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‘gYou’re both right. It’s a dessert topping and a floor wax!” 

Abstract 
Object-oriented languages generally lack 

support for persistent objects-that is objects 
that survive the process or programming ses- 
sion. On the other hand, database systems 
lack the expressiblity of object-oriented lan- 
guages. Both persistence and expressibility 
are necessary for production application devel- 
opment. 

This paper presents a brief overview of 
VBASE, an object-oriented development envi- 
ronment that combines a procedural object 
language and persistent objects into one inte- 
grated system. Language aspects of VBASE 

include strong datatyping, a block structured 
schema definition language, and parameteriza- 
tion, or the ability to type members of aggre- 
gate objects. Database aspects include sys- 
tem support for one-to-one, one-to-many, 
and many-to-many relationships between 
objects, an inverse mechanism, user control 
of object clustering in storage for space and 
retrieval efficiency, and support 
for trigger methods. 

Unique aspects of the system are its mech- 
anisms for custom implementations of storage 
allocation and access methods of properties 
and types, and free operations, that is opera- 
tions that are not dispatched according to any 
defined type. 
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- Chevy chase 

During the last several years, both languages and 
database systems have begun to incorporate object fea- 
tures. There are now many object-oriented program- 
ming languages. [Gol1983, Tes1985, Mey1987, 
Cox1986, Su19861. Object-oriented database manage- 
ment systems are not as prevalent yet, and sometimes 
tend to use different terms (Entity-Relationship, 
Semantic Data Model), but they are beginning to 
appear on the horizon [Cat1983, Cop1984, Ston1986, 
Mylo19801. However, we are not aware of any system 
which combines both language and database features in 
a single object-oriented development platform. This is 
essential since a system must provide both complex 
data management and advanced programming language 
features if it is to be used to develop significant pro- 
duction software systems. Providing only one or the 
other is somewhat akin to providing half a bridge: it 
might be made structurally sound, perhaps, but it is 
not particularly useful to one interested in getting 
across the river safely. 

Object-oriented languages have been available for 
many years. The productivity increases achievable 
through the use of such languages are well recognized. 
However, few serious applications have been developed 
using them One reason has been performance, though 
this drawback is being eliminated through the develop- 
ment of compiled object languages. The remaining 
major negative factor, in our view, is the lack of sup- 
port for persistence; the lack of objects that survive 
the processing session and provide object sharing 
among multiple users of an application. 

Database management systems, in contrast, suffer 
from preciseljr the opposite problem. While having 
excellent facilities for managing large amounts of data 
stored on mass media, they generally support only lim- 
ited expression capabilities, and no structuring facili- 
ties. 

Both language and database systems usually solve 
this problem by providing bridges between the sys- 
tems. Thus the proliferation of ‘embedded languages’, 
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allowing language systems to access database man- 
agers. These bridges are usually awkward, and still 
provide only restricted functionality. Both perfor- 
mance and safety can be enhanced through a tighter 
coupling between the data management and program- 
ming language facilities. 

It is this lack of a truly integrated system which 
provided our inspiration at Ontologic, Inc. This 
paper reviews Ontologic’s VBASE Integrated Object 
System and describes how it combines language and 
database functionality. 

1. General System Overview 
The single overriding consideration which drove 

the design and development of VBASE was to provide 
a complete development system for practical produc- 
tion applications based on object-oriented technolo- 
gy- 

Two goals flowing from this motivation were: 

1) To integrate a procedural language with sup- 
port for persistent objects. This support should 
be as transparent as possible to users of the sys- 
tem. 

2) To take maximum advantage of strong typing 
inherent in object systems in both the language 
and database. 

The system derives its heritage from many precur- 
sors, Probably the single most important language 
influence was the CLU prograrnmin g language devel- 
oped at MIT&is 198 11. Thus, VBASE is based around 
the abstract data type paradigm, rather than the 
object/message paradigm. This orientation manifests 
itself in many areas. For example, in typical 
object/message systems, all access to object behavior 
iS through a uniform message syntax. In VBASE, 
object behavior is elicited by a combination of prop- 
erties and operations. Properties represent static 
behavior; operations represent dynamic behavior. 
Property definition and access are syntactically dif- 
ferentiated from those of operations. This provides a 
more natural model of object behavior. It also saves 
the programmer from writing trivial code to get and 
set the VdUeS ofproperties. In VBASE, these opera- 
tions are normally generated by the system, further 
increasing programmer productivity. 

