
Reflection in an Object-Oriented Concurrent Language

Takuo Watanabe and Akinori Yonezawa
Department of Information Science, Tokyo Institute of Technology

Ookayama, Meguro-ku, Tokyo 152, Japan
takuo%is.titech.junet@&y.cs.net,

yonezawa%is.titech.junetOnzloy.cs.net

Abstract

Our work is along the line of the work of B. Smith and P. Maes.
We first discuss our notion of reflection in object-oriented con-
current computation and then present a reflective object-oriented
concurrent language ABCL/R.. We give several illustrative exam-
ples of reflective programming such as (1) dynamic concurrent
acquisition of “methods” from other objects, (2) monitoring the
behavior of concurrently running objects, and (3) augmentation
of the time warp mechanism to a concurrent system. Also the
definition of a meta-circular interpreter of this language is given
as the definition of a met&object. The language ABCL/R has
been implemented. All .the examples given in this paper are run-
ning on our ABCL /R system.

1 Introduction

Rejfection is the process of reasoning about and acting upon
itselfll0][7]. A reflective computational system is a computa-
tional system which exhibits reflective behavior. In a conven-
tional system, computation is performed on data that represent
(or model) entities which are external to the computational sys-
tem. In contrast, a reflective computational system must contain
some data that represent (or model) the structural and compu-
tational aspects of the system itself. And such data must be ma
nipulable within the system itself, and more importantly, changes
made to such data must be causally reflected/connected to the
actual computation being performed.

B. Smith[ll] and other researchers(e.g.,[3][13][1]) investigated
the power of computational reflection and emphasized its useful-
ness. In particular, P. Maes has proposed a reflective system in
the framework of object-oriented computing[S] and made good
contributions to the fields of object-oriented programming and
reflective computation. Her work, however, confined itself to se-
quential systems, and did not consider systems where more than
one object can be active simultaneously.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-8979 l-284-5/88/0009/0306 $1.50

Our present ‘work proposes a reflective system in the frame-
work of object-oriented concurrent computing. This is one of our
research results in the paradigm of “Object-Oriented Concurrent
Programming”[16][5]. We expect that reflective facilities will be-
come increasingly more important in concurrent computational
systems such as (distributed) operating systems, realtime sys-
tems, distributed simulation systems, distributed problem solv-
ing systems, robot planning/controlling, etc. For reflective capa-
bilities are indispensable when one tries to make the behavior of
these systems more powerful and intelligent as well as control-
lable by the user.

In this paper, we first discuss our notion of reflection in
object-oriented concurrent computing and then present a reilec-
tive object-oriented concurrent language ABCL/R. We give sev-
eral illustrative examples of reflective programming such as

s dynamic concurrent acquisition of “methods” from other
objects,

s monitoring the behavior of concurrently running objects,
and

l augmentation of the time warp mechanism[G] to a concur-
rent system.

Also the definition of a meta-circular interpreter of this lan-
guage is given as the definition of a meta-object. This language
ABCL/R is an extension of our previously proposed language
ABCL/1[14] and has been implemented. All the examples given
in this paper are running on our ABCL/R system.

The summary of our present work is given in the final section
of this paper.

2 Object-Oriented Concurrent Computa-
tion Model

In order to present the framework of our work, we first introduce
an object-oriented concurrent computation model. This model is
basically a submodel of our existing object-oriented concurrent
computation model ABCM/1[14].

2.1 Overview of the Colnputation Model

In our computation model, a system is a collection of o6jects -
autonomous information processing agents. Each object has an
individual serial computation power, and may have local persis-
tent memory called a state memory. Functions and properties of
a conceptual/physical entity in the problem domain are modeled

306 OOPSIA ‘88 Proceedings September 25-30,1988

and represented as such an object. In order to use the functions
and properties, a request message is sent to the object. When
m object receives a message, if the message is acceptable to the
object, it starts a sequence of actions which are requested by the
message.

Actions performed by an object are combinations of inquir-
ing/updating the object’s local state memory, sending messages
to other objects (including itself), creating new objects, and other
symbolic/numerical operations. Basically, sequences of actions
by objects in the system proceed asynchronously. This means
that many objects perform their computation in parallel. In our
model, the unit of concurrency is an object. Communication
among objects and the synchronizatian of their computation are

done only by message passing. Any two objects don’t share any
data other than the names (addresses, or pointers) of other ob-
jects. The state memory of each object cannot be accessed di-
rectly by other objects, and only indirect accesses through mes-
sages passing are permitted.

Each object is always in one of the two modes: dormant and
active. The mode of an object is dormant at creation time. It
becomes active when it accepts a message and starts executing
a sequence of actions for the message. When the execution com-
pletes, and if no subsequent message has arrived, the object be-
comes dormant.

From the programming point of view, an object is the basic
building block of program. A program is written as the behavior
descriptions of objects 1 what actions to perform when received
messages. The description of the behavior of an object is a col-
lection of scripts (often called methods in other object-oriented
languages), which consists of a message pattern and a sequence
of actions. A script prescribes the sequence of actions by the ob-
ject invoked when received a message that matches the message
pattern of the script.

2.2 Structure of an Object

Since each object has a single serial processing power, it executes
a script one at a time. Although messages can be received by an
object which is in active mode, the execution of the scripts for the
messages must be postponed until the current script execution
completes. Therefore each object has a message queue to store
incoming messages. (This message queue can be viewed as a part
of the receiver memory state.)

The structure of an object consists of a serial evaluator, a
set of scripts, a state memory, and a message queue. This struc-
ture itself can be regarded a a serial computational system. This
structure of an object is a basic one. As will be seen in the subse-
quent sections, we can build different structures for objects, and
such structures can dynamically be changed by using reflective
language facilities.

2.3 Message Transmission

All message transmission is asynchronous. There is no need for
any handshaking to send/receive messages. This means that one
can send messages whenever it wants, regardless of the current
condition (mode) of the target object. When a message is sent to
an object, it will be treated by the receiver object in the following
way.

