
Identifying and Specifying Crosscutting
Contracts with AspectJML

Henrique Rebêlo

Universidade Federal de Pernambuco, PE, Brazil
hemr@cin.ufpe.br

Abstract

I propose AspectJML, a simple and practical aspect-oriented ex-
tension to JML. It supports the specification of crosscutting con-
tracts for Java code in a modular way while keeping the benefits
of a design by contract language, like documentation and modular
reasoning.

Categories and Subject Descriptors D.2.4 [Software]: Program
Verification—Programming by contract; F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Assertions, Invariant,
Pre- and postconditions, Specification techniques

General Terms Languages, Verification

Keywords Design by contract, crosscutting contracts, JML, As-
pectJ, AspectJML

1. Introduction

Design by Contract (DbC) is a useful technique for developing and
checking program’s correctness against its specification [7]. The
key mechanism in DbC is the use of the so-called “contracts”. Writ-
ing out these contracts in the form of specifications and verifying
them against the actual code either at runtime or compile time has
a long tradition in the research community. The idea of checking
contracts at runtime was popularized by Eiffel [8] in the late 80’s.

It is claimed in the literature [2, 3, 6, 10] that the contracts
of a system are de-facto a crosscutting concern and fare better
when modularized with AOP mechanisms such as pointcuts and ad-
vice [3]. The idea has also been patented [6]. However, Balzer, Eu-
gster, and Meyer’s study [1] contradicts this intuition by concluding
that the use of aspects hinders design by contract specification and
fails to achieve the main DbC principles such as contract inheri-
tance, documentation and modular reasoning. Also, they go further
and say that “no module in a system (e.g., class or aspect) can be
oblivious of the presence of contracts” [1, Section 6.3]. Indeed, as
AOP is a form of implicit invocation with implicit announcement
(IIA), it also compromises modular reasoning [12] for other kinds
of crosscutting concerns, like distribution and persistence [11].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.

Copyright is held by the owner/author(s).

ACM 978-1-4503-1995-9/13/10.

http://dx.doi.org/10.1145/2508075.2514877

1.1 Problem and Motivation

Balzer, Eugster, and Meyer’s study [1] helped crystallize my think-
ing about the goals of a design by contract language, in particular
about the portion of such languages that provides good documen-
tation, modular reasoning, and non contract-obliviousness.

However, there are situations that the quantification property
of AOP can be beneficial to a contracted module. For example,
recall the class Point, of the classical figure editor [3], and let
us specify some contracts expressed in JML [5]. The result is
illustrated in Figure 1. Both methods setX and setY of class
Point have a precondition (denoted by the requires clause) that
states the input parameter must be at least zero; both also have
an exceptional postcondition (represented by the signals_only

clause) that forbids the methods by throwing exceptions (which
includes runtime exception). Finally, the invariant defined in this
example restricts points to the upper right quadrant.

class Point {

int x, y;

//@ invariant x >= 0 && y >=0;

//@ requires x >= 0;

//@ signals_only \nothing;

void setX(int x) {this.x = x;}

//@ requires y >= 0;

//@ signals_only \nothing;

void setY(int y) {this.y = y;}

... // other methods

}

Figure 1. The contract specifications of the class Pointwith JML.

In relation to modular reasoning and documentation [4], one
can reason about Point objects using just that type’s and method’s
specifications, contained in Figure 1. So, with those documented
contracts, there is no need to look at unrelated, separated, and
non-documented modules [1] as we do when using, for example,
AspectJ aspects [3].

At this point, let me make two viewpoints of the specifications
in Figure 1. The first one is that a design by contract language like
JML can be used to modularize some contracts. Hence, the single
invariant clause can be viewed as a form of modularization pro-
vided by these languages. Instead of writing the same pre- and post-
conditions for all methods in a class, we just write a single invariant
statement that “modularizes” those pre- and postconditions.

On the other hand, these design by contract languages (e.g.,
JML) do not capture other forms of crosscutting contracts that
can arise in the specifications. For instance, the precondition that
constrains the input parameter, of the both set methods, to be at
least zero, cannot be written only once and applied to these and

115



other methods that can have the same design constraint. In the same
sense, if we also assume that other methods are forbidden to throw
exceptions, we need to explicitly write the same signals_only

clause to these other methods as well. There is no way to express
that which crosscuts like an invariant.

As observed, the main problem here is a trade-off. If we decide
to use AspectJ to modularize such crosscutting contracts, the result
would be a poor contract documentation or a compromised modular
reasoning of a particular method under certain design constraints.
If we decide to go back to a design by contract language, such as
JML, we would face the scattered nature of common contracts that
we explain above. This dilemma leads us to the following research
question: Is it possible to have the best of both worlds? So, how can
we achieve good documentation, modular reasoning and specify
such crosscutting contracts in a modular way?