In fact, the fundamental emphasis on a strong sepa- 
ration between the specification of a system and the 
implementation of a system is common to abstract 
data type and object/message systems. VBASE uses 
this methodology at several levels to provide an 
extremely flexible architecture. (The overall archi- 
tecture is shown in figure 1.) 
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The language layer contains compilers for defining 
and implementing the behavior of objects. The 
abstraction layer implements the object meta-model, 
providing support for inheritence, operation dispatch- 
ing, method combination, and property manipula- 
tion. The representation layer is the locus of our ref- 
erence semantics. The storage layer is responsible for 
object persistence. 

Each layer of VBASE is implemented within VBASE 
itself. Thus each layer has a VBASE specification and 
a VBASEimplementatiOn.COnSeqUen~y,we~~ize 
many of the advantages of the system in the imple- 
mentation of the system itself. Chief among these 
has been the ability to implement the total system 
quickly and then tune performance by replacing or 
enhancing various implementations. As the specifica- 
tions were unaffected, effort could be concentrated 
where it was needed, allowing a good deal of perfor- 
mance work to be completed on the system at an ear- 
ly date. 

As menticned previously, support for persistent 
objects, or objects that survive process lifetimes and 
programming sessions was a key motivation. This 
requires ‘database’ support; that is, handling of stor- 
age on stable media such as disks. There are some fur- 
ther capabilities implied by ‘database’ support: 

1) sharing of object data among multiple process- 
es/users. 

2) handling large numbers of objects and conse- 
quently handling a large object storage space. 

3) software stability so that the object space is 
maintained in a consistent state in the face of 
system or media failure. 

We had a further desire: to provide ‘seamless’ sup- 
port for persistent objects through a natural syn- 
tax. We par!5~larly wished to avoid the ‘embedded 
language’ approach. The goal was to integrate persis- 
tent objects completely into the language as pseudo- 
standard variables. This makes the entire expression 
processing capability of the language layer available 
to the persistent objects. 
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The last of the primary motivations directing the 
design and development of VBASE was to build an 
object system that also provided strong typing. One 
of the most serious drawbacks of the Smalltalk 
class of object systems is their lack of any notion of 
type specificity. There are simply objects. The bene- 
fits of s&ong typing are well known. There are 
three that are especially important in a system 
intended for commercial development 

First, strong typing resolves many more errors at 
compile time than weakly-typed systems. Since 
objects’ main claim to fame is productivity gain, the 
resolution of errors at an earlier time in the soft- 
ware lifecycle is significant It should also be noted 
that compile time errors are generally easier to ana- 
lyze and correct than errors of type mismatch that 
occur at run time. 

Second, strong typing of object data structures 
provides superior specification of the system Rather 
that relying on user-constructed naming conventions 
to convey type information (aFruit, anApple, aCar, 
etc), data structure type declarations provide a clear 
and exploitable specification since the type declara- 
tions are all part of the system specification. Thus, 
one can examine the declaration aFruit: Fruit, and 
then examine the Fruit definition for further infor- 
mation. This process can be applied recursively to 
any desired level of detail, and is not dependent on 
adoption of any conventions by the system imple- 
mentors. 

One final issue regarding strong typing is its 
effect on system performance. A strongly typed sys- 
tem allows the language processor to do far more 
analysis at compile time. This analysis can often 
reduce the need for runtime type checks, as well as 
allow methods to be statically bound. Our experi- 
ence to date indicates that 90% of all type checking 
and method binding can be done at compile time. 
This eliminates the performance degradation fre- 
quently resulting from object systems’ need to 
dynamically bind all method code to achieve 
object/message behavior. Thus VBASE exhibits the 
functionality of dynamic method binding based on a 
hierarchy of types, as do all object systems. Howev- 
er, it does so with performance comparable to a com- 
piled, statically bound system 

There are, in fact, many more optimizations that 
the language processor can do based upon its knowl- 
edge of the semantics of the types and objects in the 
system, and the amount of work that can be done is 
proportional to the amount of information that is 
contained in the defmitions. This is yet another argu- 
ment for a strongly typed system 

While VBASE supports strong typing, the VBASE 
type system also provides a great &al of flexibility. 

Through the use of subtyping and parameterized 
types and operations, VBASE provides a high degree 
of static type checking. There are cases, however, 
where static type checking is impossible or undesir- 
able. Explicit run-time type checking can then be 
used to achieve the same expressive capability as an 
untyped object system Thus, in VBASE, the tradeoff 
between compile-time optimization and run-time 
flexibility is controlled by the application develop- 
er. 

2. System Components 
vBAsE is currently implemented on top of Sun OS 

3.2 UNIX. There are presently two language inter- 
faces: TDL (for Type Defmition Language) and COP 
(for C Object Processor). TDL is used to specify a 
data model. That is, it is used to define data types 
and specify their associated properties and opera- 
tions. COP is used in two roles. It is used to write 
the code to implement the operations. It is used to 
write the applications programs. There is also a set 
of tools to assist development. These include a 
debugger, interactive object editor, and a verifier pro- 
gram that checks consistency of the physical layout 
of the object data space. 

