
Combining Language and Database Advances in
an Object-Oriented Development Environment

Timothy Andrews Jz Craig Harris
Ontologic, Inc.

47 Manning Road
Billerica, MA 01821

‘gYou’re both right. It’s a dessert topping and a floor wax!”

Abstract
Object-oriented languages generally lack

support for persistent objects-that is objects
that survive the process or programming ses-
sion. On the other hand, database systems
lack the expressiblity of object-oriented lan-
guages. Both persistence and expressibility
are necessary for production application devel-
opment.

This paper presents a brief overview of
VBASE, an object-oriented development envi-
ronment that combines a procedural object
language and persistent objects into one inte-
grated system. Language aspects of VBASE

include strong datatyping, a block structured
schema definition language, and parameteriza-
tion, or the ability to type members of aggre-
gate objects. Database aspects include sys-
tem support for one-to-one, one-to-many,
and many-to-many relationships between
objects, an inverse mechanism, user control
of object clustering in storage for space and
retrieval efficiency, and support
for trigger methods.

Unique aspects of the system are its mech-
anisms for custom implementations of storage
allocation and access methods of properties
and types, and free operations, that is opera-
tions that are not dispatched according to any
defined type.

permission to copy without fee all or pti of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and title of Ihe publicatiop and
its date appear and notice is given that copying is by permission of lhe
Association for Computing Machinery. To copy otherwise, or to repub-
lish, requires d fee and/or specific permission.

,c IY87 ACM O-8979 i-247-0/87/0010-0430 $1.50

- Chevy chase

During the last several years, both languages and
database systems have begun to incorporate object fea-
tures. There are now many object-oriented program-
ming languages. [Gol1983, Tes1985, Mey1987,
Cox1986, Su19861. Object-oriented database manage-
ment systems are not as prevalent yet, and sometimes
tend to use different terms (Entity-Relationship,
Semantic Data Model), but they are beginning to
appear on the horizon [Cat1983, Cop1984, Ston1986,
Mylo19801. However, we are not aware of any system
which combines both language and database features in
a single object-oriented development platform. This is
essential since a system must provide both complex
data management and advanced programming language
features if it is to be used to develop significant pro-
duction software systems. Providing only one or the
other is somewhat akin to providing half a bridge: it
might be made structurally sound, perhaps, but it is
not particularly useful to one interested in getting
across the river safely.

Object-oriented languages have been available for
many years. The productivity increases achievable
through the use of such languages are well recognized.
However, few serious applications have been developed
using them One reason has been performance, though
this drawback is being eliminated through the develop-
ment of compiled object languages. The remaining
major negative factor, in our view, is the lack of sup-
port for persistence; the lack of objects that survive
the processing session and provide object sharing
among multiple users of an application.

Database management systems, in contrast, suffer
from preciseljr the opposite problem. While having
excellent facilities for managing large amounts of data
stored on mass media, they generally support only lim-
ited expression capabilities, and no structuring facili-
ties.

Both language and database systems usually solve
this problem by providing bridges between the sys-
tems. Thus the proliferation of ‘embedded languages’,

430 OOPSlA ‘87 Proceedings October 4-8, 1987

allowing language systems to access database man-
agers. These bridges are usually awkward, and still
provide only restricted functionality. Both perfor-
mance and safety can be enhanced through a tighter
coupling between the data management and program-
ming language facilities.

It is this lack of a truly integrated system which
provided our inspiration at Ontologic, Inc. This
paper reviews Ontologic’s VBASE Integrated Object
System and describes how it combines language and
database functionality.

1. General System Overview
The single overriding consideration which drove

the design and development of VBASE was to provide
a complete development system for practical produc-
tion applications based on object-oriented technolo-
gy-

Two goals flowing from this motivation were:

1) To integrate a procedural language with sup-
port for persistent objects. This support should
be as transparent as possible to users of the sys-
tem.

2) To take maximum advantage of strong typing
inherent in object systems in both the language
and database.

The system derives its heritage from many precur-
sors, Probably the single most important language
influence was the CLU prograrnmin g language devel-
oped at MIT&is 198 11. Thus, VBASE is based around
the abstract data type paradigm, rather than the
object/message paradigm. This orientation manifests
itself in many areas. For example, in typical
object/message systems, all access to object behavior
iS through a uniform message syntax. In VBASE,
object behavior is elicited by a combination of prop-
erties and operations. Properties represent static
behavior; operations represent dynamic behavior.
Property definition and access are syntactically dif-
ferentiated from those of operations. This provides a
more natural model of object behavior. It also saves
the programmer from writing trivial code to get and
set the VdUeS ofproperties. In VBASE, these opera-
tions are normally generated by the system, further
increasing programmer productivity.

In fact, the fundamental emphasis on a strong sepa-
ration between the specification of a system and the
implementation of a system is common to abstract
data type and object/message systems. VBASE uses
this methodology at several levels to provide an
extremely flexible architecture. (The overall archi-
tecture is shown in figure 1.)

