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Abstract

Domain-specific languages (DSLs) improve software main-

tainability and programmer productivity by making domain

concepts more explicit in the code. However, developing

syntax and semantics of DSLs is often challenging and as

a result developers seldom take advantage of the benefits of

DSLs. One way to lower the entry barrier to DSL develop-

ment is to give developers immediate and continuous feed-

back on modifications to a language. We propose Gramada,

an environment for developing DSLs in Squeak/Smalltalk

which is designed to provide such a live programming ex-

perience. It is based on a language development framework

with additional support for incremental compilation to im-

prove system response times and a set of tools which cre-

ates a steady frame and allows programmers to quickly ex-

plore changes to the syntax of a language. Our benchmarks

and discussion illustrate how Gramada can give visual feed-

back on most changes to the language in a way that supports

live programming. We conclude that Gramada’s feedback is

fast and consistent enough to make exploring the effects of

changes a lively and productive activity during the interac-

tive development of DSLs.

Categories and Subject Descriptors D.2.3 [Coding Tools

and Techniques]

Keywords domain-specific languages, language develop-

ment, immediate feedback, tools, incremental compilation

1. Introduction

Domain-specific languages (DSLs) are a software engineer-

ing technique in which programmers develop and use a ded-

icated language for a particular area of interest. Often, the

goal of these languages is to increase the productivity of pro-

grammers or to allow domain experts to express, understand,

or modify domain-specific code [7, 20]. To fit syntax and

semantics as close to the domain as possible, programmers

might consider implementing a DSL as a new language, in-

stead of, for example, implementing it as a domain-specific

interface to a library. While this allows for more freedom re-

garding language design, it also requires a full language im-

plementation, traditionally consisting of tools like parsers,

compilers and interpreters. To ease this development activ-

ity and thereby making such DSLs more feasible, a num-

ber of frameworks and systems were created. These range

from mere libraries providing parsing algorithms to com-

plete environments supporting language-oriented program-

ming, which makes DSL development a primary develop-

ment activity next to application development.

Nevertheless, outside of the programming language com-

munity, language development is often considered difficult

and hence application developers seem to seldom develop

and use appropriate DSLs. In order to make DSL develop-

ment more approachable, it should be easy to explore and

understand DSL implementations. One general way to im-

prove understanding of programmers is providing them with

immediate and continuous feedback on the effects of their

changes to the system [10, 17]. This might help closing the

cognitive gap between the static source code and the dy-

namic behavior of a system [21].

One class of development systems, nowadays referred

to as live programming systems, promotes programming

with continuous and immediate feedback on changes to the

source code. Such systems, as Lisp [18], Smalltalk [8], or

Self [32], allow the developer to constantly see the effects of

changes to the source code in the behavior of the system

running side-by-side with the development environment.

Since these live programming environments are designed

for general-purpose programming, they could also support

the development of DSLs. However, they mostly focus on

general application development, and thus do not provide

dedicated support for developing languages.
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Figure 1. Live programming systems provide immediate

and continuous feedback for application development. How-

ever, specialized language development environments for

developing languages are often not designed to provide such

feedback. Thus, we propose Gramada, a development envi-

ronment which provides immediate feedback through short

response times and continuous feedback through appropriate

tools.

In contrast, specialized language development environ-

ments currently often focus on producing efficient language

implementations and do not focus on providing a live pro-

gramming experience (see Figure 1). Often, they require an

explicitly initiated translation step from a language defini-

tion to an executable form which often creates a completely

new executable. Thus, it delays feedback on the impact of

the modifications made to the language, as the developer

can only execute and evaluate the change afterwards. Fur-

ther, developers have to manually reload the new executable

or re-execute sample programs, to see any effects. This re-

execution might discard any previous execution or explo-

ration and thus can break the continuity of the mental model

of the developer. Preserving the context through continuous

feedback and shortening the delays of feedback might bring

the benefits of live programming to the domain of language

development.

In this paper, we show how to take advantage of live pro-

gramming in the particular activity of specifying the syntax

of DSLs. We demonstrate this through tools and mechanisms

implemented in the proposed language development envi-

ronment Gramada. The implemented features show how the

engineering techniques enabling immediacy in application-

level development also work for language development. In

particular, our contributions are:

• The language development library Ohm/S which is a

Smalltalk adaptation of the library Ohm [4, 35]. Ohm/S

is adjusted to enable immediate and continuous feedback

through incremental compilation of syntax definitions

and dynamic dispatch of grammar rules.

• The Gramada tool set which allows DSL developers

to see effects of changes to the syntax definition of a

language quickly and without explicitly triggered re-

executions. It includes editors, an input sandbox, a vi-

sualization of parse results, an interactive debugger, and

an SUnit extension for syntax tests.

• An implementation of Ohm/S and the tool set in Squeak/S-

malltalk [11, 27] based on the data-driven tool develop-

ment environment Vivide [28, 29].

• A quantitative evaluation of the feedback loops regarding

the durations of modifications of a language and the time

Gramada tools need to display changed behavior. We also

qualitatively discuss how Gramada preserves the context

through continuous feedback.