1. Arrival: First, the message arrives at the receiver object.
This event is called the and&of the messa.ge. The receiver starts
processiilg of the aessage. It is assumed that once a message is
transmitted, it is guaranteed to-arrive at the receiver (as long as

the receiver exists).

2. Receiuing: Next, the receiver object enqueues the arrived
message in its message queue - this is the event of receiving the
message. If the receiver is in dormant mode, it starts trying to
accept the messages in the queue (see next).

3. Acceptance: If the receiver is in dormant mode, it dequeues
the first message in the queue, and checks to see whether the
receiver can process it. To be more precise, the receiver tries to
find an appropriate script for the message by pattern-matching.
Acceptance of the message is the event in which the appropri-
ate.script for the message is found. If the receiver accepts the
message, it starts executing the script for the message. Other-
wise, the message is simply ignored (In the language ABCL/R,
a warning message is issued).

4. End of Processing a Message: When the evaluation finishes,
the receiver checks the queue to process subsequent messages. If
the queue is empty, the receiver becomes dormant.

2.4 Types of Message Trausmissions

Our model has the following two types of message transmission
(ABCM/l also has three types including the future type).

l Past type: Suppose an object x sends a message to y in the
course of computation. Then GZ does not wait for the message to
be received by y, and continues the rest of computation imme-
diately. Using the notation of our reilective language ABCL/R,
this type of message transmission is written as:

CT <= Ml or CT <= M Q RI

where T, M, and R are the target object, message, and reply des-
tination, respectively. The reply destination is an object to which
the receiver can send a reply message, If the reply destination is
not specified, the receiver regards NIL as the reply destination.
(Sending messages to NIL causes no &ect.)

l Now type: When an object x sends a message M to T, z
waits for the message to be received by y and further waits for a
reply from T to come, blocking the current script execution. A
now type message transmission is written in ABCL/R as:

CT <== Ml

A now type message transmission looks similar to an ordinary
remote procedure call, but it is different. In the case of now type,
after sending the reply to z, T may continue its computation, and
furthermore, T can ask another object y to send a reply to 2.

3 Reflection in Our Model

To realize reflection in a system based on our computation model,
the causally connected self representation[l0][7] of the system
must exist within the system. Since reflective computation de-
pends on the way in which self representation is described, choos-
ing the formalism of seif representation is the primary concern of
building a reflective system.

There are at least two approaches to build the self representa-
tion of an object-oriented concurrent computational system. One
is to aSsume the existence of a datum which is the causally con-
nected self representation of the whole system, and the other is
to introduce the self representation of each object in the system
individually- Our approach is the latter one, The remarks on the
former approach will be found in the cop&ding section.

OOFJSIA ‘88 Proc~s 307

As explained in the previous section, we can regard an object
a~ a serial computational system. Thus we can build a represen-
tation of an object as a representation of a serial computational
system. The representation of an object contain the representa-
tions of the message queue, the state memory, the set of scripts
and the evaluator of the object. Besides this structural aspect,
the computational aspect of the object - arrival, receiving, and
acceptance of a message and the execution of a scripts - must
be represented. Our approach is to represent each object as an
o6ject called a meta-object.

For each object 2, there exists a meta-object tz, which rep-
resents both the structural and computational aspects of Z. tz
contains the meta-level informaticn ?.bout Z. Meta-object 13: rep-
resents the object z in a similar way that usual objects represent
entities in the problem domain. z is called the denototioq of fz.
The structure of z is represented as the data in the state mem-
ory of Tz, and the computational aspects of z is described as the
scripts (methods) of 12. The following points should be noted.

l An object z and the information about z in tz are causally
connected. Thus the data stored in tz always represent the cur-
rent status of 2, and operations on the data cause the isomorphic
effect on 2.

a tz is an object. So ftz also exists. This means that op-
erations on 12 are allowed. Thus, there is an infinite tower of
meta-objects 12, m, mz, . . . for each object I. In the actual im-
plementation, meta-objects are created when their access takes
place (by lazy creation).

l If one knows the name of z, it can always get the name of
Tz, and vice versa.

l The correspondence between objects and their meta-objects
is one to one. That is, for each object 2, y, 5 E Y ++ 1~ EtY

holds (Z is the identity relation).

The concept of meta-objects in our model is similar to that of
meta-objects in 3-KRS[i’][8]. In 3-KRS, structural/computatio-
nal aspects of an object is also represented in its meta-object.
But the way of modeling an object as its meta-object is different,
because an object is a unit of concurrency in our computation
model.

In our model, the causal connection link between an object
z and its meta-object tz is implicit - the changes in 2 cause
the isomorphic changes to the data in tz not by the message
transmission from z to tz (and vice versa). The reason is that
the message transmission takes time, which requires the synchro-
nization of z nnd 1~. As we will see in the Iater section, 1% is used
as the “implementation” of I.

Reflective computation in an object z is performed by z send-
ing messages to its me&object tz. This enables z to inquire/mo-
dify itself through Tz, because the structural/computational as-
pects of x is represented in 1~ in a causally connected way. Note
that appropriate scripts for operations on z must be prepared in
tz. If 1~ doesn’t have such scripts, it is possible to modify 12
using MZ to acquire such scripts. Such examples are found in
Section 5.

Of course a meta-object can receive messages from other ob-
jects (other than its denotation). In a system that consists of a
colIection of many objects, we can regard the meta-object of an
object as the partial representation of the system. Thus the re-
flective computation in the system is realized by sending messages
to each other’s meta-object. Note that such message transmis-
sions may take place concurrently in our computation model.

4 Meta-objects and the Reflective Lan-
guage ABCL/R

The notion of meta-objectsis the key concept for the reflection in
our computation model. ABCL/R - the description language
of our model - is an object-oriented concurrent language with
reflective architecture based on the notion of meta-objects. The
sYnt= and basic features of the language are adopted from the
language ABCL/1[14][15]. In th’ IS section, we describe the defini-
tion of meta-object in details in terms of the language ABCL/R.