:..:,:: ..,. :.. :::y :,.: ::: ::.. -, ,,. .c. ,. :j .:. ,.: :..,. ,..: -;: ::. .:, .‘,,:;.: ,,,:,:z ,.; :.. : ..:.,: :
: j ::,: .., .j: .A.. .j, ::, ”

., .:,;..:.: : .:. .,,
: ., :, ,: .‘: .‘. ., ,, ; ::;
: _, I.,::: ‘.’ ‘i ‘. Language Layer ,::: .:: ‘.. j
,._, :, -...;.x: :(. :(.-, :. :,,., I, _.)

.,. ‘. . ~,:..:..::‘:‘.‘,~... ..> .;. Abstraction Layer
: :: ::...:,i:,. .:: .,.,, .:.. .‘..?T .’ - ..:.
(..

: :“.Y;,
~::.I:,.

.., ,,i ,,,(,:j:.::: .&.:..,:{:,‘:,‘: _..::. :: :,, :.. :.. Representation Layer “11”‘:
: ,:,: .:.: :

.: ,,,; .’ .“, :: ,(,: :. :.’ ,“:.‘. ,>:,. ..,...:. -..
. . ..: :. ; ,; . .

:.., 1.. .:.:;. ,: Storage Layer
.:’ :

-. ..,: j: :;’ j.... .,:, .; .;, ,.,. .: :. ,:.. ,: ..,. :,,: ::: : ” ,.,. :. ,.:
..‘.’

‘. ., :. ; : :‘I ,:. .’ ‘.:.::...:..I,y;. I. :. ::,: : .,, ...
-.: ::::.: :ji :::: .: I::.:.I ;. : “‘. --“Fi&m’ I, .)?ti&/Z: ~,&if&u&, j I j :.
.:, :.:.,.:. ,. : . :.:,: ‘: :,... ..: ‘:. .:... ..::> ,.., :,.: . . :,,,::? .._.:,.. .., >..,i...-:..:.:.: ,.,,.: . . i..’ .: :,

The language layer contains compilers for defining
and implementing the behavior of objects. The
abstraction layer implements the object meta-model,
providing support for inheritence, operation dispatch-
ing, method combination, and property manipula-
tion. The representation layer is the locus of our ref-
erence semantics. The storage layer is responsible for
object persistence.

Each layer of VBASE is implemented within VBASE
itself. Thus each layer has a VBASE specification and
a VBASEimplementatiOn.COnSeqUen~y,we~~ize
many of the advantages of the system in the imple-
mentation of the system itself. Chief among these
has been the ability to implement the total system
quickly and then tune performance by replacing or
enhancing various implementations. As the specifica-
tions were unaffected, effort could be concentrated
where it was needed, allowing a good deal of perfor-
mance work to be completed on the system at an ear-
ly date.

As menticned previously, support for persistent
objects, or objects that survive process lifetimes and
programming sessions was a key motivation. This
requires ‘database’ support; that is, handling of stor-
age on stable media such as disks. There are some fur-
ther capabilities implied by ‘database’ support:

1) sharing of object data among multiple process-
es/users.

2) handling large numbers of objects and conse-
quently handling a large object storage space.

3) software stability so that the object space is
maintained in a consistent state in the face of
system or media failure.

We had a further desire: to provide ‘seamless’ sup-
port for persistent objects through a natural syn-
tax. We par!5~larly wished to avoid the ‘embedded
language’ approach. The goal was to integrate persis-
tent objects completely into the language as pseudo-
standard variables. This makes the entire expression
processing capability of the language layer available
to the persistent objects.

October 4-8, 1987 OOPSLA ‘87 Proceedings 431

The last of the primary motivations directing the
design and development of VBASE was to build an
object system that also provided strong typing. One
of the most serious drawbacks of the Smalltalk
class of object systems is their lack of any notion of
type specificity. There are simply objects. The bene-
fits of s&ong typing are well known. There are
three that are especially important in a system
intended for commercial development

First, strong typing resolves many more errors at
compile time than weakly-typed systems. Since
objects’ main claim to fame is productivity gain, the
resolution of errors at an earlier time in the soft-
ware lifecycle is significant It should also be noted
that compile time errors are generally easier to ana-
lyze and correct than errors of type mismatch that
occur at run time.

Second, strong typing of object data structures
provides superior specification of the system Rather
that relying on user-constructed naming conventions
to convey type information (aFruit, anApple, aCar,
etc), data structure type declarations provide a clear
and exploitable specification since the type declara-
tions are all part of the system specification. Thus,
one can examine the declaration aFruit: Fruit, and
then examine the Fruit definition for further infor-
mation. This process can be applied recursively to
any desired level of detail, and is not dependent on
adoption of any conventions by the system imple-
mentors.

One final issue regarding strong typing is its
effect on system performance. A strongly typed sys-
tem allows the language processor to do far more
analysis at compile time. This analysis can often
reduce the need for runtime type checks, as well as
allow methods to be statically bound. Our experi-
ence to date indicates that 90% of all type checking
and method binding can be done at compile time.
This eliminates the performance degradation fre-
quently resulting from object systems’ need to
dynamically bind all method code to achieve
object/message behavior. Thus VBASE exhibits the
functionality of dynamic method binding based on a
hierarchy of types, as do all object systems. Howev-
er, it does so with performance comparable to a com-
piled, statically bound system

There are, in fact, many more optimizations that
the language processor can do based upon its knowl-
edge of the semantics of the types and objects in the
system, and the amount of work that can be done is
proportional to the amount of information that is
contained in the defmitions. This is yet another argu-
ment for a strongly typed system

While VBASE supports strong typing, the VBASE
type system also provides a great &al of flexibility.