TDL is a proprietary language. It is block struc- 
tured, with features in common with such languages 
as Pascal, Modula, and Algol. Types are the most 
common entities defined in TDL. A type serves as the 
nexus for behavior of its instances. It determines the 
properties for which its instances supply values and 
it defines operations which may be performed on its 
instances. 

The current version of the system allows only one 
supertype to be specified; this supertype places the 
type defmition in the type hierarchy. Behavior is 
inherited via the type hierarchy in the expected man- 
ner. A type is also a block scope in TDL, and conse- 
quently may contain other arbitrary definitions 
along with its central property and operation defmi- 
tions . 

cop is a strict superset of the C language as 
defined by Kemighan and Ritchie. Any program 
which compiles with standard C will compile with 
COP. It contains syntactic extensions to the C lan- 
guage to allow typed declarations of variables, 
access to properties of objects, and invocation of 
operations on objects. COP is used to write the actual 
code that implements the operations and properties 
and other behaviors specified in TDL. It is currently 
implemented as a preprocessor which emits standard 

432 OOPSLA ‘87 Proceedings October 4-8,19a7 



c code. 
The debugger allows source line debugging of the 

COP source code. The object editor allows interactive 
traversal of type and object definitions, assignment 
of object property values, and invocation of opera- 
tions. The storage verifier examines the physical lay- 
out of the database and verifies its structural integri- 
ty- 

3. Interesting Language Aspects 
VBASE incorporates most of the standard object 

technology. There is a taxonomy of types, with sub- 
types inheriting both properties and operations from 
their supertype. Subtypes can add more specific 
behavior by specifying additional properties or opera- 
tions, and can also refine existing behavior of inher- 

ited properties or operations. When an operation is 
invoked, it is dispatched according to the type of the 
object of the invocation. Thus in COP one writes: 
Entity$print (someobject); 

which means find the print operation of the type 
closest in the type hierarchy to the direct type of 
someobject Of course, there is complete type exten- 
sibility, with the user being able to define and use 
whatever types are desired. 

3.1 Strong Typing 
The most important language influence-strong 

typing-is unusual among current object systems. In 
TDL, the following definition illustrates the typing 
aspects: 

define Type Fart define Type Pipe 
supertypes = (Entity}; supertypes = {Part}; 

properties = { 
partID: Identifier; 
name: optional String; 
components: distributed Set[Part] 

inverse componentOf; 
componentof: Part inverse components; 

I 
operations = { 

display (p:Part) 
raises (NoDisplaylmage) 
method (Part-Display); 

isComponentOf (pl : Part, p2:Part) 
raises (IsRootComponent) 
method (Part-isComponentOf) 
returns (Boolean); 

properties q { 
length: Integer := 0; 
diameter: Integer := 0; 
leftConnection: Part; 
rightconnection: Part; 
threadtype: optional ThreadType := 

Thread ype!$ScrewThread; 
islnsulated: optional Boolean:= False; 

1; 

operations = ( 
refines connect (p: Pipe, to: Part, 

keywords 
optiona usingConnector: Connector) 

raises (ThreadtypeMisMatch, 
IncompatibleMaterials) 

method (Pipe-Connect) 
returns (Part); 

connect (p: Part, to: Part, 
keywords 

optional using: Connector) 
raises (BadConnect) 
method (Part-Connect) 
returns (Part); 

iterator components (p: Part) 
yields (p: Part) 
method (Part-Components); 

refines delete (p: Part) 
triggers (Part-deleteTrigger); 

I; 

materialsCompatible(pl:Pipe, p2:Pipe) 
method (Pipe-MaterialsCompatible) 
returns (Boolean); 

refines delete (p: Pipe) 
raises (CannotDelete) 
triggers (Pipe-deleteTrigger); 

1: 
end Pipe; 

define Type ThreadType is enum (ScrewThread, 
PolThread); 

PRIVATE 
properties = { 

displaylmage: optional image; 
isRootComponent: Boolean := False; 
I; 

end Part; 

Figure 2. TDL code for two type &jinittins is 
shown. Type Part is a generic &fmition usedfor 
allparts in this hypothetical engineering design 
database. It is the supertype of type Pipe which 
inherits all the behavior of parts andadds behavior 
specifw to pipes. 
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Note that all definitions are associated with a 
type. This applies at all levels. At the topmost lev- 
el, the ‘define Type Part’ fragment says that Part is 
of type Type. In a similar manner, properties are 
defined in terms of their data type, as are operation 
arguments, return values, and exception specifica- 
tions. The type information contained in the TDL spec- 
ifications is then used to generate a schema for an 
object database. In practice, VBASE provides a sub- 
stantial kernel schema. TDL is then used to augment 
this schema with user extensions. Thus TDL can be 
described as an incremental schema compiler. 

