
Essential Programming Paradigm

Claude Y. Knaus

claude.knaus@gmail.com

Abstract
The chronic difficulty of software maintenance can be traced
back to widely held assumptions that inhibit progress in
computer science. In the last instance, the idiosyncrasies
of programming paradigms must be held accountable for
bad software design. The characteristics of an alternative
programming paradigm without such drawbacks is outlined.

Categories and Subject Descriptors D.3.0 [Programming
Languages]: General

General Terms Design, Languages

Keywords Design Patterns, Domain Specific Languages,
Programming Paradigm

Hard Software
In software engineering, the maintenance of software is
more expensive than its development. When a large software
product matures, even apparently simple feature additions or
bug fixes become obstacles. Frederick Brooks writes in The
Mythical Man-Month (1): Lehman and Belady have studied
the history of successive releases in a large operating sys-
tem. They find that the total number of modules increases
linearly with release number, but that the number of mod-
ules affected [by changes introduced during the release] in-
creases exponentially. As the tasks become larger and harder
to estimate, software projects become more expensive and
less predictable. Ultimately, the progression of maintenance
costs hits the worst case scenario: rewrite or retirement of
the entire product.

Nothing seems to have changed since Brooks’ monumen-
tal book, released over 30 years ago. When a problem per-
sists for so long, strongly held assumptions must be ques-
tioned.

Copyright is held by the author/owner(s).
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

Myth #1: General Purpose Programming
Languages
Software maintenance requires a software product to remain
flexible despite its continuous growth. To ensure this flexi-
bility is the purpose of software design. By anticipating pat-
terns of change, the software product is structured in a way
such that common and related changes have local impact
and independent changes happen in distinct locations. With-
out software design, even simple change requests can have
global impact.

The outcome of software design depends on the usual
suspects: process, project management, methodology, peo-
ple, and tools. While most of these factors can be changed
with relative ease, programming languages stand out as an
exception: they are irrevocably decided upon, early in the
process of software development. Once a program is cast in
a particular language, it is nearly impossible to translate it
into another one. Lacking alternatives, a software product is
tied to a programming language for good.

However, the consequences of choosing one program-
ming language over another are not well understood. It does
not help either that this choice is often arbitrarily made;
when the future cannot be anticipated, familiarity of de-
velopers with a programming language is given precedence
over other criteria.

Due to this tight coupling and uncertainty, a crucial re-
quirement of a programming language is its generality.
Many programming languages are labeled as general pur-
pose, implying that they are applicable to almost any soft-
ware project. Knowing that many programming languages
are competing for this label, one has to ask how general they
really are. Obviously, the common denominator of all pro-
gramming languages is Turing-completeness. It is the one
property which gives the software engineer the confidence
and comfort that any computational problem can be solved,
at least in principle. This property by itself may entitle a
programming language as general.

Unfortunately, there is no agreement on generality be-
yond Turing-completeness. While programming languages
have a functional requirement that they can tackle any prob-
lem, they also have an aesthetic aspect with respect to how
they solve problems. Intuitively, this aspect cannot be ob-
jectively judged. What is considered a general programming

823



language has changed over the past from machine languages,
Fortran, Cobol, to the languages we use today. Problems
have pushed the evolution of programming languages, which
in turn exposed new problems; the tools and problems that
are solved by them co-evolve and define each other. In prac-
tice, no existing programming language can be considered a
general problem solver.

Myth #2: Design Patterns are Good
Good software design is often mentioned in the same breath
with design patterns. There is, however, a common miscon-
ception that design patterns themselves stand for good de-
sign.

Common practices like agile programming and test-
driven development promote rigorous refactoring between
steps of functional implementations. The idea of refactor-
ing is that common code patterns distributed in the software
are isolated into a single location in order to simplify future
changes. After the refactoring process, the software product
is considered in the state of “good software design”.

However, there are certain common code patterns that
withstand refactoring: design patterns. From the perspective
of refactoring, design patterns stand for everything but good
software design. They are repetitive code patterns which are
scattered throughout the project, connected by invisible and
implicit dependencies. They obscure the essential code by
interleaving them with a bulk of seemingly unrelated code.
Yet, limited by constraints of the programming language,
they defy refactoring.

The reason why design patterns are still considered good
is due to the fact that any project is tied to a programming
language. Without the alternative to change the language, the
perception of design patterns changes dramatically. After a
refactoring process, code patterns that cannot be factored
emerge as design patterns. Indeed, the authors of Design
Patterns admit that most design patterns were found after
refactoring (2). The identification of design patterns signals
the developer that there is nothing more to refactor, no matter
how the code may seem to disagree. Design patterns present
a clear demarcation for refactoring, which is why they can be
considered indicators for the rest of the software to be well
designed.

What is lost in the ongoing euphoria for design patterns
is the critique of the programming languages for failing to
provide common features. The software engineers, stuck
with the choice of the programming language, cannot be
blamed; they welcome the workaround.

Domain-Paradigm Mismatch
Design patterns are not specific to the programming lan-
guage, but to the underlying paradigm. The original design
patterns were found for Smalltalk and C++, both consid-
ered representatives of the OO-paradigm. Other program-
ming paradigms provoke different design patterns, even for

generally “common problems”. The functional paradigm in-
troduces monads as design patterns for the lack of states;
the imperative paradigm has adopted the entire OO-paradigm
as a design pattern; logic programming uses design patterns
for efficient control flow and avoidance of infinite recursion.
Thanks to Turing-completeness, when commonly used pro-
gramming features are missing, they can be implemented
in terms of other paradigm constructs. However, since these
features are still missing at the paradigm level, they cannot
be reused by reference, but must be duplicated every time
the feature is required.