Through the use of subtyping and parameterized
types and operations, VBASE provides a high degree
of static type checking. There are cases, however,
where static type checking is impossible or undesir-
able. Explicit run-time type checking can then be
used to achieve the same expressive capability as an
untyped object system Thus, in VBASE, the tradeoff
between compile-time optimization and run-time
flexibility is controlled by the application develop-
er.

2. System Components
vBAsE is currently implemented on top of Sun OS

3.2 UNIX. There are presently two language inter-
faces: TDL (for Type Defmition Language) and COP
(for C Object Processor). TDL is used to specify a
data model. That is, it is used to define data types
and specify their associated properties and opera-
tions. COP is used in two roles. It is used to write
the code to implement the operations. It is used to
write the applications programs. There is also a set
of tools to assist development. These include a
debugger, interactive object editor, and a verifier pro-
gram that checks consistency of the physical layout
of the object data space.

TDL is a proprietary language. It is block struc-
tured, with features in common with such languages
as Pascal, Modula, and Algol. Types are the most
common entities defined in TDL. A type serves as the
nexus for behavior of its instances. It determines the
properties for which its instances supply values and
it defines operations which may be performed on its
instances.

The current version of the system allows only one
supertype to be specified; this supertype places the
type defmition in the type hierarchy. Behavior is
inherited via the type hierarchy in the expected man-
ner. A type is also a block scope in TDL, and conse-
quently may contain other arbitrary definitions
along with its central property and operation defmi-
tions .

cop is a strict superset of the C language as
defined by Kemighan and Ritchie. Any program
which compiles with standard C will compile with
COP. It contains syntactic extensions to the C lan-
guage to allow typed declarations of variables,
access to properties of objects, and invocation of
operations on objects. COP is used to write the actual
code that implements the operations and properties
and other behaviors specified in TDL. It is currently
implemented as a preprocessor which emits standard

432 OOPSLA ‘87 Proceedings October 4-8,19a7

c code.
The debugger allows source line debugging of the

COP source code. The object editor allows interactive
traversal of type and object definitions, assignment
of object property values, and invocation of opera-
tions. The storage verifier examines the physical lay-
out of the database and verifies its structural integri-
ty-

3. Interesting Language Aspects
VBASE incorporates most of the standard object

technology. There is a taxonomy of types, with sub-
types inheriting both properties and operations from
their supertype. Subtypes can add more specific
behavior by specifying additional properties or opera-
tions, and can also refine existing behavior of inher-

ited properties or operations. When an operation is
invoked, it is dispatched according to the type of the
object of the invocation. Thus in COP one writes:
Entity$print (someobject);

which means find the print operation of the type
closest in the type hierarchy to the direct type of
someobject Of course, there is complete type exten-
sibility, with the user being able to define and use
whatever types are desired.

3.1 Strong Typing
The most important language influence-strong

typing-is unusual among current object systems. In
TDL, the following definition illustrates the typing
aspects:

define Type Fart define Type Pipe
supertypes = (Entity}; supertypes = {Part};

properties = {
partID: Identifier;
name: optional String;
components: distributed Set[Part]

inverse componentOf;
componentof: Part inverse components;

I
operations = {

display (p:Part)
raises (NoDisplaylmage)
method (Part-Display);

isComponentOf (pl : Part, p2:Part)
raises (IsRootComponent)
method (Part-isComponentOf)
returns (Boolean);

properties q {
length: Integer := 0;
diameter: Integer := 0;
leftConnection: Part;
rightconnection: Part;
threadtype: optional ThreadType :=

Thread ype!$ScrewThread;
islnsulated: optional Boolean:= False;

1;

operations = (
refines connect (p: Pipe, to: Part,

keywords
optiona usingConnector: Connector)

raises (ThreadtypeMisMatch,
IncompatibleMaterials)

method (Pipe-Connect)
returns (Part);

connect (p: Part, to: Part,
keywords

optional using: Connector)
raises (BadConnect)
method (Part-Connect)
returns (Part);

iterator components (p: Part)
yields (p: Part)
method (Part-Components);

refines delete (p: Part)
triggers (Part-deleteTrigger);

I;

materialsCompatible(pl:Pipe, p2:Pipe)
method (Pipe-MaterialsCompatible)
returns (Boolean);

refines delete (p: Pipe)
raises (CannotDelete)
triggers (Pipe-deleteTrigger);

1:
end Pipe;

define Type ThreadType is enum (ScrewThread,
PolThread);

PRIVATE
properties = {

displaylmage: optional image;
isRootComponent: Boolean := False;
I;

end Part;

Figure 2. TDL code for two type &jinittins is
shown. Type Part is a generic &fmition usedfor
allparts in this hypothetical engineering design
database. It is the supertype of type Pipe which
inherits all the behavior of parts andadds behavior
specifw to pipes.

October 4-8,1987 OOPSLA ‘87 Proceedings 433

Note that all definitions are associated with a
type. This applies at all levels. At the topmost lev-
el, the ‘define Type Part’ fragment says that Part is
of type Type. In a similar manner, properties are
defined in terms of their data type, as are operation
arguments, return values, and exception specifica-
tions. The type information contained in the TDL spec-
ifications is then used to generate a schema for an
object database. In practice, VBASE provides a sub-
stantial kernel schema. TDL is then used to augment
this schema with user extensions. Thus TDL can be
described as an incremental schema compiler.