In the following, we first discuss in Section 2 the bene-

fits of live programming and the resulting requirements for a

programming environment. Based on this background, Sec-

tion 3 describes the single tools in the Gramada tool set and

how they interact to create a lively workflow. Section 4 de-

scribes how this is enabled through adaptations of Ohm/S

and the underlying systems. In Section 5, we present the re-

sults of our quantitative and qualitative evaluation based on

the determined requirements. Section 6 gives an overview

over related environments and their approach to providing

feedback during language development, and Section 7 con-

cludes the work and points out relevant future work.

2. Elements of Live Programming

An impression of liveness during programming can be

achieved through immediate and continuous feedback on

the system behavior. Immediate feedback is available when

there is only a minimal delay between a modification to the

behavior of a system and any feedback on the effects of the

change. Continuous feedback is available if any feedback on

the behavior of the system is automatically and consistently

updated whenever behavior is modified.

The resulting experience of editing a system while it is

running has several benefits. In general, it may bridge the

“gulf of evaluation” in understanding the relation between

the dynamic behavior of a system and its static represen-

tation in source code [21]. In particular, some authors ar-

gue that humans can only understand causality without con-

scious effort if there is a minimal temporal distance between

their actions and the resulting effects. Thus, a system which

enables a short delay for changing the behavior of a soft-

ware system might give programmers greater insights into

the effects of their modifications [17]. Others have shown

that novice learners progress faster on tasks when they can

work in a live programming environment. Some studies also

presented results hinting that novice learners produce sig-

nificantly less semantic errors while working in live envi-

ronments, and that in some situations live programming can

help in spotting and repairing defects [10, 36]. Finally, live
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systems benefit from the improved user productivity and

user satisfaction as a result of short response times which

have been shown by studies on system response times in var-

ious applications [1, 3, 16, 24, 31].

All these benefits make live programming a generally ap-

pealing idea. Nevertheless, there are various definitions of

the properties defining a live programming system. We com-

bine two perspectives for this work. One regarding the re-

sponse time between source code edits and modifications of

the running application and another regarding the preserva-

tion of the context through a “steady frame”.

2.1 Immediacy

In order to create an experience of live programming, the

programming system should provide immediate feedback on

how the behavior of the application changes on changes to

the source code.

One perspective on live programming distinguishes dif-

ferent levels of live programming based on the temporal re-

lation between an edit and changed behavior [30]. Level four

liveness describes systems with short feedback loops: “. . . ,

the computer wouldn’t wait but would keep running the pro-

gram, modifying the behavior as specified by the program-

mer as soon as changes were made.” [30] This definition

explicitly states that the change should be applied “as soon

as” the changes to the source were made and without the

developer initiating it explicitly. Further, they should hap-

pen while the program is already running. For this criterion,

it is irrelevant whether the application keeps on running or

whether it is repeatedly executed in a loop because it termi-

nates quickly.

However, these criterion do not explicitly define a thresh-

old for “as soon as”. Thus, we based our design and evalu-

ation on two aggregated response time guidelines [12, 25].

To investigate to which degree a development system can

provide immediate feedback, we developed a model which

distinguishes between factors the system can influence and

factors which depend on the particular application under de-

velopment.

2.1.1 Response Time Guidelines

Shneiderman et al. recommend quantitative upper bounds

for the system response time of tasks of different complex-

ity [25]. Resulting from a survey of existing empirical stud-

ies, the recommended response times to avoid a frustrating

delay are:

• Simple, frequent tasks: 1 second

• Common tasks: 2-4 second

• Complex tasks: 8-12 second

If we want to achieve immediate feedback on modifica-

tions to source code, we would need to bring the feedback

within the bounds of a frequent task, i.e. less than 1 second.

Johnson takes a different approach to creating quantita-

tive bounds for the system response time. He surveyed exist-

ing empirical data on psychological studies on the cognitive

capabilities of humans [12]. Two boundaries are relevant for

the duration of feedback in programming.

First, the survey concludes that 100 milliseconds (ms) is

the maximum delay to sustain the impression of a relation

between effect and cause. When the system takes longer than

that, it should indicate that it is actually processing the input.

Second, 1 second is the maximum time before a system

should display a progress indicator, showing how the system

is progressing. Otherwise, users might get impatient. This is

based on the maximum expected gap in conversations. If this

gap is exceeded, listeners turn their attention to the speaker

to see what caused the delay. As the interaction with a system

is a kind of conversation, this time should not be exceeded.

In order to make observed changes in the behavior of the

application feel like effects of the changes to the source code,

the system would need to respond within 100 ms. In case the

change takes longer, the system should at least indicate that

it is processing the change.

2.1.2 Phases of Feedback in Programming

A system provides feedback on various aspects of software

development, e.g. editing code, refactorings, or versioning.

In this paper, we focus on feedback for a central activity of

programming, which is changing the behavior of a system.

In particular, we focus on the time span between a modifi-

cation of the source code and an observable change of the

behavior of the system.

We can further distinguish two phases in this time span

(see Figure 2): adaptation and emergence. First, there is the

adaptation phase from the completion of a modification of

code to a change in the executable form of the system. In

most languages or environments, this phase comprises some

kind of compilation. Some environments do also support

changing the executable form while it is running. Second,

there is the emergence phase between the change in the ex-

ecutable form and an observable change in the behavior of

the system. This phase is vital to the impression of continu-

ous feedback. However, this phase requires that the changed

code is indeed executed. This means that the duration of the

emergence phase either depends on the execution behavior

of the application at hand or on the execution time of a com-

plete test suite.