4.1 Object Definition in ABCL/R

In ABCL/R, an object definition is written in the following form.
The value of the form is a newly created object the name of which
is object-name.

[object objecl-name
(state variable-declaralion.. .)
(script

(=> message-paficm Q reply-dcsiinafion-variable
from sender-variable

(temporary variable-declaration.. .)
behavior description)

. . . . 13

object-name is optional in the above definition. (state . . . >
is the local state variable declaration. variable-de&n&on is ei-
ther [variable := initial-value] or variable which is equivalent
to [variable := nil]. [vuriuble := expression] is the expres-
sion for assignment of the value of ezpression to variable. Each
(=> message-pattern . . . > is the description of a script. The ob-
ject defined in the above form accepts a message which matches
a message-pattern. The reply destination and the sender ob-
ject of an incoming message are bound to the variables reply-
destination-variable and sender-variable, respectively. These two
variables are optional. behavior description in each script descrip-
tion is a sequence of actions, which are described as expressions of
either object creation, message transmission, inquiring/modify-
ing state memory (through state variables), or some other sym-
bolic/numerical calculation (as Lisp expressions). (temporary
. . . > is the declaration of temporary variables used in the script.

4.2 Definition of a Meta-Object in ABCL/R

As explained in Section 3, a meta-object TZ is an object which
models the structural and computational aspects of an object x,
and z is called the denotation of lx.

4.2.1 Modeling the Structure of an Object

Since an object 2 in our computation model consists of a set of
scripts, a state memory, a local serial evaluator, and a message
queue, the structural aspect of z is represented as the values of
tz’s state variables scsiptset, state, evaluator, and queue,
respectively. Using the ABCL/R notation, this structural aspect
is described as the state-part of the definition of the meta-object
TZ given in Figure 1.

Each element in the value of scriptset is a script (repre-
sented in a certain data structure, say, character strings), and
the values of state and evaluator are objects which represent
the state memory and the evaluator. The value of mode indi-
cates the current mode of the denotation object, which is either
:dormant or : active.

308 OOPSLA ‘88 Proceedings September 25-30, 1988

[object ; a meta-object
(state [queue := a message queue1

[state := a state object]
[scripts& : = a list of scripts1
[evaluator := an eoaluator obiecfl
[mode := either :dormant or :activel)

(script
(=> [:message Message Reply-Dest Sender] ; messoge arrival 6 receiving

[queue := (enqueue queue [Message Reply-Dest Sender])]
(if (eq mode :dormant) then

[mode := * : active]
[Me <= :beginl))

(=> :begin ; acceptance d script ezecution
(t.tForary mrs scr newenv [object := Me]>

:= (first queue)]
[queue := (dequeue queue)]
[scr := (find-script (first MS) scriptset)]
(if scr then ; acceptance

[newenv := [env-gen <== [:new (script-alist mrs scr) state111
;; pattern variables, reply d sender variables have been bound in newenv
[evaluator <= [:do-prg (scr$body scr) newenv [den ~43 0

[cant ignore ; Ihe value of the evalua2ion is ignored
[object <= :end]ll

else ; cannot accept
:;a; “Cannot handle the message ‘A” (first MS))

= :end]))
(=> :end ; :ermination of the execution

(if (not (empty? queue)) then
[Me <T : beginI

else
[mode := : dormant]))

-a The folIowing scripts are crumples of special scripts for meta-Ieuel operations
i’=> :queue ; inquiring about the message queue

!queue) ; returns the ualue of queue
(=> C:script Message] ; inquiring about the script whose pattern matches Message

! (f ind-script Message scriptset)) ; returns the found script
. ..)I

Figure 1: Definition of A Meta-Object

4.2.2 Modeling the Behavior of an Object

Besides the structural aspect, the meta-object tz models the com-
putational aspect of its denotation - arrival, receiving, and ac:
ceptance of messages, and execution of scripts. This aspect is
described in the ABCL/R notation as the script-part of the
definition in Figure 1.

The following is a more precise description of what was ex-
plained,in Section 2.3 in terms of the ABCL/R notation. Suppose
a message M is sent to an object z.

1. Arrival of a Message: The arrival of a message M at the
object z is represented by acceptance of a message C:message
M R Sl by F. R is the reply destination of M, and S is the
sender object of M.

2. Receiving a Message (See the script for C:message . . .I):
When Tz accepts the message C:message M R SI, it enqueues
the triple CM R Sl to the message queue - the value of the
variable queue. This represents the situation where the object z
receives the message M. If z is in dormant mode - the value of
the state variablemode in t3c is : dormant, then tz sends a message
: begin to itself.

3. Acceptance of u Message (See the script for :begin): tz
dequeues one triple CM R Sl from the queue. If there is an
appropriate script d for M in scriptset (acceptance), 1~ exe-
cutes the body of u (see next). If there is no script for M, it

just ignores this and sends : end to itself after issuing a warning
message.

4. Ezecution of (1 Script: First, tz creates a new environment
- which binds the contents of M to the pattern variables of U,
R to the reply variable of u, and S to the sender variable of u -,
then evaluates the body of.0 under the new environment using
the evaluator object.

5. After a Script Ezecution (See the script for :end): When
the execution of the script completes, a message :end is sent to
t.z. Then tz checks the queue, and starts processing of subsequent
messages if the queue is not empty (by sending a message :begin
to itself).

Let us look at the script execution more closely. A new envi-
ronment is created by the environment generator object env-gen
from the a-list of pattern variables/vaIues and the state object.
The evaluator object evaluator is activated by receiving a mes-
sage [:do Ezp Enu Me-ptr] , where Ezp is the expression to be
evaluated, Enu is the environment object, and Me-ptr is the ob-
ject in which the evaluation takes place. The following expression

in Figure 1 is executed at the end of the execution of the script
for : begin.

