 
CHessage Reply Sender] 
scr) l nvll 

call4 
0 Ccont Value 

(if Cache? then 
[ljmta caller1 

<== [:add-script rcr]I> 

[Emeta caller1 <= :endlll 
else 

(warn "IIIEERIT: 'A -A** Heasage Inherit-Source) 
[[meta cdllerl <= :endl))ll) 

First, all the call-time arguments are evaluated by the evalu- 
ator object eval, and the values are bound to l+assage, Reply, 
Sender, Inherit-Source, and Cache?. The message [:SCriPt 
. . . ] explained above is used to try to get, from the source of 
the inheritance (the value of Inherit-Source), a script whose 
pattern matches the message (the value of Message). If found, 
the body of the script is evaluated using the environment of the 
caller object as if it were the caller’s local one. 

Let us look at a simple example of using inherit. Objects 
bird and emu are defined as follows: 

[object bird 
(script 

(=> :has-feather? !t) ; returns t 
(=> :caIl-fly? !t.) ; refwms t 
(=> Any 0 Reply from Sender 

(inherit Any Reply Sender animal nil)))] 

[object emu 
(script 

(=> :can-fly? !nil) ; reiums nil 
(f> Any P Reply from Sender 

(inherit Any Reply Sender bird nil)))] 

These objects model simple knowledge of birds and emus. Since 
an emu is a bird, the object emu inherits all the scripts from bird 
except for : can-f ly?. In the second script of emu, the single 
pattern variable Any can match any messages. When a message 
: can-f ly? is sent to emu, it answers using its local script. In the 
case of :has-feather?, emu inherits the script from bird, and 
answers using it. 

In this example, the fifth argument of inherit is nil. So emu 
can always answer correctly being consistent with the changes 
made to the definition of bird changes, because the scripts ac- 
quired are not cached in emu. 

The function inherit will be used in the examples below. It 
should be noted that the object-based inheritance scheme in (41 
and the proxy-query inheritance in [2] can easily be implemented 
using our inheritance scheme. 

6.3 Monitoring Running Objects 

The behavior of an object can be monitored from outside through 
its meta-object. For example, let us consider how an object can 
monitor what message have been received by a specified object 

while the specified object is running. Below we will show simple 
reflective programming in ABCL/R implements this monitoring 
facility. 

Let Monitor be an object which monitnls messages accepted 
by an object z. To do so, Monitor modiLes the behavior of 
z so that whenever a accepts a message m from s with reply 
destination r, z sends a message [:has-accepted m r ~1 to 
Monitor. See Figure 3. 

To start monitoring of z, the following will do: 

[Monitor <= t:monitor 211 

Now, whenever x accepts a message m with reply destination t 
from s, Monitor receives a message [:has-accepted m r 31 
To stop this monitoring: 

EHonitor *= :rtop-monitoringI 

[:add-script . ..I 

-3 
[:has-accepted m . ..I 

[:monitor x] 
:stop-monitoring 

Figure 3: The Monitor Object 
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We can start/stop monitoring whenever we want - even 
when the object being monitored, namely the subject of monitor- 
ing, is executing its scripts. The inherent concurrency explained 
in 4.2.3 guarantees that the meta-object can receive and accept 
messages when its denotation is executing the scripts. 

The definition of the monitor object Monitor is as follows: 

[object Monitor 
(state subject new-name) 
(script 

(=> 

(=> 

[:monitor An-object] 
[subject := An-object] 
hew-name : = (gensym)l 
C Cmeta 

<== 
beta subject]] 
[:add-script 

’ (=> : begin 
. . . . . . . . 
(if scr then 

C ,nev-name 
.<= [:has-accepted . mrsll 

. . . . I. .))I1 
[[[jneta beta subject]] <== :statel 

<== [:add-binding nev-name Hell) 
:stop-monitoring 
[[mata [meta subject]] 

<== [:delete-script ‘:begin]] 
C[beta beta subject]] <== :statel 

<== C:remove-binding neu-namal1))1 

When the monitor object receives the message [:monitor 
31, the monitor object modifies tz so that tz may send the mon- 
itored information, namely, a message [:has-accepted m r sl 
when z accepts a message m (from s with reply r). To do this, 
the monitor adds a nkw script for a message : begin through @J 

(see Figure 1). The new script added is almost equal to the de- 
fault one (in Figure 1) except that the monitored information 
is sent to z upon acceptance of a message. In order to refer to 
the monitor object from z, a new state variable is added in z, 
and the name of the new variable should not conflict the other 
variables. Thus (gensym) is used to creates the new variable. 

Stopping monitoring is simple. The newly added script and 
variable bindings are simply removed from z. Then the original 
script for :begin is used again. 

The above definition of Monitor specifies just the framework 
for monitoring. What to do when a message comes [:has-ac- 
cepted . ..I is not specified in its definition. By using this mon- 
itor.object, actually by acquiring (inheriting) its scripts, the fol- 
low’ing simple tracer object can be defined. 