After the datatypes are defined, COP code is writ-
ten and compiled against the object database. The
COP compiler is a database application, and uses the

Figure 3. COP co& for the Pipe-Connect method.
This method implements the opemtion &fined in
Type Pipe in figure 2.

method
obj Part
Pipe-Connect (aPipe, toPart, usingConnector)

obj Pipe aPipe;
obj Part toPart;
keyword obj Connwtor usingConnector;

f
obj Part connectedPart;
obj Pipe toPipe;
int j;

if (hasvalue (usingConnector))
l

connectedPart = Pipe$Connect
(aPipe, usingconnector);

return (Part$Connect (connectedPart, toPart,
using: usingconnector));

I

toPipe = assert (toPart, obj Pipe);
except (ia: IllegalAssert)
I:

PipeSystem$ErrorPrint (aPipe, toPart. “can only
connect Pipes to Other Pipes”);

if (aPipe.threadtype != toPipe.threadtype)
raise (ThreadTypeMisMatch);

if (1 PipeSMaterialsCompatible (aPipe, toPipe))
raise (IncompatibleMaterials);

aPipe.leftConnection = toPipe;
toPipe.rightConnection = aPipe;

connectedPart = $S (aPipe, apart);

return (connectedPart);
I

type information of the database to do what type
checking is possible at compile time. When static
type checking is not possible, the check is deferred
to runtime.

Operations in the type definition am implemented
by methods written in COP. Figure 3 shows the code
to implement the Pipe-Connect method.

Note that all object variables are declared with
the additional keyword obj. This allows the pro-
gram variables to be associated with types in the
schema, and COP can then do type checking based on
the schema information. Therefore the assignment

aPipe.leftConnection = toPipe;

is allowed since the leftConnection property of type
Pipe is of type Part, and the declared type of the
variable toPipe is Pipe. These are compatible since
Pipe is a subtype of Part All operation invocations
and their arguments are similarly checked.

When it is not possible to determine type compati-
bility at compile time, the programmer uses the
assert statement. The assert statement defers type
checking until runtime. This allows handling assign-
ment of a more general type to a more specific type
without violating strict compile-time type checking
in most cases, an invaluable productivity win in
large, complex systems. In the method example in
figure 3, assert is used for two purposes.

Fist, this simple implementation assumes that
pipes can only be connected to pipes; thus the assert
does a runtime type check for the programmer,
while allowing the code to be written for the more
general case of connecting a pipe to any other part

Second, the statement
toPipe.rightConnection = aPipe;

will not compile if the declared type of toPipe is
Part. This is because Part does not define the proper-
ty rightConnection. rightconnection is defmed by
Pipe. Thus while it is quite possible that, since part
is pipe’s supertype, a given part is a pipe, it is not
guaranteed by the declarations of the program. This
is a very common type violation in object systems,
and this is what VBASE prevents. The assert alerts
the implementor that the actual type of the object
toPipe must be pipe (or a subtype of pipe) in order
for this assignment to be valid.

This is in stark contrast to Smalltalk-like object
systems.

32 A Block-structured Schema DejCzition
Language

Another notable feature of TDL is that it is a block

434 OOPSLA ‘87 ProcePdings October 4-8, 1987

structured language. This is different from most
object systems, and certainly very different from
most schema definition languages of DBMS’S. It gives
TDL the kind of complex name environment that
most structured programming languages have, with
the concommitant reduction of name conflicts. It
also means that the system supports pathnames,
allowing simple grouping of names, and relative
names as well as global names.

restrict the set of types to only those which can
actually occur:

define type BlockScope is union (Type, Module,
Environment, Directory, . ..).

The ‘$’ is the pathname component separator. Thus
the name ‘Threadtype$Screwtype’ refers to the name
Screwtype within the block defined by the name
Threadtype. Analogously, in the COP fragment, a
name such as ‘Pipe!$Connect’ refers to the name Con-
nect within the Pipe scope. Names which begin with
a ‘$’ are considered absolute relative to the root
scope maintained by VBASE. Names in the root
include such things as kernel type names, system
exception types, etc. New type definitions, unless
contained within a scope, are placed in the root. A
file is not considered a scope. This last point is gen-
erally not true of present systems, and has the pleas-
ant side effect that many definitions can be placed in
a single file or set of fJe.5 without affecting the
desired scoping.

This allows common mistakes to be ferreted out
at compile time. Thus:

obj BlockScope scope:
. . . .
scope I DaySMonday;

will fail at compile time. If, instead, the variable’s
scope had to be declared of type Entity (the root of
the type hierarchy), this mistake would go unnoticed
during compilation.