[evaluator <= t:do-prg (scrtbcdy ser.) nswanv [den WI
@ [coat ignore [object <= :end]II

September 25-30,1988 OOPSLA 88 Proceedings 309

Message [:do-prg . . .1 is used instead of [: do . . .] , and
this is used to evaluate the list of expressions (the value of (sc~$-
body scr>) and the result is the value of the last expression of
the list (like progn of Lisp). The value of the variable Me is
the meta-object itself (Such variables are often named “self” in
other languages), and [den Mel (this form is explained in a later
section) is the denotation of the meta-object.

Since a past type message transmission is used, the execution
of the script for :begin immediately completes after the execu-
tion of the above expression, and the mode of the meta-object
becomes dormant. The result of the evaluation is passed to the
reply destination of the message, which is expressed as [cant
. . . 1. Note that the form

Ccont message-patfern script-description]

is syntactically equivalent to the following form.

[object
(script (=> message-pattern script-description))]

The notation [cant . . .] is intended to be used as the continu-
ation of the evaluation which accepts the evaluation result and
does the rest of the task. The result of the script evaluation is
bound to a variable ignore and just ignored (the variable ignore
is not used in the body), and the rest of the task is to send a
message :end to the meta-object which is bound to a variable
object.

4.2.3 lnherent Concurrency

Suppose the meta-object 1% has accepted a message :begin and
the evaluation of the corresponding script has been started by
evaluat)r. Since this evaluation is triggered by a past type
message transmission, now tz changes to dormant mode and stays
in dormant mode until a message :end is sent to 1% from the
continuation object ([cant . . .I) of the evaluator. (Note that
if the evaluator object is executing a script, the mode of z can
be active even when tz is in dormant mode.) Thus tz can accept
the next C:message . . .] without waiting for the completion of
the current script execution.

This corresponds to the fact that z can receive messages while
z is in active mode (asynchrony described in 2.3). The fact is
called the inherent concurrency of the object Z.

To model the behavior of an object correctly, it must be guar-
anteed that the execution of the object’s scripts takes place one
at a time. We can see that this is guaranteed by the meta-object
definition: once a message :begin is sent to the meta-object tz,
the next : begin message will not be sent until a message : end is
sent to 7~. (The value of variable mode becomes :dormant only
after the script for :end has been executed.)

The definition in Figure 1 also says that messages arriving at
the denotation z are simply enqueued when z is in active mode,
and the search of the scriptset by tz is postponed until the cur-
rent script execution completes. For more detailed explanation,
see [12].

4.3 Meta Circularity of Objects

In ABCL/R, to satisfy the requirement of the causal connec-
tion between an object z and its meta-object tz, Tz is used as
the actual implementation of 5. That is, the contents of the state
variables of tz - a message queue, a set of scripts, a state object,
and an evaluator object of z - are used for the actual compu-
tation of I. The arrival, receiving and acceptance of messages

are performed as we have seen before. Moreover, the evaluation
of scripts is carried out by the evaluator object, which is also an
ordinary object of ABCL/R. Thus every object of ABCL/R is
implemented in a meta-circular way as its meta-object.

The definition of the meta-object in Figure 1 is used in de-
fault. In ABCL/R, we can specify other meta-object instead of
this in the object definition. An example of a non-default meta-
object is described in 6.4.

A message transmission to an object z is defined in terms of
its meta-object tz. The form

cz <= m 6 rl

in the script of an object y, which is the sender of the message
m, will be reduced to (interpreted as)

CTz <= C:message m r yll

when the above form is evaluated by the evaluator of y. In the
definition of the evaluator object, the part for the evaluation of a
message transmission expression is actually defined as above. (Of
course, it is possible to access the meta-object of the evaluator
object.)

Because a meta-object tz is also an object, there exists an
object Qz which is a meta-object of tz. This implies that tz
is implemented in flz in the same way as z is implemented in
tz. This situation induces an infinite tower of meta-objects for
each objects, but in the actual implementation, we can avoid the
infinite tower by the lazy creation of meta-objects.

5 Reflective Programming Facilities in
ABCL/R

This section explains language facilities for reflection in ABCL/R
using simple examples.

5.1 Sending Messages to Meta-Objects

In ABCL/R, tz can be accessed as the value of the special form
[meta z], and the value of [den tz] is I. Thus, for each ob-
ject z, beta [den tzll z tz and [den beta ~11 E z al-
ways holds. Access to tz enables the inquiry and/or modification
of components of z if tz has scripts appropriate for those opera-
tions (e.g., scripts for :queue and C:script Message1 in Figure

1).
Let us look at a small program example in which meta-objects

are accessed. Suppose that there is a group of objects consisting
of the manager object M and some worker objects WI, Wz,. - . .
Each Wi can receive a message of pattern [: job job-type :param
parameter], which is the request for a job of job-type with pa-
rameter (Figure 2).

: queue [:add-script . ..I

[:job . ..I

Figure 2: Manager and Workers

310 OOPSLA 88 Proceedings September 2530,1988

M constantly monitors each worker Wi, and if M notices
that IV; receives requests of a particular job type (e.g., job 1)
very frequently, M gives Wi a new script for [: job 1 :param
parameter] which is an optimized script for the job type 1. This
is realized by accessing fWi from M. For example, to know the
messages received by Wi, A4 can simply send a message to TWi
as

[Cmeta Wil <== : qUeU.31

and also to add the new script for the job type 1, M can send a
message to TWi as

[[meta WiI <== [:add-script
‘(=> c:job 1 :pa.ram paromefer-vat]

body of the script)11

Note that this script extension of Wi by M can be done while
Wi is executing its jobs - the performance of the whole system
is gradually improved while the system is working.