After the datatypes are defined, COP code is writ- 
ten and compiled against the object database. The 
COP compiler is a database application, and uses the 

Figure 3. COP co& for the Pipe-Connect method. 
This method implements the opemtion &fined in 
Type Pipe in figure 2. 

method 
obj Part 
Pipe-Connect (aPipe, toPart, usingConnector) 

obj Pipe aPipe; 
obj Part toPart; 
keyword obj Connwtor usingConnector; 

f 
obj Part connectedPart; 
obj Pipe toPipe; 
int j; 

if (hasvalue (usingConnector)) 
l 

connectedPart = Pipe$Connect 
(aPipe, usingconnector); 

return (Part$Connect (connectedPart, toPart, 
using: usingconnector)); 

I 

toPipe = assert (toPart, obj Pipe); 
except (ia: IllegalAssert) 
I: 

PipeSystem$ErrorPrint (aPipe, toPart. “can only 
connect Pipes to Other Pipes”); 

if (aPipe.threadtype != toPipe.threadtype) 
raise (ThreadTypeMisMatch); 

if (1 PipeSMaterialsCompatible (aPipe, toPipe)) 
raise (IncompatibleMaterials); 

aPipe.leftConnection = toPipe; 
toPipe.rightConnection = aPipe; 

connectedPart = $S (aPipe, apart); 

return (connectedPart); 
I 

type information of the database to do what type 
checking is possible at compile time. When static 
type checking is not possible, the check is deferred 
to runtime. 

Operations in the type definition am implemented 
by methods written in COP. Figure 3 shows the code 
to implement the Pipe-Connect method. 

Note that all object variables are declared with 
the additional keyword obj. This allows the pro- 
gram variables to be associated with types in the 
schema, and COP can then do type checking based on 
the schema information. Therefore the assignment 

aPipe.leftConnection = toPipe; 

is allowed since the leftConnection property of type 
Pipe is of type Part, and the declared type of the 
variable toPipe is Pipe. These are compatible since 
Pipe is a subtype of Part All operation invocations 
and their arguments are similarly checked. 

When it is not possible to determine type compati- 
bility at compile time, the programmer uses the 
assert statement. The assert statement defers type 
checking until runtime. This allows handling assign- 
ment of a more general type to a more specific type 
without violating strict compile-time type checking 
in most cases, an invaluable productivity win in 
large, complex systems. In the method example in 
figure 3, assert is used for two purposes. 

Fist, this simple implementation assumes that 
pipes can only be connected to pipes; thus the assert 
does a runtime type check for the programmer, 
while allowing the code to be written for the more 
general case of connecting a pipe to any other part 

Second, the statement 
toPipe.rightConnection = aPipe; 

will not compile if the declared type of toPipe is 
Part. This is because Part does not define the proper- 
ty rightConnection. rightconnection is defmed by 
Pipe. Thus while it is quite possible that, since part 
is pipe’s supertype, a given part is a pipe, it is not 
guaranteed by the declarations of the program. This 
is a very common type violation in object systems, 
and this is what VBASE prevents. The assert alerts 
the implementor that the actual type of the object 
toPipe must be pipe (or a subtype of pipe) in order 
for this assignment to be valid. 

This is in stark contrast to Smalltalk-like object 
systems. 

32 A Block-structured Schema DejCzition 
Language 

Another notable feature of TDL is that it is a block 
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structured language. This is different from most 
object systems, and certainly very different from 
most schema definition languages of DBMS’S. It gives 
TDL the kind of complex name environment that 
most structured programming languages have, with 
the concommitant reduction of name conflicts. It 
also means that the system supports pathnames, 
allowing simple grouping of names, and relative 
names as well as global names. 

restrict the set of types to only those which can 
actually occur: 

define type BlockScope is union (Type, Module, 
Environment, Directory, . ..). 

The ‘$’ is the pathname component separator. Thus 
the name ‘Threadtype$Screwtype’ refers to the name 
Screwtype within the block defined by the name 
Threadtype. Analogously, in the COP fragment, a 
name such as ‘Pipe!$Connect’ refers to the name Con- 
nect within the Pipe scope. Names which begin with 
a ‘$’ are considered absolute relative to the root 
scope maintained by VBASE. Names in the root 
include such things as kernel type names, system 
exception types, etc. New type definitions, unless 
contained within a scope, are placed in the root. A 
file is not considered a scope. This last point is gen- 
erally not true of present systems, and has the pleas- 
ant side effect that many definitions can be placed in 
a single file or set of fJe.5 without affecting the 
desired scoping. 