35 Parameterization
Another significant capability of VBASE is what is
sometimes referred to as parameterization: the abili-
ty to specify the type of the objects contained inside
aggregate objects. This ability is often not even
available in procedural languages. Thus one can
write:

33 Constant & Variable Definitions in TDL
Another programming language capability avail-

able in TDL is defining constants and variables. This
allows user-customized constants to be placed in the
object database. For instance:

define Constant myDefault := Null;
define Constant No := False;
define Constant Yes := True;
define Variable background: Color := Colors$Gray;
As in other languages, constants are immutable,

while variables can have their bindings reassigned.

obj Array[Animal] myZoo;

VBASE will type check all insertions into and assign-
ments from the aggregate just as it checks standard
types. The lack of such checking is a serious short-
coming of present systems as aggregates are widely
used to store critical system information. Often this
information is typed, but there is no way to enforce
proper use short of writing expensive nmtime
checks of the elements of the aggregate. Thus:

i

3.4 Enumeration, Union, and Variant
Types

October 4-8,1987

obj Array[Animaq myZoo;
obj Fruit aKiwi;

aKiwi P myZoo[3];
I

fails at compile time.

Along similar lines, TDL allows the definition of
enumerations, unions and variants. Type definitions
such as these are rarely supported in object systems
or database systems. This is certainly unfortunate, as
their uses are well known For instance:

OOPSIA ‘87 Proceedings

Once again, it must be emphasized that this does
not limit the programmer. If the programmer actual-
ly wishes an ‘untyped’ Array:

define type Day is enum (Monday, Tuesday, . ..).
Unions and variants are especially important in

object systems, particulary those which do not sup-
port multiple inheritance. These definitional abili-
ties allow any type of polymorphism desired to be
expressed without circumventing the type safety of
the system. Rather than having to declare any vari-
able that can potentially hold objects of types which
are disjoint in the type hierarchy as Entity, one can

obj Array[Entity] myUntypedArray;

will suffice. However, as most system implemen-
tors can testify, this is rarely the case. More usual-
ly&e appropriate types cannot be defmed within the
confmes of tie chosen system, and the programmer
must circumvent the system in order to accomplish
the task with reasonable efficiency.

3.6 Method Combination
The above paragraphs have described some of the

more interesting ‘data definition’ (to use the term
rather loosely) capabilities of VBASE. There are also

435

some very interesting runtime features in VBAsE.
Perhaps the most notable of these is the VBASE
approach to method combination. Method combina-
tion in object systems results when a refming
method invokes its refinee. In Smalltalk, for exam-
ple, one uses the pseudo-variable ‘super’ for this pur-
pose. VBASE uses '$$' for this purpose. This nOta-
tion, rather than super or some derivative thereof,
was chosen because of the novel view of operations
behavior that VBASE takes.

Operations are viewed as being implemented by a
series of executable code fragments. The number of
fragments is arbih-ary, and is the sum of all triggers
and methods defined in the operation. Reviewing the
TDL figure 2, note that each operation definition can
include a method clause, and a triggers clause. Each
operation is therefore potentially associated with
one method, called the base method, and an arbitrary
number of trigger methods. The execution sequence
begins with the first trigger in the triggers clause.
The ‘$$’ syntax transfers execution to the next code
fragment either the next higger, or if no more are
specified, to the method specified in the method
cIause. Once these fragments are executed, ‘$$’ trans-
fers execution to the refmee operation at the super-
type level.

Thus, in the case where only a base method is
defined, ‘$$’ functions exactly as ‘super’ in
Smalltalk. However, when triggers are used, this is
not thecase.Consequently, VBASE.avoids the super
syntax in favor of the ‘$$’ syntax to avoid the
impression of moving up the supertype chain.
Rather, ‘$$’ simply transfers execution to the next
code fragment, whatever that may be.

Functionally, ‘$$’ behaves like a function call.
Thus, the placement of the ‘$$’ in the code allows
implementation of pre-processing, post-processing,
or both: wrapper processing.

One interesting subject regarding this implementa-
tion of method combination is the compatibility of
operation specifications in a chain of operation refme-
men& In a strongly typed system such as VBASE
this is an important issue. The approach we have tak-
en focusses on guaranteeing a conformance relation.

Methods are checked by the COP compiler for con-
forming to their specification defined by the opera-
tion. Refmements of inherited specifications are veri-
fied by the TDL compiler for conforming to the origi-
nal specifications. The specific criteria for
conformance have been motivated by the work of
Cardelli[CAR1984].

3.7 Exceptions
In many languages, there are no specific exception

handling mechanisms. Thus code to detect and handle
exceptions must be explicitly inserted at each point
in a program where an exception might occur. This
not only forces the writing of a great many short,
repetitive code fragments, it also places an addition-
al burden on the establishment of extra-language
applications conventions and creates numerous oppor-
tunities for lapses in programming discipline.

In VBASE, we included a specific exception han-
dling mechanism. Exception conditions detected dur-
ing the execution of an operation raise an exception.
That is, they transfer control to ‘a pre-defined excep-
tion handling routine rather than return control to
the caller.

Once again, referring to figure 3, note the except
and raise statements. These statements allow grace-
ful handling of abnormal events that occur during
processing, and are variations on a fairly standard
theme. What is notable is that in VBASE, exceptions
are types. This means that all of the behavior defmi-
tion mechanisms available to types are available to
exceptions. One consequence is that the implementor
can define a hierarchy of exceptions. Thus exceptions
can be generalized just like types are generalized.
For example, a memory allocation operation might
raise the exception OutOfMemory. A refinement of
the operation, say one which allocates memory for
strings, might raise a more specific exception, say
SuingSpaceFull. StringSpaceFull could be imple-
mented as a subtype of OutOfMemory. As a subtype
of OutOfMemory, it could be used in any context
where OutOfMemory itself would be expected.