2. AspectJML

I propose AspectJML, a simple and practical aspect-oriented exten-
sion to JML. With just a few aspect-based constructs, AspectJML
provides support for specifying crosscutting contracts in a modular
and convenient way. The key concept behind AspectJML is what
we call crosscutting contract specifications, or XCS.
Crosscutting Contract Specifications. Figure 2 illustrates the
crosscutting contracts specifications for the Point class. As ob-
served, I define a pointcut with all the crosscutting contract spec-
ifications. To be fully compatible to Java, the AspectJ constructs,
I rely on, are based on the @AspectJ syntax, which are based on
metadata annotations. So, in the example, I define a pointcut us-
ing the @Pointcut annotation. The method setXY represents a
pointcut declaration since it is annotated with a @Pointcut anno-
tation. This pointcut intercepts all the executions of set-like method
declarations in the Point class. In Contrast to AspectJ, this is the
simplest way to modularize crosscutting contracts at source code
level. The major difference is that a specified pointcut is always
processed when using the AspectJML compiler (ajmlc). In stan-
dard AspectJ, a single pointcut declaration, without an associated
advice, does not contribute to the execution flow of a program. In
AspectJML, we do not need to define an advice to check a spec-
ification in a crosscutting fashion. Hence, we have the specified
crosscutting precondition and exceptional postcondition checked
in a modular way.

One benefit to use AspectJ syntax is that we can see when a
pointcut declaration is well-formed. In other words, we can see the
arrows indicating where the specifications will be checked during
runtime. In plain AspectJ/AJDT this example show no crosscut-
ting structure information, because it has only pointcut declarations
without advice. In AspectJ, we need to associate the declared point-
cuts to advice in order to be able to browse the crosscutting struc-
ture of a system. Hence, I have implemented an option in Aspec-
tJML that generates the cross-references information for crosscut-
ting contracts when we have only pointcut declarations.

Finally, with AspectJML, all the crosscutting contracts are well
documented in the class it applies to. In the conventional approach,
the aspects are separated from the type declarations and they do not
provide a documented approach.

3. Related Work

As discussed throughout the paper, there are several works in the
literature that argue in favor of implementing DbC with AOP [2, 3,
6, 10]. Kiczales opened this research avenue by showing a simple
precondition constraint implementation in one of his first papers on
AOP [3]. After that, other authors explored how to implement and
separate the DbC concern with AOP [2, 3, 6, 9, 10]. All these works
offer common templates and guidelines for DbC aspectization.

Figure 2. The AspectJML specifications of Point class.

However, as also discussed, DbC aspectization is more harmful
than good [1]. I go beyond these works by showing how to combine
the best design features of a design by contract language like JML
and the quantification benefits of AOP such as AspectJ. As a result
I conceive the AspectJML specification language that is suitable for
specifying crosscutting contracts.

4. Acknowledgments

I would like to thank Professors Gary T. Leavens and Ricardo Lima
(my supervisors) for the discussions about the ideas of this work.

References

[1] S. Balzer, P. T. Eugster, and B. Meyer. Can aspects implement con-
tracts. In In: Proceedings of RISE 2005 (Rapid Implementation of

Engineering Techniques, pages 13–15, September 2005.

[2] Y. A. Feldman, O. Barzilay, and S. Tyszberowicz. Jose: Aspects for
Design by Contract80-89. sefm, 0:80–89, 2006.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. Getting started with aspectj. Commun. ACM, 44:59–65, October
2001.

[4] G. T. Leavens. JML’s rich, inherited specifications for behavioral sub-
types. In Z. Liu and H. Jifeng, editors, Formal Methods and Soft-

ware Engineering: 8th International Conference on Formal Engineer-

ing Methods (ICFEM), volume 4260 of Lecture Notes in Computer

Science, pages 2–34, New York, NY, Nov. 2006. Springer-Verlag.

[5] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. ACM SIGSOFT

Software Engineering Notes, 2006.

[6] C. V. Lopes, M. Lippert, and E. A. Hilsdale. Design by contract with
aspect-oriented programming. In U.S. Patent No. 06,442,750, issued
August 27, 2002.

[7] B. Meyer. Applying “design by contract”. Computer, 25(10):40–51,
1992.

[8] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[9] H. Rebêlo, R. Lima, U. Kulesza, C. Sant’Anna, Y. Cai, R. Coelho,
and M. Ribeiro. Quantifying the effects of aspectual decompositions
on design by contract modularization: A maintenance study. Interna-

tional Journal of Software Engineering and Knowledge Engineering,
2013.

[10] H. Rebêlo, R. Lima, and G. T. Leavens. Modular contracts with pro-
cedures, annotations, pointcuts and advice. In SBLP ’11: Proceedings

of the 2011 Brazilian Symposium on Programming Languages, 2011.

[11] S. Soares, E. Laureano, and P. Borba. Implementing distribution and
persistence aspects with aspectj. In Proceedings of the 17th conference

on Object-oriented programming (OOPSLA), systems, languages, and

applications, 2002.

[12] F. Steimann. The paradoxical success of aspect-oriented program-
ming. In Proceedings of OOPSLA 2006, ACM SIGPLAN Notices,
pages 481–497, New York, NY, Oct. 2006. ACM.

116