5.2 Reflective Functiolls

Beside [met a . . . I and [den . . .I, there is another language
feature which facilitates reflective programming in ABCL/R. That
is reflective functions, which are similar to the reflective proce-
dures in 3-LispIll]. In 3-Lisp, the unevaluated call-time argu-
ments (as in fexprs of the old-fashioned Lisp), call-time envi-
ronment, and call-time continuation can be accessed in arbitrary
place/time using reflective procedures. The triple (arguments,

environment, and continuation) represents the %napshot” of a
serial computation of 3-Lisp.

The number of the formal parameters of a reflective function
in ABCL/R is always five, and they are bound to the list of call-
time (unevaluated) arguments, the call-time environment (as an
object), the call-time continuation (as an object), the caller ob-
ject which has invoked the reflective function, and the evaluator
object, respectively.

As an example of the use of (user-defined) reflective functions,
let us look at the the following definition of a reflective func-
tion. This function is actually a definition of a now-type message
transmission, namely, the in<ocation of this function, (now-send
2’ M), is equivalent to the execution of [Z’ <== Ml.

(define (nov-send args env cant caller eval) reflect
[oval <= [:do-seq args env called 0

Ccont CTarget Hessagsl
[Cm&a Target]

<= C:mrssagr Hessage cant caller3111)

The evaluation of the form (now-send ‘2’ M) is performed
at the level of the evaluator as in S-Lisp. Let E, be an evaluator
object of an object z. Since E, is an object, there is a meta-
object tEz. So tEz has an evaluator, and it is an evaluator of
E,, namely EE%. If the above expression is invoked as the part
of a script of z, then the formal parameters are bound to the
following values: args=(T MI, env=environment object in JY,
cont=continuation object, caller=%, and eval=E,. First, the
value of the args is evaluated and the elements of the result
is bound to Target and Message. Then a message containing
Message, cant and caller is sent to the meta-object of Target.
Note that the abbreviation form [cant . . .I explained in 4.2.2
is used.

6 Reflective Programming in ABCL/R

In this section, we will present several characteristic examples
of reflective programming in ABCL/R. First, we explain the ba-
sic methods for dynamically modifying objects. Then we will
show that the dynamic acquisition (or dynamic “inheritance”)
of scripts from other objects are concisely programmed at the
user-level by using the means of dynamic modification. Further-
more, we illustrate how an object can monitor other concurrently
running object’s behavior. In this example, the meta-object of
the meta-object of an object is involved. Also we will briefly
explain the implementation of the timewarp mechanism[G] using
reflective features of the language ABCL/R. The reader should
be reininded that all the computations illustrated by these exam-
ples are performed in the framework of concurrent computation.

6.1 Dyllamic Modification of Objects

AS we have seen, the internal structure of an object can be ma-
nipulated as data in the meta-object of the object. In the default
meta-object of an object, some special scripts which manipulate
the internal structure of the denotation object (queue, scripts,
state, and evaluator) are provided. For example, the following
messages can be acceptable by the default meta-object.

[:add-script s] : Adds a new script s to the denotation
object of the target meta-object.

[:script ml : Returns a script whose message pattern
matches m.

[:delete-script ml : Deletes a script whose message
pattern matches m.

:state : Returns the object which represents the state
memory of the denotation of tbe target object.

Let us look at how these messages are used. First, to add a
new script to the object z:

CCmeta rl <== C:add-script ‘(=> [:foo xl body-of-script)11

Now z can accept messages that match the pattern C:foo Xl.
Before adding this script, if z already has a script whose pattern
matches [: foo Xl, this newly added script is used instead of the
old one. But the old script still remains and when the new one
is deleted, the old one will be used again.

[beta 21 <== [:script [:foo l]]]
==c. (=> C:foo xl body-of-script)

(The right hand side of “a” is the value of the expression on
the left hand side.) The result is the script added before. The
execution of the following form deletes it.

CCmeta 21 <== C:delete-script C:foo 1111

In addition, it is possible to access the object which represents
the state memory by:

CS := CCmeta 21 <== :&ate]]

Variable s is bound to the state memory of z represented as the
state object of I. To know the value of a variable, a message
C:value variable-name] is used as follows.

[s <t= C:valus ‘XII =$ 1

In this example, the value of the state variable X of z is 1. To
create a new variable binding in the state memory, the.foIlowing
will do.

Ca <== C:add-binding ‘Y 10011

September2530,1988 OOPSLA'88 Proceedings 311

Then r ha a new state variable Y with its value being loo. If the
binding of Y already exists before adding, the old one is hidden
by the new binding. The old binding remains but cannot be
accessed until the new one is deleted.

Using these special scripts of the default meta-objects and
state objects, we can write the code to modify the scripts and
the state memory of an object dynamically, and such modification
can be done while the object being modified is running. The
examples described below use these special scripts effectively.

6.2 Dynamic Acquisition (Inheritance) of Scripts

Suppose an object r has received a message M, but z does not

have any script for M. If x has the following script:

(=> message-paiicrn-jot-M 0 reply-var from sender-var
(inherit msg-pattern-for-M reply-var sender-var y t))

x can inherit (acquire) the script for the message M from another
object y. (What really happens when the above script is executed
is: tz gets the script dynamically from ty and then Tz starts
execution with the environment (state memory and evaluator) of
x as if the script were z’s local one.)

inherit is a reflective function whose caller object acquires
(inherits) scripts from a specified object. The first, second, and
third arguments of inherit are the message, reply destination,
and the sender, respectively. The fourth argument is the source
of inheritance, which is an object (y) from which the caller (z)
inherits a script. If the last argument is a non-nil value, the script
inherited is stored in the caller object as its own script. Then
the caller object can process the subsequent messages of the same
pattern using the newly acquired script, and now it doesn’t need

to inherit the script for the same message pattern. The following
is the definition of the function inherit.