[object tracer 
(vtate rubject nev-name) 
(script 

(=> C:monitor An-object.1 0 R irom S 
(inherit [:monitor An-object] R S Monitor t)) 

(=> :stop-monitoring a R irom S 
(inherit :stop-monitoring R S Wonitor t.1) 

(=> [:has-accepted Message Reply Sender] 
(fomat *trace-sindove “‘0-S accept8 ‘S from ‘S” 

subject Wessage Sender)))] 

The object tracer monitors an object and displays the trace 
of message acceptances on *trace-uindou*. 

0.4 ‘rime Warp Mechanism 

A simple Time Warp mechanism based on the Virtual Time 
concept[G] has been implemented using the reflective language 

constructs in ABCL/R. 
Object-oriented concurrent programming offers the natural 

framework for distributed discrete event simulation. Each entity 
in the simulation domain is modeled as an object, and events 

among entities are represented as transmission and reception of 
messages by such objects. The essential problem in this frame- 
work is how to manage the temporal consistency among events. 
Our computation model does not assume the existence of the 
global clock. 

In [9], this problem is solved with ABCL/l using a rollback 
mechanism based on the notion of the virtual time[G]. Messages 
transmitted by objects (which model or represent simulation en- 
tities) explicitly contain timestamps, and if time conflict is de- 
tected by an object (i.e., the timestamp T of a message is older 
than the time according to the local clock of the object), the ob- 
ject performs undoing of its execution (rollback) to T. That is, it 

sends anti-messages to objects to which the object has already 
sent messages since 7, and undoes the execution so far. 

As in [9], this roll back mechanism is usually explicitly spec- 
ified in the scripts of an object mingled with the description of 
simuIation activities. But this explicit specification of rolI back 
severely decreases the modularity of the simulation program and 
it is very cumbersome an error-proning because the programmer 
has to write t4e code for roll back everywhere necessary in the 
script. 

Since the rollback mechanism (of handling anti-messages and 
undo operations for state variables) is meta-level to the simula- 
tion of activities, our implementation explicitly separates the two 
levels and describes the general roll back mechanism in the defi- 
nition of the meta-object of an object doing simulation activities. 

To define an object which has the Time Warp mechanism, 
the meta-object specification facility of ABCL/R can be used as 
in the following object definition. 

[object a-simulaiion-objecf 
(meta TV-meta-gen) 
(script 

(=> message-pattern a reply from sender 
description of simulation activities) 

. . . )I 

(meta TU-meta-gen) in the above definition specifies the gen- 
erator (TW-meta-gen) of the meta-object of a-simulation-object 
explicitly. (The definition of TU-meta-gen is described in Ap- 
pendix.) When the above expression is evaluated, TW-meta-gen, 
instead of the default meta-object generator, is actually used in 
creating a new object. 

The Time Warp mechanism is fully handled by the meta- 
object. Thus the programmer of a-simulation-object does not 
need to write the code for rollback. The Time Warp mechanism 
part and the simulation part are completely separated. Of course 
it is possible to use TW-meta-gen for defining of other simulation 
objects. It can be used as library code. Introducing this type of 
modularity is an important feature of languages with reflective 
architecture. 

7 Concluding Remarks 

7.1 Summary 

We designed and implemented an object oriented concurrent lan- 
guage ABCL/R which has a reflective architecture based on the 
notion of meta-objects. The following is the summary of our 
present work. 

l Each object is represented/implemented by its me&-object. 
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The meta-object incorporates the meta-level representations of 
structural and computational aspects of the object in a meta cir- 
cular way. A meta-object is also an object of ABCL/R. This 
implies the infinite tower of meta-objects. (For its implementa- 
tion, see below.) An evaluator (interpreter) of the language is 
also an object. In our computation system, a number of such 
objects may work in parallel. 

b Reflective computation is performed by message transmis- 
sions to meba-objects and such message transmissions take place 
concurrentIy. Reflective computation can be performed in meta- 
objects of any level because of the infinite tower of meta-objects. 
Sending messages to a meta-object makes it possible to inquire 
and alter the structure and behavior of the object. It is possible 
to send messages to the meta-object of an object while the object 
is performing its jobs. Thus, a concurrent system can gradually 
modify itself by means of objects and (their) meta-objects in the 
system sending messages each other. 

l The dynamic modification of running objects in a concur- 
rent system can be described by using reflective language con- 
structs of ABCL/R. We have presented programming examples 
of dynamic (concurrent) modification such as acquiring (or in- 
heriting) scripts from other objects, and monitoring a running 
object by modifying its meta-object through the met&object of 
the meta-object. 

l Enhancement of program modularity can be attained by us- 
ing meta-objects. The example of a simple Time Warp mecha- 
nism has demonstrated this. In a simulation program using this 
mechanism, the metklevel part is separated from the object-Ievel 
part by specifying anon-default meta-object for each simulation 
object. 