The second implication of exceptions as types is
that one can define properties and /or operations of
exceptions. ?roperties can be extremely useful. In
the previous example, one could add the property
AmountRequested to the exception type OutOfMem-
ory. For example, assume the raising routine
returned:

raise OutOfMemory (AmountRequested: 4000000);

The ‘catching’ program could then issue a meaning-
ful error message or do something else appropriate.
For example:

except (0: OutOfMemory)
{

printf (“The amount of memory: %d, requested is
not avaiiable\n”, o.AmountRequested);

1
One can thus consider each actual raising of an

exception as creating an instance of the exception.
This instance is available to the catching program,

436 OOPSLA ‘87 Proceedings October 4-8, 1987

which can treat it like any other object, accessing its
properties, etc.

4. hteresfing Database Aspects
VBASE supports most of the expected functionali-

ty of a DBMS. Objects can be shared among multiple
processes concurrently, backup and recovery facili-
ties are provided, and simple access control is avail-
able. A fust version of an object query language is
also under development for inclusion in the first ver-
sion of VBASE. Beyond this, there are many notably
different aspects of VBASE that derive from database
influences.

4.1 Persistence
Persistence of objects is clearly the most notable

difference between VBASE and most current object
systems. Any time an object is created, either by a
TDL definition or an invocation of a create operation
in COP, it is considered permanent and continues to
exist until it is explicitly deleted by a delete opera-
tion. The ability to deal with persistent objects
without any special effort is an enormous advantage
OfVBASE.

42 Clustering
Another database influence apparent in the system

is the ability to cluster objects on disk and in memo-
ry. Every create operation allows the invoker to
specify a previouslyexisting clustering object. The
new object is then clustered in the same segment as
the clustering object. Since segments are the unit of
transfer to and from secondary storage in VBASE,
whenever any one of the objects in the cluster is
accessed, the segment is transferred to memory (if it
is not already there). Thus any subsequent references
to one of the clustered objects will not require a
disk access.

This has numerous applications. For instance,
objects contained within an array can be clustered
with the array. It is also very useful for a-part-of,
or component, hierarchies, which are extremely com-
mon in engineering and text management applica-
tions. In this case, all the component objects can be
clustered Therefore only one disk access is required
to transfer the entire hierarchy into memory. Clus-
tering also provides space saving benefits, as there is
less overhead when objects are stored in one segment.

43 Inverse Relationships
Reviewing the TDL definition of the ?ype Part

(figure 2) points out a further database influence in
VBAsE-the support for inverse relationships. Note

the components and componentOf property defmi-
tions. These properties are declared as inverses. This
means that whenever a modification is made to one
of these properties, the other property is modified
accordingly. This construct solves one of the more
vexing problems in database management systems,
particularly relational database systems. One-to-
one, one-to-many, and many-to-many relationships
between objects can all be supported and maintained
automatically using the inverse capability. Thus,
such common relationships as Parts-Suppliers or
Employees-Departments can be implemented direct-
ly with no additional definitions or code. This is a
dramatic improvement over most current database
systems, and is not available in current object sys-
tems.

4.4 Protecting the Object Database from
Process Failure

A last database style aspect of VBASE is the sup-
port of a minimal protection scheme. Current object
systems are entirely memory resident and generally
ignore the issue of corruption due to process failure.
However, this has long been a standard issue of
database systems since large amounts of important
data are being manipulated. Some degree of safety
and resilience must be offered. VBASE will offer con-
currency control and recovery in its first release.

45 Triggers
The availability of triggers, discussed previously,

can be considered both a language and a database
influence. Many database systems talk about trig-
gers, few implement them. Their utility is obvious.
Triggers can be attached to properties as well as
operations to generate whatever behavior is desired.
These behaviors include standard ones such as ‘when
my QuantityOnHand property falls under twenty,
issue a new order for a hundred more’, to more eso-
teric patterns such as keeping audit trails of proper-
ty and operation access for security purposes.

In VBASE the triggers are often used to augment
creation and deletion methods. The use of triggers
can insure, for instance that, upon creation of an
object, all important referent objects are created as
well. Delete triggers reverse this to delete all refer-
ent objects. Consider the example in figure 4.

When a PipeConnector object is created, one
would also like to create an Array for the bolts
property of the connector, perhaps initializing it
from a set of Bolts passed to the Create operation.
The use of a trigger on the standard create operation
provides this functionality.