(define (inherit args env cant caller oval) reflect
Ceval <= kdo-seq args env caller] Q

Ccont [Hessage Reply Sender Inherit-Source Cache?]
(let f (scr ELmeta Inhrrit-Source1

c== C: script Hassags 1)
(if scr than

[oval <= [:do-prg (acrtbody scr)
Cenv-gm

<== [:neo (script-alist
CHessage Reply Sender]
scr) l nvll

call4
0 Ccont Value

(if Cache? then
[ljmta caller1

<== [:add-script rcr]I>

[Emeta caller1 <= :endlll
else

(warn "IIIEERIT: 'A -A** Heasage Inherit-Source)
[[meta cdllerl <= :endl))ll)

First, all the call-time arguments are evaluated by the evalu-
ator object eval, and the values are bound to l+assage, Reply,
Sender, Inherit-Source, and Cache?. The message [:SCriPt
. . .] explained above is used to try to get, from the source of
the inheritance (the value of Inherit-Source), a script whose
pattern matches the message (the value of Message). If found,
the body of the script is evaluated using the environment of the
caller object as if it were the caller’s local one.

Let us look at a simple example of using inherit. Objects
bird and emu are defined as follows:

[object bird
(script

(=> :has-feather? !t) ; returns t
(=> :caIl-fly? !t.) ; refwms t
(=> Any 0 Reply from Sender

(inherit Any Reply Sender animal nil)))]

[object emu
(script

(=> :can-fly? !nil) ; reiums nil
(f> Any P Reply from Sender

(inherit Any Reply Sender bird nil)))]

These objects model simple knowledge of birds and emus. Since
an emu is a bird, the object emu inherits all the scripts from bird
except for : can-f ly?. In the second script of emu, the single
pattern variable Any can match any messages. When a message
: can-f ly? is sent to emu, it answers using its local script. In the
case of :has-feather?, emu inherits the script from bird, and
answers using it.

In this example, the fifth argument of inherit is nil. So emu
can always answer correctly being consistent with the changes
made to the definition of bird changes, because the scripts ac-
quired are not cached in emu.

The function inherit will be used in the examples below. It
should be noted that the object-based inheritance scheme in (41
and the proxy-query inheritance in [2] can easily be implemented
using our inheritance scheme.

6.3 Monitoring Running Objects

The behavior of an object can be monitored from outside through
its meta-object. For example, let us consider how an object can
monitor what message have been received by a specified object

while the specified object is running. Below we will show simple
reflective programming in ABCL/R implements this monitoring
facility.

Let Monitor be an object which monitnls messages accepted
by an object z. To do so, Monitor modiLes the behavior of
z so that whenever a accepts a message m from s with reply
destination r, z sends a message [:has-accepted m r ~1 to
Monitor. See Figure 3.

To start monitoring of z, the following will do:

[Monitor <= t:monitor 211

Now, whenever x accepts a message m with reply destination t
from s, Monitor receives a message [:has-accepted m r 31
To stop this monitoring:

EHonitor *= :rtop-monitoringI

[:add-script . ..I

-3
[:has-accepted m . ..I

[:monitor x]
:stop-monitoring

Figure 3: The Monitor Object

312 OOPSL.4 ‘88 Proceedings September 25-30,1988

We can start/stop monitoring whenever we want - even
when the object being monitored, namely the subject of monitor-
ing, is executing its scripts. The inherent concurrency explained
in 4.2.3 guarantees that the meta-object can receive and accept
messages when its denotation is executing the scripts.

The definition of the monitor object Monitor is as follows:

[object Monitor
(state subject new-name)
(script

(=>

(=>

[:monitor An-object]
[subject := An-object]
hew-name : = (gensym)l
C Cmeta

<==
beta subject]]
[:add-script

’ (=> : begin
.
(if scr then

C ,nev-name
.<= [:has-accepted . mrsll

. . . . I. .))I1
[[[jneta beta subject]] <== :statel

<== [:add-binding nev-name Hell)
:stop-monitoring
[[mata [meta subject]]

<== [:delete-script ‘:begin]]
C[beta beta subject]] <== :statel

<== C:remove-binding neu-namal1))1

When the monitor object receives the message [:monitor
31, the monitor object modifies tz so that tz may send the mon-
itored information, namely, a message [:has-accepted m r sl
when z accepts a message m (from s with reply r). To do this,
the monitor adds a nkw script for a message : begin through @J

(see Figure 1). The new script added is almost equal to the de-
fault one (in Figure 1) except that the monitored information
is sent to z upon acceptance of a message. In order to refer to
the monitor object from z, a new state variable is added in z,
and the name of the new variable should not conflict the other
variables. Thus (gensym) is used to creates the new variable.

Stopping monitoring is simple. The newly added script and
variable bindings are simply removed from z. Then the original
script for :begin is used again.

The above definition of Monitor specifies just the framework
for monitoring. What to do when a message comes [:has-ac-
cepted . ..I is not specified in its definition. By using this mon-
itor.object, actually by acquiring (inheriting) its scripts, the fol-
low’ing simple tracer object can be defined.

[object tracer
(vtate rubject nev-name)
(script

(=> C:monitor An-object.1 0 R irom S
(inherit [:monitor An-object] R S Monitor t))

(=> :stop-monitoring a R irom S
(inherit :stop-monitoring R S Wonitor t.1)

(=> [:has-accepted Message Reply Sender]
(fomat *trace-sindove “‘0-S accept8 ‘S from ‘S”

subject Wessage Sender)))]

The object tracer monitors an object and displays the trace
of message acceptances on *trace-uindou*.

0.4 ‘rime Warp Mechanism

A simple Time Warp mechanism based on the Virtual Time
concept[G] has been implemented using the reflective language

constructs in ABCL/R.
Object-oriented concurrent programming offers the natural

framework for distributed discrete event simulation. Each entity
in the simulation domain is modeled as an object, and events

among entities are represented as transmission and reception of
messages by such objects. The essential problem in this frame-
work is how to manage the temporal consistency among events.
Our computation model does not assume the existence of the
global clock.