This allows common mistakes to be ferreted out 
at compile time. Thus: 

obj BlockScope scope: 
. . . . 
scope I DaySMonday; 

will fail at compile time. If, instead, the variable’s 
scope had to be declared of type Entity (the root of 
the type hierarchy), this mistake would go unnoticed 
during compilation. 

35 Parameterization 
Another significant capability of VBASE is what is 
sometimes referred to as parameterization: the abili- 
ty to specify the type of the objects contained inside 
aggregate objects. This ability is often not even 
available in procedural languages. Thus one can 
write: 

33 Constant & Variable Definitions in TDL 
Another programming language capability avail- 

able in TDL is defining constants and variables. This 
allows user-customized constants to be placed in the 
object database. For instance: 

define Constant myDefault := Null; 
define Constant No := False; 
define Constant Yes := True; 
define Variable background: Color := Colors$Gray; 
As in other languages, constants are immutable, 

while variables can have their bindings reassigned. 

obj Array[Animal] myZoo; 

VBASE will type check all insertions into and assign- 
ments from the aggregate just as it checks standard 
types. The lack of such checking is a serious short- 
coming of present systems as aggregates are widely 
used to store critical system information. Often this 
information is typed, but there is no way to enforce 
proper use short of writing expensive nmtime 
checks of the elements of the aggregate. Thus: 

i 

3.4 Enumeration, Union, and Variant 
Types 
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obj Array[Animaq myZoo; 
obj Fruit aKiwi; 

aKiwi P myZoo[3]; 
I 

fails at compile time. 

Along similar lines, TDL allows the definition of 
enumerations, unions and variants. Type definitions 
such as these are rarely supported in object systems 
or database systems. This is certainly unfortunate, as 
their uses are well known For instance: 
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Once again, it must be emphasized that this does 
not limit the programmer. If the programmer actual- 
ly wishes an ‘untyped’ Array: 

define type Day is enum (Monday, Tuesday, . ..). 
Unions and variants are especially important in 

object systems, particulary those which do not sup- 
port multiple inheritance. These definitional abili- 
ties allow any type of polymorphism desired to be 
expressed without circumventing the type safety of 
the system. Rather than having to declare any vari- 
able that can potentially hold objects of types which 
are disjoint in the type hierarchy as Entity, one can 

obj Array[Entity] myUntypedArray; 

will suffice. However, as most system implemen- 
tors can testify, this is rarely the case. More usual- 
ly&e appropriate types cannot be defmed within the 
confmes of tie chosen system, and the programmer 
must circumvent the system in order to accomplish 
the task with reasonable efficiency. 

3.6 Method Combination 
The above paragraphs have described some of the 

more interesting ‘data definition’ (to use the term 
rather loosely) capabilities of VBASE. There are also 
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some very interesting runtime features in VBAsE. 
Perhaps the most notable of these is the VBASE 
approach to method combination. Method combina- 
tion in object systems results when a refming 
method invokes its refinee. In Smalltalk, for exam- 
ple, one uses the pseudo-variable ‘super’ for this pur- 
pose. VBASE uses '$$' for this purpose. This nOta- 
tion, rather than super or some derivative thereof, 
was chosen because of the novel view of operations 
behavior that VBASE takes. 

Operations are viewed as being implemented by a 
series of executable code fragments. The number of 
fragments is arbih-ary, and is the sum of all triggers 
and methods defined in the operation. Reviewing the 
TDL figure 2, note that each operation definition can 
include a method clause, and a triggers clause. Each 
operation is therefore potentially associated with 
one method, called the base method, and an arbitrary 
number of trigger methods. The execution sequence 
begins with the first trigger in the triggers clause. 
The ‘$$’ syntax transfers execution to the next code 
fragment either the next higger, or if no more are 
specified, to the method specified in the method 
cIause. Once these fragments are executed, ‘$$’ trans- 
fers execution to the refmee operation at the super- 
type level. 

Thus, in the case where only a base method is 
defined, ‘$$’ functions exactly as ‘super’ in 
Smalltalk. However, when triggers are used, this is 
not thecase.Consequently, VBASE.avoids the super 
syntax in favor of the ‘$$’ syntax to avoid the 
impression of moving up the supertype chain. 
Rather, ‘$$’ simply transfers execution to the next 
code fragment, whatever that may be. 