October 4-8, 1987 OOPSLA ‘87 Proceedings 437

method obj PipeConnector
PipeConnector-CreateTrigger

(aType, numberOfBolts, boltset)

obj Type aType;P must always take a Type erg when
doing a create ‘I

obj Integer numberOfBolts;
obj List[Bolt] boltSet;
f

obj PipeConnector newconnector; /’ the result of
the creation process ‘1

obj Bolt aBolt; P range variable for bolt set V
int j = 0; /’ standard C variable *I
newConnector = $$ (aType);

P create the new object by invoking the
standard system create operation *I

P create the referent object *I
newConnector.boltSet =

Array$Create ($Array, numberOfBolts);

/’ initialize the referent object *I
iterate (aBolt = boltSet)

newConnector.bolts[i++] = aBolt;

return (newConnector);
I

.:. : : :.’ ‘.. ,... : ..,. ,.. :I,.,..>.:.:: .:.>:::
Figure 4. Triggers CUE

. .:.,: :.., .j.: :,:,.. ::,::.y
,i? &fin; TypeiPi~~onnectsr’.illi::i

add behaviors to a cre- :::..?:. ,I_:; y&piitj;pes p”ipa;&i’;y;
afe opem~ns The ,:..: .::::..:. .:.. I::.;.‘. ;I.; ..‘;:;:::‘;:;‘;:’ “I: “; : ‘-:.‘,~l.l:i:ilxii:.~~~~~~~ ..‘.
&fgger method is .,: I, . . . I .c,... : .- properties = { ~:~i~:~:j:j:;il:::

shown above, the type
.\ bolts: Arp y[&it] $i::‘i

&f&on is in the
,j .‘. .I!.,;- ‘.:. ::: .: ‘, .I::... : ,:~‘,,,.:rc: ..:;.:.j : .;... . . .
:.: .. .::I i:’ ,. :; .: ? ., . .._. :.:.: .:-

shaded block at right. ;;y end

i:‘.~‘:l_,“l,l.,‘l,j~~:::
I: :,.: .:

pi pe@nn&ofj ,_jY,j;~;.(i: ::::)@
., .,..,_, .,, ,.:.. :.. ::. ,.

Two aspects of the system should be noted in pass-
ing. First is the arbitrary combination of C program
variables with object variables. This, as stated, was
an important goal: a truly integrated language. The
language processor does all necessary conversion to
assure a correct program is produced. The second fac-
tor is the iterate statement Drawn from CLU, this
statement processes all members of a database aggre-
gate an element at a time without requiring the writ-
ing of a ‘for’ loop. This is yet another productivity
gain of the system, as it is unnecessary to compute
the boundaries for a for loop. Perhaps more impor-
tantly, iterators provide access to the elements of an
aggregate abstractly, without exposing (or requiring
knowlege of) the underlying implementation.

4.6 Access To Meta Level Information
The final attribute of VBASE drawn from DBMS'S is

the availability of meta information. VBASE is entire-
ly self-describing: all system characteristics except
the lowest layers of storage management are imple-

mented using types. The properties and operations of
these system types are freely available to program-
mers to use to their advantage. This makes system
development easier, and allows implementors to cre-
ate customized tools of their own while taking
advantage of system tools already in existence.

5. Some Further Unique Aspects

5J Customized Property Implementations
Object systems are known for their ability to

allow users to create customized abstractions.
VBASE provides users with the unique ability to cus-
tomize implementations as well. This ability is
available at two levels.

In the simpler case, an implementor can provide
customized access to a property by replacing the
default get and set operations for the property by
customized ones. For instance, the property ‘age’ in
the following example has such customized opera-
tions specified.

define Type Person
supertypes = {Mammal};
properties q (

age: Integer define set
method (PersonSetAge)
define get
method (Person-GetAge);

I:
end Person;

This specification will cause the user defined rou-
tines to be invoked whenever access to the age prop-
erty occurs as in:

{
obj person aPerson;
obj Integer theAge;

theAge = aPerson.age;
. . . .
I
What is different here from most systems is that

when both a get and set operation are specified, no
storage is allocated. Thus the programmer truly
takes over the implementation, including storage
allocation. The user may choose to calculate the val-
ue (in the case of age, it is common to calculate the
value as the difference between the person’s birth-
date and the current system date), in which case no
storage is needed. If storage is necessary, the imple-
mentor may allocate it wherever he/she desires. For
example, in a design application one might store
large bitmap graphic images using a compression
algorithm, and write customized code to read and
write the image. In a similar vein, in a CASE SyStem
one might store fragments of source code in standard

438 OOPSLA ‘87 Proceedings October 4-8, 1987

operating system files so that the various language
processors will recognize the fragments. Finally,
data from alien databases can be imported and
exported transparently by using customized proper-
ties. The get and set operations are used to call the
appropriate database routines on the foreign database
to read and write the data.

52 Customized Type Implementations -
MasterTypes

The use of custom routines for handling property
implementation still incurs the overhead of a stan-
dard object. There is space overhead for the default
representation, and the overhead of the system rou-
tines for dispatching to the user’s custom routines.
For sophisticated users wishing to avoid even this
overhead, VBASE allows the complete implementa-
tion of customized types. Since VBASE provides the
complete specification of all system types including
type Type, a complete customization of a type is pos-
sible. It requires substantially more work than a cus-
tom property, but this is to be expected.

Customized types are actually handled as a sub-
type of type Type, called MasterType. The most sig-
nificant characteristic of a MasterType is that it
takes over the dereferencing operation. VBASE insists
on strong reference semantics. That is, objects are
always represented by a reference, and these refer-
ences appear uniform from the outside. Thus, the
‘every object is a first class object’ semantics is
maintained; even integers, single characters, and
booleans are true frost class objects. However, the
types Integer, Character and Boolean are also Mas-
terTypes. They implement their own creation, dele-
tion, and dereferencing operations. This allows types
such as Integer to store their value within their ref-
erence, and for types such as Real to make use of spe-
cial hardware to implement arithmetic operations.
MasterTypes must implement a create routine which
fabricates and returns a reference, an appropriate
dereferencing routine, routines for property access
and operation dispatching and invocation, etc. How-
ever, once the complete specification has been met,
these MasterTypes behave exactly like all other
types to users, and all of the attributes of the VBASE
environment can be used with them.