These two phases determine the overall time until pro-

grammers get feedback on their changes and thereby also

the degree of liveness the programmers experience.

2.2 Continuous Feedback

The experience of editing a live system also depends largely

on the preservation of context on changes to the application.

The context can be preserved through continuous feedback,

for example, by keeping currently running code executing or
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Figure 2. The phases from a modification of the code to an observable change in the behavior, which provides developers with

feedback on their changes (adapted from [25]).

preserving and updating the state of interactive tools such as

debuggers or read-eval-print loops (REPLs).

The concept of a steady frame describes a way to pro-

vide live and continuous feedback which preserves the con-

text of an activity [9]. The goal is to make programming a

continuous activity such as aiming with a water hose, in-

stead of an activity with discrete independent steps such as

aiming through shooting single arrows. An activity with a

steady frame is organized such that ”(i) relevant variables

can be seen and/or manipulated at specific locations within

the scene (the framing part), and (ii) these variables are de-

fined and presented so as to be constantly present and con-

stantly meaningful (the steady part).” [9] Therein, the selec-

tion of relevant variables mainly depends on the activity and

the concrete task at hand. Further, the presentation of the

variables also depends on the domain but should make rela-

tionships between the manipulated parts of the system and

the goal easy to perceive.

Presenting variables in a way so that they are continu-

ously meaningful can become a challenge as program exe-

cution often happens in discrete steps. One way to achieve

this nonetheless is by structuring the system in terms of

data-flow concepts or generally declarative abstractions [9].

These declarative descriptions are constantly in execution

and as long as there is real or exemplary data their results

can be shown to programmers. For systems based on an im-

perative execution model, probes could be used to achieve

a similar effect by continuously watching and displaying the

values of relevant variables on exemplary function calls [19].

3. Gramada: Live Language Development

Gramada provides tools to shorten the emergence phase and

to provide a steady frame for defining and modifying DSLs.

Underlying these tools, the syntax and semantics of the lan-

guages are defined through the Smalltalk port of Ohm [4, 35]

named Ohm/S which is optimized for short response times

(for details see Section 4). In this section we will give an

overview over the tools Gramada provides.

Running Example. We will illustrate the features of through

a subset of the Questionnaire Language (QL). This language

was an assignment of the language workbench challenge

20131. As the challenge aims to allow the comparison of

different environments for language development, there are

1 http://www.languageworkbenches.net/ (Accessed September 28,

2016)

Listing 1. An example questionnaire defining two form

fields. This is a basic version of the form defined in the lan-

guage workbench challenge assignment.

form Box1HouseOwning {
hasBoughtHouse : ” Have you bough t a

house i n 2010?” b o o l e a n

spen tOnMain t : ”How much have you s p e n t

on m a i n t e n a n c e ?” money

}

Listing 2. The grammar of the QL written in the Ohm

grammar description language.

Q L Q u e s t i o n n a i r e <: BaseGrammar {
Form = ’ form ’ formName ’{ ’ FormBody ’} ’

FormBody = Q u e s t i o n L i n e ∗
Q u e s t i o n L i n e = q u e s t i o n I d e n t i f i e r ’ : ’

q u e s t i o n L a b e l t y p e I d e n t i f i e r

formName = l e t t e r alnum∗
q u e s t i o n I d e n t i f i e r = l e t t e r alnum∗
q u e s t i o n L a b e l = ’ ” ’ ( ˜ ’ ” ’ )∗ ’ ” ’

t y p e I d e n t i f i e r = l e t t e r +

}

implementations and tutorials for a variety of tool sets. By

using QL, we want to enable comparisons between the work-

flow of Gramada and the workflow of other environments.

The QL describes questionnaires which should be rendered

from their description. We will implement a subset of the

original language, which allows the user to define form

fields. As Listing 1 shows, a form field definition contains

an identifier, a label presented to the user, and a data type,

which is used to render the right form input field. Addition-

ally, Listing 3 shows a small section of a semantics definition

rendering a QL form as an HTML form.

Tools for Continuous Feedback during DSL Development.

Gramada provides various tools: a grammar browser, an in-

put sandbox, a parse tree visualizer, an interactive debugger,

and an extension to SUnit 2 for testing syntax definitions.

Figure 3 and Figure 4 show how the elementary tools inter-

2 SUnit is the Smalltalk version of a XUnit testing framework.
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Figure 3. Gramada tools for a programming session to add the type field to the form field description. First, we opened the

test runner (1) to get an overview of the failing tests. Then, we opened an input sandbox (2) to explore the current parse tree

resulting from a valid QL form. To get a visual impression of the parse tree, we connected the result of the input sandbox to a

parse tree visualizer (3). To start our change, we also dragged out interesting rules directly from the rules list (4) and configured

another input sandbox directly on the QuestionLine rule (5).

(1) Tools prepared with new and failing example to be implemented
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Figure 4. The feedback provided on changes to the grammar. We first modified the examples to include the type specification

for a form field which lets the examples fail (1). We then changed the QuestionLine rule to include the type identifier (2).