In [9], this problem is solved with ABCL/l using a rollback
mechanism based on the notion of the virtual time[G]. Messages
transmitted by objects (which model or represent simulation en-
tities) explicitly contain timestamps, and if time conflict is de-
tected by an object (i.e., the timestamp T of a message is older
than the time according to the local clock of the object), the ob-
ject performs undoing of its execution (rollback) to T. That is, it

sends anti-messages to objects to which the object has already
sent messages since 7, and undoes the execution so far.

As in [9], this roll back mechanism is usually explicitly spec-
ified in the scripts of an object mingled with the description of
simuIation activities. But this explicit specification of rolI back
severely decreases the modularity of the simulation program and
it is very cumbersome an error-proning because the programmer
has to write t4e code for roll back everywhere necessary in the
script.

Since the rollback mechanism (of handling anti-messages and
undo operations for state variables) is meta-level to the simula-
tion of activities, our implementation explicitly separates the two
levels and describes the general roll back mechanism in the defi-
nition of the meta-object of an object doing simulation activities.

To define an object which has the Time Warp mechanism,
the meta-object specification facility of ABCL/R can be used as
in the following object definition.

[object a-simulaiion-objecf
(meta TV-meta-gen)
(script

(=> message-pattern a reply from sender
description of simulation activities)

. . .)I

(meta TU-meta-gen) in the above definition specifies the gen-
erator (TW-meta-gen) of the meta-object of a-simulation-object
explicitly. (The definition of TU-meta-gen is described in Ap-
pendix.) When the above expression is evaluated, TW-meta-gen,
instead of the default meta-object generator, is actually used in
creating a new object.

The Time Warp mechanism is fully handled by the meta-
object. Thus the programmer of a-simulation-object does not
need to write the code for rollback. The Time Warp mechanism
part and the simulation part are completely separated. Of course
it is possible to use TW-meta-gen for defining of other simulation
objects. It can be used as library code. Introducing this type of
modularity is an important feature of languages with reflective
architecture.

7 Concluding Remarks

7.1 Summary

We designed and implemented an object oriented concurrent lan-
guage ABCL/R which has a reflective architecture based on the
notion of meta-objects. The following is the summary of our
present work.

l Each object is represented/implemented by its me&-object.

Sepbmber 25-30.1WI OOPSLA ‘88 Proceedings 313

The meta-object incorporates the meta-level representations of
structural and computational aspects of the object in a meta cir-
cular way. A meta-object is also an object of ABCL/R. This
implies the infinite tower of meta-objects. (For its implementa-
tion, see below.) An evaluator (interpreter) of the language is
also an object. In our computation system, a number of such
objects may work in parallel.

b Reflective computation is performed by message transmis-
sions to meba-objects and such message transmissions take place
concurrentIy. Reflective computation can be performed in meta-
objects of any level because of the infinite tower of meta-objects.
Sending messages to a meta-object makes it possible to inquire
and alter the structure and behavior of the object. It is possible
to send messages to the meta-object of an object while the object
is performing its jobs. Thus, a concurrent system can gradually
modify itself by means of objects and (their) meta-objects in the
system sending messages each other.

l The dynamic modification of running objects in a concur-
rent system can be described by using reflective language con-
structs of ABCL/R. We have presented programming examples
of dynamic (concurrent) modification such as acquiring (or in-
heriting) scripts from other objects, and monitoring a running
object by modifying its meta-object through the met&object of
the meta-object.

l Enhancement of program modularity can be attained by us-
ing meta-objects. The example of a simple Time Warp mecha-
nism has demonstrated this. In a simulation program using this
mechanism, the metklevel part is separated from the object-Ievel
part by specifying anon-default meta-object for each simulation
object.

7.2 Current Status of ABCL/R

So far, we have built a prototype implementation of ABCL/R
written in ABCL/l (written in Kyoto Common Lisp on UNIX
and Symbolics Common Lisp on Symbolics Lisp Machines). All
the examples described in the preceding sections are actually
tested on this implementation.

The primary concern of implementation is how to represent
the infinite tower of me&objects. In our implementation, meta-
objects are created in the lazy way. A meta-object lz is actually
created when the access to tz takes place - when the evaluator
first evaluates an expression Gneta 23.

7.3 Future Work

This work is our first attempt to build concurrent reflective sys-
tems. As we mentioned in Section 3, there are at least two aP-
proaches to build the causally connected self representation of an

object-oriented concurrent system. To completely represent the
whole concurrent system as a single datum is difficult because of
the causal connection. To do so, we need a good formalism and
an appropriate modeling of a concurrent system as a whole, as
well as techniques to establish the causal connection.

A possible approach is that the system is divided into some
groups of objects in such a way that each group contains objects
that are related each other. Then we describe an approximate
(or partial) self representation of the computational aspect of
each group and make the representation accessible from all the
members of the group.

References

[l] J. Batali. UComputalional Introspection”‘. Technical Re-
port AIh1-701, Laboratory for Artificial Intelligence, Mas-
sachusetts Institute of Technology, 1982.

[2] J. Briot and A. Yonezawa. “Inheritance and Synchroniza-
tion in Concurrent OOP”. In ECOOP ‘67 Conference Pro-
ceedings, pages 35-43, 1987.

[3] D. P. Friedman and M. Wand. “Reification: Reflection with-
out Metaphysics”. In Conference Proceedings of Lisp and

[41

[51

b1

PI

PI

PI

WJI

WI

PI

[I31

I141

t151

[I61

Functional Programming, pages 348-355, ACM, 1984.

B. Hailpen and V. Nguyen. “A Model for Object-Based
Inheritance”. In B. Shriver and P. Wegner, editors, Research
Directions in Object-Orienled Progmmming, pages 147-lG4,
The MIT Press, 1987.