Implementors can therefore use the MasterType
feature to create extremely customized types. No
space or time overhead is incurred because the user
implementation handles everything. MasterTypes are
very useful for implementing custom access methods
which require special data formats. This is a unique
aspect of VBASE: the ability to tune access to special

data formats such as large blocks of text or graph-
ics, while remaining within the basic system.

Another use for MasterType implementations is
the construction of efficient integration databases. A
model of a complex data structure is created
through the definition of the appropriate types, prop-
erties and operations. This data, which is actually
stored in existing foreign databases, is accessed
through MasterTypes which transfer the data to and
from the alien databases. The use of MasterTypes
allows a relatively efficient interface to the foreign
database system to be implemented, while the pro-
cessing and data modeling can be done in VBASE,
with the attendant increase in modeling power and
ease of implementation.

53 Free Operations

VBASE defines free operations: operations that are
not associated with a type, and consequently, are not
invoked via the standard dispatching means. In object
message systems, every message is dispatched; that
is, the type of the object being sent the message is
used to find the method which implements the mes-
sage. Free operations in VBASE, in contrast, do not
have a distinguished argument. They are simply pro-
cedures free of type association.

Summary
VBASE has, we hope, achieved all of the goals we

set for ourselves, at least to some extent. It is a rel-
atively complete development system with language
processors and development tools. It is object based,
strongly typed, and provides support for persistent
objects. It also allows custom implementations for
improved efficiency. VBASE contains many interest-
ing features from both the language and database
spheres. In fact, the most interesting aspect of
VBASE is that it cannot be strictly classified as a
language or a database system

References
BOR1982 Boming, Alan H. and Ingalls, Daniel H.

H.; “A Type Declaration and Inference System for
Smalltalk”; Conference Record of the Ninth Annu-
al ACM Symposium on Principles of Program-
ming Languages, pp 133-139,1982.

CAR1984 Cardelli, Luca; “A Semantics of Multiple
Inheritance”; Lecture Notes in Computer Science.
Springer-Verlag, New York, 1984, pp 51-67.

October 4-8.1987 OOPSLA ‘87 Proceedings 439

CAR 198 6 Cardelli, Luca and Wegner, Peter; “On
Understanding Types, Data Abstraction, and Poly-
morphism”; Computing Surveys, Vol. 17, No. 4,
December 1985

CAT1983 Cattell, R.G.G.; “Design and Implemen-
tation of a Relationship-Entity-Datum Data Mod-
el”; Xerox Corporation, 1983

COP1984 Copeland, George and Maier, David;
“Making Smalltalk a Database System;” Sigmod
‘84, Sigmond Record Volume 14, Number 2, pp
3 16-324, Association for Computing Machinery,
1984

SIR1986 Stroustrup, Bjame L.; The C+ + Pro-
gramming Language; Addison-Wesley; Reading,
MA, 1986

TES 1985 Tesler, Larry; “Object Pascal Report”;
Structured Langauage World, ~019, no.3, 1985

COX1986 Cox, Brad J.; Object-Oriented Program-
ming: An Evolutionary Approach; Addison-Wes-
ley, Reading, MA 1986

GEM1986 GemStone Product Overview, Gem-
Stone Version 1.0; Servio Logic Development Cor-
poration. March, 1986

GOL1983 Goldberg, Adele and Robson, David;
Smallta~k-80: The Language and its Inplementa-
tion; Addison- Wesley, Reading, MA, 1983

JOH1986 Johnson, Ralph; “Type Checking
Smalltalk”; in Prmeedings of ACM Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications; pp 3 15-321; Portland,
OR; September 29-October 2,1986

LIS1981 Liskov, Barbara; Atkinson, Russell;
Bloom, Toby; Moss, Eliot; Schaffert,.J. Craig:
Scheifler, Robert and Snyder, Alan; Lecture Notes
in Computer Science; Springer-Verlag, New
York, NY 1981

MEY 1986 Meyer, Bertrand; “Genericity versus
inheritance”; in Proceedings of ACM Conference
on Object-Oriented Programming Systems, Lan-
guages and Applications; pp 39 l-405, Portland,
OR; September 29-October 2,1986

MEY 1987 Meyer, Bertrand; “Eiffel: Program-
ming for Reusability and Extendibility;” SIG-
PLAN, Notices, voI22, no 2, pp 85-94; February
1987

MYL01980 Mylopoulos, John, Bernstein; Philip
A., and Wong Harry K-T.; “A Language Facility
for Designing Database-Intensive Applications”,
Transactions on Database Syszems; Vol5, No 2.
pp 185-207; Association for Computing Machin-
ery; June, 1980

STON1986 Stonebraker, Michael and Rowe,
Lawrence A. “The Design of Postgres”; Sigmond
Record, vol 15, no. 2, pp 340-355; Association for
Computing Machinery; June 1986

440 OOPSLA ‘87 Proceedings October 4-8,1987