Directly after we saved the rule with a keyboard shortcut, the syntax test runner updates and all the input sandboxes re-evaluate

the selected rule on the example. Through a dataflow connection the parse result visualization is also updated (3).
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Listing 3. A Smalltalk method defining a semantic of QL

which creates an HTML form from the parse nodes resulting

from the Form rule of the grammar in Listing 2.

Form : aNode wi th : x FormName : formName

wi th : xx FormBody : FormBody

wi th : xxx

↑ ’<form>’ , ( s e l f v a l u e : FormBody )

, ’</ form>’

Figure 5. The four basic tools of Gramada: the grammar

browser, the rule browser, and the rule and grammar editor

both in the same Vivide artifacts pane.

act in a typical programming session for extending the QL

language. 3

3.1 Basic Editing

Gramada provides the developer with dedicated tool support

for browsing and editing grammars and rules. As semantics

definitions are Smalltalk code, they can be edited using the

standard Smalltalk tool set.

The grammar browser lists all available grammars in the

system (see Figure 5). The grammar definition editor allows

immediate changes to the grammar definition. Dragging out

a grammar from the grammar browser and dropping it out-

side of a window will open a rule browser. It shows all

rules of one grammar and denotes their type with symbols

for override, extent, and inline rules. The rule editor allows

the developer to change rules incrementally. Every time the

developer saves a change in a rule definition, the rule is com-

piled and thereby the language implementation changes in-

stantly. If there is a syntax error in the description of the

rule, the editor points out the error and does not continue to

3 See https://vimeo.com/180190846. for another demonstration of the

Gramada tool set

Figure 6. The input sandbox is instantaneously updated on

changes to the sample input and on modifications to the

currently selected rule.

update the compiled form of the grammar. If several rule ed-

itors are showing the same rule and it is modified, then all

editors display the new version.

3.2 Input Sandbox for the Exploration of Inputs

When developing a new syntax, one way to see a change

in the language, is to see whether the language can now

match new inputs. Thus, Gramada provides a steady frame

for modifications to a grammar through the input sandbox

tool, which provides live feedback on the impact of a change

on a specific input (see Figure 6). Programmers first choose

a grammar and a start rule. Then they can enter the test in-

put and while they are typing the sandbox immediately in-

dicates whether the grammar currently matches the input

through the colored bar at the bottom. The feedback be-

comes relevant within the steady frame as the programmer

can choose an example including the syntax elements to be

added. The input sandbox does also continuously provide

feedback, as whenever any grammar changes, the sandbox

will re-evaluate the rule on the input and signal any change

(see Figure 6). The selection of a grammar and a rule, as well

as the example input, remain stable even when new rules or

grammars are added. Further, the input sandbox provides a

parse result object which can be passed on to other Gramada

tools via a dataflow connection.
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Figure 7. The Vivide object explorer showing a parse result.

The tree structure is not obvious and the matched interval is

only displayed as the numeric values (start, end).

3.3 Parse Result Visualizer

While the result of the input sandbox is relevant and contin-

uously available, it only shows whether the rule matches the

input or not and thus the presentation might not be meaning-

ful. Often, the resulting parse tree structure is also relevant.

To explore it, the developer can open the Gramada parse re-

sult visualization. The result of a parse has three aspects:

matched intervals of the input, matched rules, and the result-

ing tree structure. Smalltalk allows the developer to browse

the parse result object structure with an object explorer, but

the inherent relationship between the three aspects is not ob-

vious (see Figure 7).

The parse result visualization accepts parse results as in-

put (e.g. from the input sandbox) and visualizes the parse

tree structure as a tree in relation to the input string (see

Figure 8). This visualization should ease the navigation in

the potentially complex structures and make the relation be-

tween input, rules, and the parse tree clear. The input is dis-

played as it was originally entered including line breaks. The

matched intervals are displayed as lines underneath the in-

put. When hovering over such an interval line, the name of

the originating rule is displayed next to the cursor. The lines

are below the input and are ordered from long intervals to

shorter ones, as this guides the developer along the com-

mon reading direction from the top to the bottom, from an

overview to the details. The length is also denoted by color,

with longer intervals having a darker color. As for long in-

puts and complex grammars the parse tree might become too

deep to allow a quick overview, the bottom of the visualiza-

tion includes a list of all involved rules, which allows the

developer to filter.

When the parse result visualizer is connected to a live ed-

itor, the visualization is also continuously updated on every

change to the sample input or on valid changes to the cur-

rently used grammar. In case the input can not be matched

anymore, the visualizer shows the one complete parse tree

which matches the longest section of the input. However,

currently Ohm/S does not support incremental parsing and

thus this partial result visualization only works with rules

containing a many rule, for example FormBody. This is con-

sistent with the way Ohm creates syntax error messages.

Listing 4. An example Ohm/S syntax test cases for the QL.

It tests whether the parse returns the correct structure.

t e s t B a s i c F o r m P a r s i n g

s t a r t R u l e := #Form .

s e l f s h o u l d P a r s e : ’ form t e s t {} ’ t o :

# ( Form #( formName ’ t e s t ’ )

# ( FormBody # ( ) ) )

3.4 Syntax Testing

When editing an existing grammar, it might be of interest,

whether the modification of a rule also changes the behav-

ior of other rules. Automated testing is one way to get fast

feedback on changes to the overall behavior of a language

implementation. They can also reduce the emergence phase,

as a change in the test results is an observable change in the

behavior of the language. Further, tests can constitute a gen-

eral steady frame for the activity of modifying a grammar

which provides grammar tests. The test results are relevant

to programmers as they indicate whether the other rules still

work as expected. Also, the syntax test browser continuously

displays the complete result. Therefore, Gramada includes

an extension to SUnit to ease writing tests for syntax defi-

nitions. The extension is based on the Spoofax testing lan-

guage SPT [14].