C. Hewitt. “Viewing Control Structures as Patterns of Pass-
ing Messages”. Journal of Artificial Intelligence, 8(3):323-
364, 1987.

D. R. Jefferson. “Virtual Time”. ACM !Z’mnsoctions on
Pmgmmming Languages and Systems, 7(3):404425, 1985.

P. Maes. “Computational Re./7ectionz. Technical Report 87-
2, Artificial Intelligence Laboratory, Vrije Universiteit Brus-
sel, 1987.

P. Maea. “Concepts and Experiments in Computational
Reflection”. In OOPSLA ‘87 Conference Proceedings,
pages 147-155, 1987.

E. Shibayama and A. Yonezawa. “Distributed Computing in
ABCL/l”. In A. Yonezawa and M. Tokoro, editors, Object-
Oriented Concurrent Programming, pages 91-128, The MIT
Press, 1987.

B. C. Smith. ‘RejlecGori and Semantics in a Proceduml
Language”. Technical Report TR-272, Laboratory for Com-
puter Science, Massachusetts Institute of Technology, 1982.

B. C. Smith. “Reflection and Semantics in Lisp”. In Con-
fewwe Record of the Principles of Progmmming Languages,
pages 23-35, ACM, 1984.

T. Watanabe. ‘Reflection in Object-Oriented Concurrent
Systems”. Technical Report, Department of Information
Science, Tokyo Institute of Technology, March 1988.

R. Weyrauch. “Prolegomena to a Theory of Mechanized
Formal Reasoning”. Artificial Intelligence, 13(1,2), 1980.

A. Yonezawa, J. Briot, and E. Shibayama. “Object-Oriented
Concurrent Programming in ABCL/l”. In OOPSLA ‘86
Conference Proceedings, pages 258-268, 1986.

A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda.
“Modeling and Programming in an Object-Oriented Con-
current Language ABCL/l”. In A. Yonezawa and
M. Tokoro, editors, Object-Oriented Concurrent Progmm-
ming, pages 55-89, The MIT Press, 1987.

A. Yonezawa and M. Tokoro, editors. UObjecl-Oriented Con-
current Programming”. The MIT Press, 1987.

314 OOPSLA ‘88 Proceedings September 2!i-30,1988

Appendix: Code for Simple Time Warp
Mechanism

TM-meta-gen is the generator of meta-objects in which a simple
time warp mechanism is implemented. The structure of an object
consists of a local clock, an input message queue, and an output
message queue, a set of scripts, a state memory, and an evaluator.
Thelocal clock, input/output message queues are implemented as
values of variables lvt, input-messages and output-history,
respectively.

The arrival of a message is represented as the acceptance of
the message (in meta-level) which matches [:message Message
Reply-Dest Sender Timestamp] where the argument Timesta-

mp is the timestamp of the message. Messages which match the
pattern [:enti-message Message Reply-Dest Sender Times-
tamp‘l are antimessages.

In this program, the rollback works only for the past type
message transmissions. The retrieval of the state value is not
implemented. In the script description of an object whose meta-
object is created by TM-meta-gen, timestamps must be specified
explicitly in message sending expressions like following:

[largei <= message Q reply-destination : time receive-time1

receiue-time is the virtual receive time(G] - the time at which
the target object receives the message message.

The definition of TW-input-queue-gen, TW-output-history-
gen, and TW-evaluator-gen is omitted. See [12] for details.

... Meta-object gekerator wiih Time Warp mechanism ,,I

[object TWobject-gen
(script

(=a C:naw State-Vars Lexical-Euv Scripts a Creation-Time]
! [object TV-object ; scope of this nume is local to TV-object-gen

(stats [input-queue := CTU-input-queue-gen <== :newl]
[output-history := [TY-output-history-grn <== :nsvll
[stats := [state-gen <== C:nrv Stats-Varr Lexical-Envlll
Cscriptaet := Scripts1
[evaluator := [TY-oval-gen <== :neu]]
cmodr := ’ : dormant]
[lvt := (or Creation-Time 011) ; Local Vitfual Time

(script
.(=> kssaga-Type Message Reply-Dsst Sendir Tirestsmp]

vhuo (menber Heasagr-Type '(:message :anti-mesage))
[input-queue <== C:enqueue [hesaage-Type l4rssage Reply-Dost Sender Timrrtamp~ll
(if (eq mod. ‘:dormant) then

Guode := ' : act iv*]
CNe <= :begirJ))

(=> :begin
(case [input-queue <== :daqueue]

** posifiae messagts whose iimestamp is equal to or newer than LVT
b* C :ressage Message Reply-Dust Sander Timestamp]

ohoro O= Timrtamp lvt)
(case (find-script Hessago l cripteet)

(is [geesage-Pattern Script-Body] ;a script is found
tlvt := Timertap]
trvaloator <= [:do-prg Script-Body

(nosun Hemrage-Pattrm

messago Reply-Dert Sender]
mtatr)

eden Del lvt output-queue1
Q tcont ignore

ETU-object <= :endJJ])
(ia Cl * script is not found

(wara Yhnaot handle the me~sagk: 3" Iesg)
Clh <= :-a)))

I-; Messages whose timcsfamp is older ihan tv1:
(is tDr8ratr-Type Ifersage Reply-Dest Sender Tinestamp]

shero (4 Tinortup lvt)
tlvt :- Tkeetampl
[input-queue c== [:rollback-to lvt]]
**Sending anti-messagts II
(cam-loop [output-himtory 4== :laetJ

(is msssags Reply-Dost Target Timestamp]
where (p Timestamp lvt)
beta Target3

C= C:anti-nereage Kessage Reply-Dert [den he] Timestamp
[output-history <== :drop]))

Ma 45 :-a)))
(=> :rad

(if (not hpat-queue <== :ompty?]) then
CU* <= : begid

clsa
cm!* := ‘:do=tl)))l))I

September2!530,1988 OOPSIA ‘9 Proceedings 315