Functionally, ‘$$’ behaves like a function call. 
Thus, the placement of the ‘$$’ in the code allows 
implementation of pre-processing, post-processing, 
or both: wrapper processing. 

One interesting subject regarding this implementa- 
tion of method combination is the compatibility of 
operation specifications in a chain of operation refme- 
men& In a strongly typed system such as VBASE 
this is an important issue. The approach we have tak- 
en focusses on guaranteeing a conformance relation. 

Methods are checked by the COP compiler for con- 
forming to their specification defined by the opera- 
tion. Refmements of inherited specifications are veri- 
fied by the TDL compiler for conforming to the origi- 
nal specifications. The specific criteria for 
conformance have been motivated by the work of 
Cardelli[CAR1984]. 

3.7 Exceptions 
In many languages, there are no specific exception 

handling mechanisms. Thus code to detect and handle 
exceptions must be explicitly inserted at each point 
in a program where an exception might occur. This 
not only forces the writing of a great many short, 
repetitive code fragments, it also places an addition- 
al burden on the establishment of extra-language 
applications conventions and creates numerous oppor- 
tunities for lapses in programming discipline. 

In VBASE, we included a specific exception han- 
dling mechanism. Exception conditions detected dur- 
ing the execution of an operation raise an exception. 
That is, they transfer control to ‘a pre-defined excep- 
tion handling routine rather than return control to 
the caller. 

Once again, referring to figure 3, note the except 
and raise statements. These statements allow grace- 
ful handling of abnormal events that occur during 
processing, and are variations on a fairly standard 
theme. What is notable is that in VBASE, exceptions 
are types. This means that all of the behavior defmi- 
tion mechanisms available to types are available to 
exceptions. One consequence is that the implementor 
can define a hierarchy of exceptions. Thus exceptions 
can be generalized just like types are generalized. 
For example, a memory allocation operation might 
raise the exception OutOfMemory. A refinement of 
the operation, say one which allocates memory for 
strings, might raise a more specific exception, say 
SuingSpaceFull. StringSpaceFull could be imple- 
mented as a subtype of OutOfMemory. As a subtype 
of OutOfMemory, it could be used in any context 
where OutOfMemory itself would be expected. 

The second implication of exceptions as types is 
that one can define properties and /or operations of 
exceptions. ?roperties can be extremely useful. In 
the previous example, one could add the property 
AmountRequested to the exception type OutOfMem- 
ory. For example, assume the raising routine 
returned: 

raise OutOfMemory (AmountRequested: 4000000); 

The ‘catching’ program could then issue a meaning- 
ful error message or do something else appropriate. 
For example: 

except (0: OutOfMemory) 
{ 

printf (“The amount of memory: %d, requested is 
not avaiiable\n”, o.AmountRequested); 

1 
One can thus consider each actual raising of an 

exception as creating an instance of the exception. 
This instance is available to the catching program, 
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which can treat it like any other object, accessing its 
properties, etc. 

4. hteresfing Database Aspects 
VBASE supports most of the expected functionali- 

ty of a DBMS. Objects can be shared among multiple 
processes concurrently, backup and recovery facili- 
ties are provided, and simple access control is avail- 
able. A fust version of an object query language is 
also under development for inclusion in the first ver- 
sion of VBASE. Beyond this, there are many notably 
different aspects of VBASE that derive from database 
influences. 

4.1 Persistence 
Persistence of objects is clearly the most notable 

difference between VBASE and most current object 
systems. Any time an object is created, either by a 
TDL definition or an invocation of a create operation 
in COP, it is considered permanent and continues to 
exist until it is explicitly deleted by a delete opera- 
tion. The ability to deal with persistent objects 
without any special effort is an enormous advantage 
OfVBASE. 

42 Clustering 
Another database influence apparent in the system 

is the ability to cluster objects on disk and in memo- 
ry. Every create operation allows the invoker to 
specify a previouslyexisting clustering object. The 
new object is then clustered in the same segment as 
the clustering object. Since segments are the unit of 
transfer to and from secondary storage in VBASE, 
whenever any one of the objects in the cluster is 
accessed, the segment is transferred to memory (if it 
is not already there). Thus any subsequent references 
to one of the clustered objects will not require a 
disk access. 

This has numerous applications. For instance, 
objects contained within an array can be clustered 
with the array. It is also very useful for a-part-of, 
or component, hierarchies, which are extremely com- 
mon in engineering and text management applica- 
tions. In this case, all the component objects can be 
clustered Therefore only one disk access is required 
to transfer the entire hierarchy into memory. Clus- 
tering also provides space saving benefits, as there is 
less overhead when objects are stored in one segment. 