The definition of syntax tests is based on XUnit concepts.

To test parsing results, the test case class provides two meth-

ods: one for testing whether the input was matched at all,

and one for testing whether the parse result matches a given

structure (see Listing 4).

Through the integration with SUnit, the syntax tests inte-

grate with SUnit tools, like the Squeak auto tester tool [26]

which automatically executes tests whenever the tested

package changes. The Squeak auto tester tool currently re-

quires users to manually select the package containing the

code to be observed and the package containing the tests to

be executed. A specialized syntax test runner could use the

information on the tested grammar and rule in the syntax

tests for a more specific test case selection. To integrate the

results of syntax test cases with other Gramada tools, the

tool set also includes a syntax test browser (see Figure 8).

For each test case it displays the parse results generated

throughout the execution of the test. Finally, the test results

can be dragged out from the syntax test browser by the lan-

guage developer to open up a debugger or an input sandbox

on them.

3.5 Grammar Debugger

To aid language developers to explore parsing failures and

trace them to the defects in the grammar rules, Gramada

includes an interactive grammar debugger. In its design it

is similar to the attribute grammar debugger Aki [23]. For

novice language developers, the debugger might ease the
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3: Filter list with involved rules

1: Original input

2: Parse tree

Figure 8. The Gramada syntax test runner and the parse result visualizer. The visualizer shows the parse of the example

questionnaire. The tree structure is represented through stacked lines which reveal detailed information like matched input

interval and rule name on mouse hover.

1: Input and current position

2: Tree view of rule applications

3: Debugger controls

4: Partial parsing results

Figure 9. The graphical Gramada debugger, debugging a

missing colon in an example questionnaire.

process of understanding their grammars without requiring

up-front knowledge of the concrete parsing algorithm. This

requirement for in-depth knowledge of the parsing algorithm

is often a hurdle as the assumptions of a concrete parsing

algorithm often differ from the general idea of a formal

grammar, for example regarding left-recursion. Instead of

learning the abstract parsing algorithm by heart, they can

interactively explore the resulting dynamic behavior in the

context of an example relevant to them.

The debugger allows the developer to interactively step

into or over a rule application. It shows the progress in the

input string and the position in the rule application stack in

the form of a graphical tree. In case a rule has several subex-

pressions, the debugger also shows partial parsing results in

the list at the bottom. These list items can be inspected with

the parse result visualizer or used as the input for interac-

tive tools. The debugger is configured by connecting the re-

sult of an input sandbox. At this point, the debugger does

not yet provide a steady frame presentation of an execution.

Changes to the grammar will not affect the current debug-

ging progress. It will neither update the future rule invoca-

tions nor replay the debugging session using the modified

rule behavior.

3.6 Connecting the Tools to a Workflow

As the tools are all built on top of Vivide, several of them

interconnect. Whether two tools can be connected depends

on what type of Ohm/S object they display.

Through the connections between the tools, navigating

between them becomes easier. When an issue arises, the

developer can open new tools to understand the issue directly

from within the tool initially bringing up the situation. For

example, the developer might change a rule and the moment

the rule is saved the syntax test browser indicates that a

syntax test just broke. The developer then drags out the

faulty parse result which opens a parse result visualizer on

the object that shows how much of the input was matched. To

drill down on the problem, the user connects the visualizer

to an input sandbox to automatically set its grammar, start

rule, and input. In the editor, the developer reduces the input

to a minimal example causing the parsing failure. To finally

figure out the issue, the developer connects the result of the

input sandbox to a grammar debugger and steps through

the parsing process to find the defect in the rules. As the

appropriate solution is not clear, the developer experiments

with several changes to the rules and the opened tools all

update continuously after each edit to a rule.

4. Implementation

The quick availability of feedback in Gramada tools is

made possible by the underlying language implementation

framework Ohm/S. This Smalltalk port of the Ohm frame-

work [4, 33, 35] uses implementation techniques known

from general-purpose programming language implementa-

tions to achieve a short response time. Further, Gramada

profits from the tool building capabilities of the Vivide envi-

ronment.
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4.1 Technical Foundations of Gramada

Gramada is based on previous work for defining languages

and creating tools. We give a short overview on the technical

foundations to distinguish between their features and the

technical contributions of Gramada.

4.1.1 Language Definition Framework Ohm

Ohm is a language definition framework based on Parsing

Expression Grammars (PEGs) that supports a novel form

of modular semantics definitions. This allows for a clean

separation of syntax and semantics, with a small and stat-

ically checkable interface between them. Ohm syntax defi-

nitions are written in an external DSL, which makes them

reusable across different implementations of Ohm. For ex-

ample, Listing 2 shows an Ohm grammar accepting the QL.