7.2 Current Status of ABCL/R 

So far, we have built a prototype implementation of ABCL/R 
written in ABCL/l (written in Kyoto Common Lisp on UNIX 
and Symbolics Common Lisp on Symbolics Lisp Machines). All 
the examples described in the preceding sections are actually 
tested on this implementation. 

The primary concern of implementation is how to represent 
the infinite tower of me&objects. In our implementation, meta- 
objects are created in the lazy way. A meta-object lz is actually 
created when the access to tz takes place - when the evaluator 
first evaluates an expression Gneta 23. 

7.3 Future Work 

This work is our first attempt to build concurrent reflective sys- 
tems. As we mentioned in Section 3, there are at least two aP- 
proaches to build the causally connected self representation of an 

object-oriented concurrent system. To completely represent the 
whole concurrent system as a single datum is difficult because of 
the causal connection. To do so, we need a good formalism and 
an appropriate modeling of a concurrent system as a whole, as 
well as techniques to establish the causal connection. 

A possible approach is that the system is divided into some 
groups of objects in such a way that each group contains objects 
that are related each other. Then we describe an approximate 
(or partial) self representation of the computational aspect of 
each group and make the representation accessible from all the 
members of the group. 
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Appendix: Code for Simple Time Warp 
Mechanism 

TM-meta-gen is the generator of meta-objects in which a simple 
time warp mechanism is implemented. The structure of an object 
consists of a local clock, an input message queue, and an output 
message queue, a set of scripts, a state memory, and an evaluator. 
Thelocal clock, input/output message queues are implemented as 
values of variables lvt, input-messages and output-history, 
respectively. 

The arrival of a message is represented as the acceptance of 
the message (in meta-level) which matches [:message Message 
Reply-Dest Sender Timestamp] where the argument Timesta- 

mp is the timestamp of the message. Messages which match the 
pattern [:enti-message Message Reply-Dest Sender Times- 
tamp‘l are antimessages. 

In this program, the rollback works only for the past type 
message transmissions. The retrieval of the state value is not 
implemented. In the script description of an object whose meta- 
object is created by TM-meta-gen, timestamps must be specified 
explicitly in message sending expressions like following: 

[largei <= message Q reply-destination : time receive-time1 

receiue-time is the virtual receive time(G] - the time at which 
the target object receives the message message. 

The definition of TW-input-queue-gen, TW-output-history- 
gen, and TW-evaluator-gen is omitted. See [12] for details. 

... Meta-object gekerator wiih Time Warp mechanism ,,I 

[object TWobject-gen 
(script 

(=a C:naw State-Vars Lexical-Euv Scripts a Creation-Time] 
! [object TV-object ; scope of this nume is local to TV-object-gen 

(stats [input-queue := CTU-input-queue-gen <== :newl] 
[output-history := [TY-output-history-grn <== :nsvll 
[stats := [state-gen <== C:nrv Stats-Varr Lexical-Envlll 
Cscriptaet := Scripts1 
[evaluator := [TY-oval-gen <== :neu]] 
cmodr := ’ : dormant] 
[lvt := (or Creation-Time 011) ; Local Vitfual Time 

(script 
.(=> kssaga-Type Message Reply-Dsst Sendir Tirestsmp] 

vhuo (menber Heasagr-Type '(:message :anti-mesage)) 
[input-queue <== C:enqueue [hesaage-Type l4rssage Reply-Dost Sender Timrrtamp~ll 
(if (eq mod. ‘:dormant) then 

Guode := ' : act iv*] 
CNe <= :begirJ)) 

(=> :begin 
(case [input-queue <== :daqueue] 

** posifiae messagts whose iimestamp is equal to or newer than LVT 
b* C :ressage Message Reply-Dust Sander Timestamp] 

ohoro O= Timrtamp lvt) 
(case (find-script Hessago l cripteet) 

(is [geesage-Pattern Script-Body] ;a script is found 
tlvt := Timertap] 
trvaloator <= [:do-prg Script-Body 

(nosun Hemrage-Pattrm 

messago Reply-Dert Sender] 
mtatr) 

eden Del lvt output-queue1 
Q tcont ignore 

ETU-object <= :endJJ]) 
(ia Cl * script is not found 

(wara Yhnaot handle the me~sagk: 3" Iesg) 
Clh <= :-a))) 

I-; Messages whose timcsfamp is older ihan tv1: 
(is tDr8ratr-Type Ifersage Reply-Dest Sender Tinestamp] 

shero (4 Tinortup lvt) 
tlvt :- Tkeetampl 
[input-queue c== [:rollback-to lvt]] 
**Sending anti-messagts II 
(cam-loop [output-himtory 4== :laetJ 

(is msssags Reply-Dost Target Timestamp] 
where (p Timestamp lvt) 
beta Target3 

C= C:anti-nereage Kessage Reply-Dert [den he] Timestamp 
[output-history <== :drop])) 

Ma 45 :-a))) 
(=> :rad 

(if (not hpat-queue <== :ompty?]) then 
CU* <= : begid 

clsa 
cm!* := ‘:do=tl)))l))I 
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