43 Inverse Relationships 
Reviewing the TDL definition of the ?ype Part 

(figure 2) points out a further database influence in 
VBAsE-the support for inverse relationships. Note 

the components and componentOf property defmi- 
tions. These properties are declared as inverses. This 
means that whenever a modification is made to one 
of these properties, the other property is modified 
accordingly. This construct solves one of the more 
vexing problems in database management systems, 
particularly relational database systems. One-to- 
one, one-to-many, and many-to-many relationships 
between objects can all be supported and maintained 
automatically using the inverse capability. Thus, 
such common relationships as Parts-Suppliers or 
Employees-Departments can be implemented direct- 
ly with no additional definitions or code. This is a 
dramatic improvement over most current database 
systems, and is not available in current object sys- 
tems. 

4.4 Protecting the Object Database from 
Process Failure 

A last database style aspect of VBASE is the sup- 
port of a minimal protection scheme. Current object 
systems are entirely memory resident and generally 
ignore the issue of corruption due to process failure. 
However, this has long been a standard issue of 
database systems since large amounts of important 
data are being manipulated. Some degree of safety 
and resilience must be offered. VBASE will offer con- 
currency control and recovery in its first release. 

45 Triggers 
The availability of triggers, discussed previously, 

can be considered both a language and a database 
influence. Many database systems talk about trig- 
gers, few implement them. Their utility is obvious. 
Triggers can be attached to properties as well as 
operations to generate whatever behavior is desired. 
These behaviors include standard ones such as ‘when 
my QuantityOnHand property falls under twenty, 
issue a new order for a hundred more’, to more eso- 
teric patterns such as keeping audit trails of proper- 
ty and operation access for security purposes. 

In VBASE the triggers are often used to augment 
creation and deletion methods. The use of triggers 
can insure, for instance that, upon creation of an 
object, all important referent objects are created as 
well. Delete triggers reverse this to delete all refer- 
ent objects. Consider the example in figure 4. 

When a PipeConnector object is created, one 
would also like to create an Array for the bolts 
property of the connector, perhaps initializing it 
from a set of Bolts passed to the Create operation. 
The use of a trigger on the standard create operation 
provides this functionality. 
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method obj PipeConnector 
PipeConnector-CreateTrigger 

(aType, numberOfBolts, boltset) 

obj Type aType;P must always take a Type erg when 
doing a create ‘I 

obj Integer numberOfBolts; 
obj List[Bolt] boltSet; 
f 

obj PipeConnector newconnector; /’ the result of 
the creation process ‘1 

obj Bolt aBolt; P range variable for bolt set V 
int j = 0; /’ standard C variable *I 
newConnector = $$ (aType); 

P create the new object by invoking the 
standard system create operation *I 

P create the referent object *I 
newConnector.boltSet = 

Array$Create ($Array, numberOfBolts); 

/’ initialize the referent object *I 
iterate (aBolt = boltSet) 

newConnector.bolts[i++] = aBolt; 

return (newConnector); 
I 

.:. : : :.’ ‘.. . . . . . . . . . . . . ,... . . . . : ..,. . . . . . . . . ,.. :I,.,..>.:.:: .:.>::: 
Figure 4. Triggers CUE 
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Two aspects of the system should be noted in pass- 
ing. First is the arbitrary combination of C program 
variables with object variables. This, as stated, was 
an important goal: a truly integrated language. The 
language processor does all necessary conversion to 
assure a correct program is produced. The second fac- 
tor is the iterate statement Drawn from CLU, this 
statement processes all members of a database aggre- 
gate an element at a time without requiring the writ- 
ing of a ‘for’ loop. This is yet another productivity 
gain of the system, as it is unnecessary to compute 
the boundaries for a for loop. Perhaps more impor- 
tantly, iterators provide access to the elements of an 
aggregate abstractly, without exposing (or requiring 
knowlege of) the underlying implementation. 

4.6 Access To Meta Level Information 
The final attribute of VBASE drawn from DBMS'S is 

the availability of meta information. VBASE is entire- 
ly self-describing: all system characteristics except 
the lowest layers of storage management are imple- 

mented using types. The properties and operations of 
these system types are freely available to program- 
mers to use to their advantage. This makes system 
development easier, and allows implementors to cre- 
ate customized tools of their own while taking 
advantage of system tools already in existence. 

5. Some Further Unique Aspects 

5J Customized Property Implementations 
Object systems are known for their ability to 

allow users to create customized abstractions. 
VBASE provides users with the unique ability to cus- 
tomize implementations as well. This ability is 
available at two levels. 