The grammars are interpreted as PEGs with left-recursion

support [34]. Further, the grammars support various rule in-

heritance semantics (inherit, extend, and override) from ex-

actly one supergrammar. The semantics of a language are

defined through abstractions of the host language [35], e.g.

objects in Javascript and classes in Smalltalk.

4.1.2 Tool Development Environment Vivide

Gramada implements a set of tools which are all based on

and integrated into Vivide, an environment which eases the

development of graphical tools by taking a data-driven per-

spective on them [29]. As a framework, it helps developers

to develop graphical tools by separating the code which pre-

pares the data to be displayed from the code which deals

with the details of graphical components, like rendering or

event handling. As a programming environment, it changes

the workflow, as the objects themselves become central to

user interactions. For example, instead of opening a class

browser, the developer opens a set of class objects, option-

ally filters and transforms them, and finally selects a graph-

ical component to display the resulting data set. It also al-

lows the programmer to combine existing tools by defining

a dataflow between them, such as the connection between

the input sandbox and the parse result visualizer.

Scripts and Views In Vivide, the code which prepares the

data for displaying is represented as a script. The visual com-

ponent displaying this data is called a view and can be a list,

a tree, or even a three dimensional visualization of a graph.

Typically, one tool has several scripts which transform do-

main objects to the target data set and the corresponding

view configurations. A view will get the resulting view con-

figuration as an input and render the elements appropriately.

For example, if the collection of methods is rendered as a

list, then each method becomes a list item with the method

selector as its label. The combination of scripts and a view is

captured in a pane, for example the rule browser combining

a script for extracting rules from a grammar and a list view.

Dataflow Every pane has an output which is determined

by the view. For example, when a user selects a method

from a list view containing methods, the output of the pane

of the list is the selected method object. This output can

be connected to the input of another pane. For example,

a developer could create a list of classes and connect its

output to the input of our pane, listing the methods of a class.

These combinations of panes through connections can also

be grouped together to form single tools.

4.2 Ohm/S

To define the syntax and semantics of DSLs, Gramada uses

Ohm/S, which is a Smalltalk implementation of the language

development framework Ohm. Thus, the syntax of a lan-

guage is defined using the Ohm grammar language (see for

example Listing 2) and the semantics are defined through

Smalltalk classes and methods.

Ohm/S primary design goal is to provide the programmer-

friendly language development features of Ohm while sup-

porting sufficiently short adaptation phase to enable imme-

diate feedback in Gramada. Gramada should evoke the im-

pression that the developer is editing the grammar itself and

not a character string. Whenever the code of a rule changes,

the grammar behavior should change directly and any in-

put matching in progress should be quickly continued or

restarted. Thus, in order to decrease the adaptation time in

the domain of language development, Ohm/S uses the same

kind of engineering techniques which enable immediacy for

application development.

4.2.1 Incremental Compilation

Ohm/S enables incremental compilation through its meta-

model. Similar to Smalltalk classes, grammars are common

objects in the Smalltalk image, protected from the garbage

collector by a global reference. Each grammar contains a

dictionary mapping rule names to rule objects. To change

a rule, it is sufficient to translate this one rule and to re-

place it in the rules dictionary of the corresponding gram-

mar. Changes to the grammar definition are interpreted as

changes to the state of the grammar object itself. Hence,

changing the supergrammar does not require a complete

translation of the grammar but does only change the su-

pergrammar instance variable of the existing grammar ob-

ject. Thus, the translation of rules and grammars is spread

throughout the editing. As a result, an updated grammar can

always be used directly without any further translation.

4.2.2 Ohm/S Dynamic Inheritance

In Ohm/JS, a grammar inherits all rules of its supergrammar

when it is compiled from its definition. If an inherited rule

changes in the supergrammar at a later point in time, the

child grammar will not be updated, but keep the old inherited

behavior. As Ohm/S grammars are persisted and seldom re-

created from their definition, we changed the inheritance

semantics to dynamic inheritance in Ohm/S. Whenever a

grammar tries to apply a rule which it can not find in its

rule dictionary, it asks a supergrammar for the rule. This
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means that the definition of a rule can now change through

modifications in the grammar itself or through modifications

in the supergrammar. Additionally, if the rule specifies a

particular inheritance semantic, e.g. the child extends the

parent rule with another alternative, the inheritance operator

is applied during the lookup, e.g. by combining the parent

rule and the child rule to form a new rule. The results of the

lookup are cached for the duration of one parsing process.

4.2.3 Defining Semantics

In Ohm/S, semantics are defined in classes. A language

developer can subclass from a class which represents how

the semantics definition should be interpreted. The single

functions for parse tree nodes are defined in methods. The

default attributes are provided as methods in the semantics

superclasses. The mapping between the parse nodes of a

particular rule and the function computing the corresponding

attribute value is established on a syntactical level, so the

method name has to match the rule name in a certain way.

An attribute can be evaluated recursively by calling value on

itself, passing the next nodes to be evaluated (see Listing 3).

5. Evaluation

Gramada is designed to provide immediate and continuous

feedback for the development of DSLs. We quantitatively

evaluated Gramada regarding the goal of immediate feed-

back. We also qualitatively discuss the capabilities of Gra-

mada to provide continuous feedback through a steady frame

for changing a grammar.