Programming languages and IDEs attempt to ease the
maintenance of design patterns through usability features
like syntactic sugar, macros, templates, code assist, quick
fix and automatic refactoring. As they only fight the symp-
toms of design pattern proliferation, they are no substitute
for missing paradigm features. In desperate situations, large
pattern-heavy projects resort to meta-programming and code
generation, with the result that language specific features
like debugging and profiling are compromised.

Design patterns not only depend on the programming
paradigm, but also on the applied problem domain. This may
not be obvious as most design patterns like decorator or sin-
gleton address common programming problems. However,
design patterns emerge whenever a programming paradigm
does not match the domain.

Domains are defined by typical problems which are being
solved in the given domain. Ideally, if every domain concept
is given respect by the paradigm, a domain expert can ex-
press the problems effectively and will never encounter de-
sign patterns.

Traditional programming paradigms, although disguised
by their host languages as “general purpose”, cannot fulfill
such a requirement for all domains. This is because exist-
ing programming paradigms are biased; They promote fa-
vored concepts, like objects, functions, or rules, while ne-
glecting others. By declaring their love for a particular con-
cept, they define a class of problems, which they are tuned to
solve. In other words, all existing programming paradigms
have a bias toward domains where the paradigm concepts
dominate. Hybrid- and multi-paradigm languages obviously
cover larger domains, but not all.

Domain Specific Languages?
Domain specific languages (DSL) attempt to close the gap
by shaping the paradigm to match the domain. DSLs are
created through programming paradigms known as model-
driven architecture or language-oriented programming. The
basic idea is that design patterns are avoided by pushing
them into a higher meta-level. The result of the integration
into the meta-program converts the design pattern into a
paradigm feature of the DSL.

For a DSL to be successful, the problem domain must
be sufficiently mature. Unfortunately, real world domains

824



are rarely stable let alone well defined. Domains are con-
stantly in flux; when problems have been solved, new prob-
lems arise which expand the horizon of the domain. As new
problems are being encountered and solved, the gap between
the domain and the paradigm widens again and new design
patterns emerge. A domain expert is dependent on the meta-
programmer to integrate the latest design patterns.

Unfortunately, meta-programming is not immune to de-
sign patterns either. Depending on the source and target do-
mains they connect, design patterns arise in meta-programs
as well. The logical step is to eliminate these design pat-
terns by stepping up another meta-level. Although programs
tend to become smaller with increasing meta-level and thus
the recursion is expected to be limited, multiple meta-levels
pose obstacles to understanding and debugging.

All in all, DSLs are heavyweight constructs which do not
increase flexibility, but add new boundaries by distinguish-
ing meta-levels. Meta-programming can only move but not
eliminate design patterns. Also, there is little point in explic-
itly matching a domain which lacks sharp definition. Due to
the dynamics of real-world domains, the success of a DSL to
clear design patterns can only be temporary.

Essence of Programming
To understand how to avoid design patterns, we have to look
at their structure. A design pattern consists of two parts, a
part which is common to all instances of the pattern, and
a part which is specific to the specific instantiation. The
two parts are interleaved in a way such that they cannot
be separated by any means of the programming paradigm.
There are two reasons responsible for such structures:

1. Limited composition. What differentiates design patterns
from other types of repetitive code that can be refactored
lies in parameterization. For example, a function allows
dynamic customization of its general behavior through
arguments acting as parameters. This can be considered
run-time composition of dynamic arguments with static
code. However, not all paradigm concepts are allowed
for parameterization. Typically, values and references are
accepted arguments, but not types or statements. This
limitation has led to the popularity of templates, which
extend parameterization to types.

2. Clustered features. Solving a domain problem through
composition may require paradigm features which are
bundled with other features. The use of one feature im-
plies dragging along others, needed or not. Examples in
Java would be functor objects where a function drags
along an object or the “misuse” of arrays and objects
for functions returning multiple values. The inseparabil-
ity of paradigm features gives design patterns their spe-
cific structural character. While the semantic baggage can
be optimized away by the compiler, the syntactical bag-
gage remains.

Summarizing, structures like design patterns occur be-
cause the programming paradigm disallows certain run-time
composition of dynamic and static code. Faced with this lim-
itation, the developer is forced to perform this composition
at development-time by creating many static combinations,
eventually leading to design pattern proliferation. Templates,
if available, then represent compromises by positioning the
composition task halfway at compile-time. The aesthetic as-
pect of the pattern is then further impacted by excess ele-
ments required to implement the composition.

It follows from the problem of limited composition that,
to avoid design patterns, we have to allow any kind of com-
position at run-time of the code. This can only work if every
possible programming composition can also be performed at
run-time. In other words, the programming paradigm must
be dynamic.

However, the composition is not an arbitrary one. It has
to exhibit Turing-completeness, for otherwise, nothing could
be implemented. To counter the problem of clustered fea-
tures, the concepts forming the composition shall be clearly
separate and elementary.

This would then be a bias free paradigm. A paradigm
that consists of a composition of components which exhibit
Turing-completeness has no central, favored concept other
than the property of Turing-completeness itself. This would
be a paradigm just about computation.

Conclusions
The limiting factor of software maintenance has been iden-
tified as today’s programming paradigms. Design patterns
emerge as symptoms of mismatch between domains and
paradigms, making software less maintainable. All existing
programming paradigms suffer from this problem due to
their bias toward some domain, inevitably excluding other
domains. The presumed essential programming paradigm is
entirely bias free and would be the first paradigm deserving
to be labeled general purpose.

References
[1] Brooks, Frederick, Jr. The Mythical Man-Month: Essays on

Software Engineering. Anniversary ed. Addison-Wesley, 1995.

[2] Gamma, Erich, Richard Helm, Ralph Johnson, & John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

825