In the simpler case, an implementor can provide 
customized access to a property by replacing the 
default get and set operations for the property by 
customized ones. For instance, the property ‘age’ in 
the following example has such customized opera- 
tions specified. 

define Type Person 
supertypes = {Mammal}; 
properties q ( 

age: Integer define set 
method (PersonSetAge) 
define get 
method (Person-GetAge); 

I: 
end Person; 

This specification will cause the user defined rou- 
tines to be invoked whenever access to the age prop- 
erty occurs as in: 

{ 
obj person aPerson; 
obj Integer theAge; 

theAge = aPerson.age; 
. . . . 
I 
What is different here from most systems is that 

when both a get and set operation are specified, no 
storage is allocated. Thus the programmer truly 
takes over the implementation, including storage 
allocation. The user may choose to calculate the val- 
ue (in the case of age, it is common to calculate the 
value as the difference between the person’s birth- 
date and the current system date), in which case no 
storage is needed. If storage is necessary, the imple- 
mentor may allocate it wherever he/she desires. For 
example, in a design application one might store 
large bitmap graphic images using a compression 
algorithm, and write customized code to read and 
write the image. In a similar vein, in a CASE SyStem 
one might store fragments of source code in standard 
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operating system files so that the various language 
processors will recognize the fragments. Finally, 
data from alien databases can be imported and 
exported transparently by using customized proper- 
ties. The get and set operations are used to call the 
appropriate database routines on the foreign database 
to read and write the data. 

52 Customized Type Implementations - 
MasterTypes 

The use of custom routines for handling property 
implementation still incurs the overhead of a stan- 
dard object. There is space overhead for the default 
representation, and the overhead of the system rou- 
tines for dispatching to the user’s custom routines. 
For sophisticated users wishing to avoid even this 
overhead, VBASE allows the complete implementa- 
tion of customized types. Since VBASE provides the 
complete specification of all system types including 
type Type, a complete customization of a type is pos- 
sible. It requires substantially more work than a cus- 
tom property, but this is to be expected. 

Customized types are actually handled as a sub- 
type of type Type, called MasterType. The most sig- 
nificant characteristic of a MasterType is that it 
takes over the dereferencing operation. VBASE insists 
on strong reference semantics. That is, objects are 
always represented by a reference, and these refer- 
ences appear uniform from the outside. Thus, the 
‘every object is a first class object’ semantics is 
maintained; even integers, single characters, and 
booleans are true frost class objects. However, the 
types Integer, Character and Boolean are also Mas- 
terTypes. They implement their own creation, dele- 
tion, and dereferencing operations. This allows types 
such as Integer to store their value within their ref- 
erence, and for types such as Real to make use of spe- 
cial hardware to implement arithmetic operations. 
MasterTypes must implement a create routine which 
fabricates and returns a reference, an appropriate 
dereferencing routine, routines for property access 
and operation dispatching and invocation, etc. How- 
ever, once the complete specification has been met, 
these MasterTypes behave exactly like all other 
types to users, and all of the attributes of the VBASE 
environment can be used with them. 

Implementors can therefore use the MasterType 
feature to create extremely customized types. No 
space or time overhead is incurred because the user 
implementation handles everything. MasterTypes are 
very useful for implementing custom access methods 
which require special data formats. This is a unique 
aspect of VBASE: the ability to tune access to special 

data formats such as large blocks of text or graph- 
ics, while remaining within the basic system. 

Another use for MasterType implementations is 
the construction of efficient integration databases. A 
model of a complex data structure is created 
through the definition of the appropriate types, prop- 
erties and operations. This data, which is actually 
stored in existing foreign databases, is accessed 
through MasterTypes which transfer the data to and 
from the alien databases. The use of MasterTypes 
allows a relatively efficient interface to the foreign 
database system to be implemented, while the pro- 
cessing and data modeling can be done in VBASE, 
with the attendant increase in modeling power and 
ease of implementation. 

53 Free Operations 

VBASE defines free operations: operations that are 
not associated with a type, and consequently, are not 
invoked via the standard dispatching means. In object 
message systems, every message is dispatched; that 
is, the type of the object being sent the message is 
used to find the method which implements the mes- 
sage. Free operations in VBASE, in contrast, do not 
have a distinguished argument. They are simply pro- 
cedures free of type association. 

Summary 
VBASE has, we hope, achieved all of the goals we 

set for ourselves, at least to some extent. It is a rel- 
atively complete development system with language 
processors and development tools. It is object based, 
strongly typed, and provides support for persistent 
objects. It also allows custom implementations for 
improved efficiency. VBASE contains many interest- 
ing features from both the language and database 
spheres. In fact, the most interesting aspect of 
VBASE is that it cannot be strictly classified as a 
language or a database system 
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