5.1 Evaluation of the Adaptation Phase

For the evaluation, we focus on the feedback for developing

the syntax of a language. Gramada does not include features

designed to shorten the phases of semantics. However, as

the developer specifies semantics through ordinary Smalltalk

methods and classes the short adaptation phase durations of

Smalltalk systems holds.

5.1.1 Adaptation Time of Syntax Definitions

To determine the adaptation time, we conducted an experi-

ment based on the 113 Ohm/S grammar rules in the image.

We measured the time between the start of the compilation

and the end of the installation of the rule into the grammar.

We measured every translation 100 times. During every run,

the garbage collector was deactivated. As the lines of code

of a rule do not correlate with its syntactic complexity, we

used the number of expression nodes in the compiled form

of a rule as the parameter of our benchmark. We used the

following setup to conduct the experiment:

• Intel i5-3320M with a 2.6 GHz frequency and 8 GB

DRAM running Windows 7 Enterprise 64 Bit

• Squeak 4.5 (Update 13680) with a Cog VM version

CoInterpreter VMMaker.oscog-eem.331 (Win32 built on

Aug 22 2013 10:20:54 Compiler: 3.4.4)

Table 1. Measured running times in milliseconds for trans-

lating a complete grammar (100 runs each).

Grammar #Rules Median Range

BasicQuestionnaire 8 311 311-316

DynamicQuestionnaire 11 488 476-594

Ohm 61 3219 2963-3529

Smalltalk 76 3913 3694-4341

Figure 10. A Tukey box plot of all measurements of adapta-

tion times showing that the median times stay under 100 ms

and only one outlier exceeds 150 ms. The fact that the times

only slightly increase with the growing complexity of a rule

stems from the fact that the serialization phase does mainly

depend on the size of the grammar and not on the size of

the rule (for details see Appendix A). This impact could be

mitigated through caching.

• Additional packages loaded: Ohm−Core, Ohm−Grammars

(From https://github.com/hpi-swa/Ohm-S) with

the commit hash 5f6d09e9

5.1.2 Discussion of Results

For the adaptation phase of syntax definitions, we have

found that the median adaptation time stays below 100 ms

for rules with less than 24 expression nodes and otherwise

stays below 150 ms (see Figure 10). Further, a compari-

son to a complete recompilation of grammars shows, that

for Gramada, incremental compilation is key to achieving

short adaptation times. Translating a complete grammar af-

ter each change to the source code is only feasible for small

grammars (see Table 1). For larger grammars, the adaptation

time is already within Shneidermans recommended range of

common tasks (2-4 seconds) and Johnsons range of dura-

tions which make users impatient.

5.2 Evaluation of the Emergence Phase

The emergence delay is the time between a change in the

executable form of a language and an observable change in

the behavior of the language implementation. To observe a

change in behavior, we have to re-execute the implemen-

tation after each change. For syntax definitions, Gramada
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Figure 11. A Tukey box plot of measurements of the emer-

gence phase of the input sandbox connected to the parse

tree visualizer. This plot leaves out 7 outliers with execution

times of over 2 seconds. Most median times stay under 500

ms. The increase in variance stems from an increasing vari-

ance in method complexity with increasing method length.

Overall, there is a linear increase in the median execution

time (Pearson coefficient: 0.958).

achieves this through the input sandbox and testing abstrac-

tions enabling auto-testing.

The semantic definitions generally profit from the fea-

tures shortening the emergence phase in Squeak/Smalltalk,

such as the dynamic debugger, the object explorers, or the

hot-swapping support. Beyond that, Gramada does not pro-

vide tool support to provide a tailored live programming ex-

perience for the definition of semantics (see Section 7).

5.2.1 Emergence Time of the Input Sandbox

The input sandbox of Gramada allows direct observations of

changes in the behavior of the parser of a language imple-

mentation. Optionally, the input sandbox can also update the

parse result visualizer on every keystroke. As this combina-

tion provides the most information on changes to the source

code of a rule, i.e. whether the rule matches and what the

complete parse tree looks like, we decided to evaluate the

emergence time of the two in combination.

5.2.2 Experiment Setup

We assume that the response time of the input sandbox de-

pends mainly on the selected grammar and the provided in-

put. We have chosen the Ohm/S Smalltalk grammar as a rep-

resentative input grammar for a general-purpose program-

ming language. We assume that DSLs will reach a similar,

but not a higher degree of syntactic complexity. We vary

the input complexity by randomly sampling 250 Smalltalk

methods, five for each size between 1 to 50 lines. We have

chosen lines of code as the benchmark parameter, as we are

interested in an overall trend and upper bounds of execution

times with regard to realistic input and not in the particular

factors making up the response time. Every method is en-

tered into the input sandbox 10 times. We measure the time

from the completion of the insertion up to the end of the ren-

dering of the parse result tree. The benchmark setup consists

of the hardware described in Section 5.1.1 with the following

changes to the software components:

• Squeak 4.5 (Update 15059) with a Cog VM (Win32 built

on Jun 27 2015 12:57:31 PDT Compiler: 3.4.4)

• Gramada revision ab493a4f-1a88-1e45-a081-2457fc3c5d34

5.2.3 Auto-Testing for Syntax Definitions

The automatic execution of tests provides feedback on the

overall behavior of a grammar. The resulting response time

depends mainly on the number of test cases. So far, the

Gramada syntax test runner is based on the Squeak auto

tester tool which naively executes all tests in a package on a

change. To determine, whether this strategy is sufficient for

a live programming experience, we measured the execution

time of 100 runs of the Smalltalk grammar tests which re-

implement all syntax tests the original parser package pro-

vided which results in 34 test methods, each with up to 15

input/rule combinations. This test class had a median execu-

tion time of 1520 ms (standard deviation: 329.47 ms). As the

tests always run concurrently this is bearable. However, the

threshold for making users impatient (1 second) is exceeded.

A more advanced test case selection would be required to

scale the auto-testing setup to larger test sets.

5.2.4 Discussion of Results

To assess the emergence phase, we analyzed the evaluation

delay of the input sandbox. For short inputs, the delay of the

input sandbox stays under 500 ms and for larger ones the me-

dian delay remains under 1 second (see Figure 11). To assess

the overall duration of the feedback, we have to examine the

combination of the adaptation and the emergence phase. Us-

ing the input sandbox, the overall duration until feedback is

available will stay under 1 second for short inputs and might

occasionally exceed this threshold for longer inputs.

According to Shneiderman, this makes the input sand-

box fast enough to be used frequently. The auto tester tool

is fast enough to be a commonly used tool. Regarding John-

son’s thresholds, the overall system response time of all the

evaluated tools exceeds the threshold for the impression of

causation. Only for very short inputs (<5 lines of code for

Smalltalk methods) the delay between changing the input

and seeing a change in the parse tree visualization stays un-

der this threshold. Nevertheless, most scenarios stay under

the threshold for making users impatient.

5.3 Continuous Feedback in Gramada

Gramada aims to provide continuous feedback through cre-

ating a steady frame for the activity of changing a gram-

mar. The tools therefore need to provide a frame for the pre-

sentation and modification of relevant variables as well as a

steadily meaningful presentation of these variables [9].

Framing is achieved by the tools themselves. Each tool

shows a different part of the system, for example, the live
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editor shows whether a certain input can match at all, and the

syntax test browser shows the results of all syntax tests in the

system. The relevancy of these parts depends on the task at

hand, for quick feedback the live editor is sufficient, for an

in-depth exploration the parse result visualizer presents the

parse tree as a relevant part.

While the framing is a direct result from the distinct tools,

the steadiness is a result of the way the Gramada tool set and

the Ohm/S framework interact. In comparison to dataflow-

defined concepts, grammars are not constantly running. So

changes in the behavior of a grammar would only manifest

as soon as the grammar is explicitly used with concrete

examples. To make the presentation of feedback such as the

parse result visualizer constantly meaningful, the Gramada

notification system triggers an update in all corresponding

tools currently showing aspects of the modified grammar.

To keep the feedback steady, the selection of grammars,

rules, or examples is not changed on changes to the way the

grammar works.

6. Related Work

The development of domain-specific languages has been

subject to extensive research. Thus, there are a variety of so-

lutions for supporting DSL developers, ranging from pars-

ing libraries and corresponding tools to complete environ-

ments for language-oriented programming, which include

language and application development facilities.

6.1 General Language Development Environments

Gramada focuses on tool support for immediate feedback

during language development. Therefore, in our discussion

of general language development solutions, we focus on ap-

proaches providing mechanisms for short feedback loops.

One of them is ANTLRWorks which provides interactive

tooling for the grammar language ANTLR. Another envi-

ronment called PetitParser achieves short system response

times for its syntax definitions through using an internal DSL

based on Smalltalk.

ANTLRWorks. ANTLRWorks is a development environ-

ment for ANTLR, a framework for compiler and interpreter

construction [2]. In ANTLR, a language is implemented

with grammars which define the syntax and tree parsers

which define the code generation for a target language. The

basic ANTLR workflow contains an explicit generation step

from a set of grammars to source code describing the DSL,

e.g. the QL, in a target language, e.g. Java.

ANTLRWorks contains an ANTLR grammar interpreter

which allows using the language specifications without

translating the grammars first. Based on this interpretation,

ANTLRWorks provides a static expression graph visualiza-

tion and a parse tree visualization for example input strings.

As the grammars are interpreted, there is no adaptation step

involved. However, the parse tree visualization has to be

refreshed manually. Another consequence of the grammar

interpreter is that the semantics definitions do not work se-

mantically correct and can not be evaluated as quickly as the

syntax definitions.

PetitParser. PetitParser is a parser combinator library writ-

ten in Smalltalk [22]. It can be used to specify parsers but

not semantics. PetitParser also provides a tool set, which in-

cludes a static expression graph of a parser, a view show-

ing the parsing progress through an example input which in-

cludes a backtracking visualization, a parsing profiler, and

a debugger that allows navigating a static trace. Changes to

the parser definition are updated by saving the containing

Smalltalk method. All the described tools are updated on

saving the example input but not on changes to the parser.

Thus, the feedback on the impact of changes is delayed as

the examples have to be manually refreshed.

PetitParser does provide immediate feedback on changes

to the language implementation as the syntax definitions

are implemented in an internal Smalltalk DSL. Thus, Petit-

Parser benefits from the Smalltalk tooling and short adapta-

tion times.

6.2 Language Workbenches

Language workbenches are environments designed to sim-

plify developing new languages and the corresponding

development environments. At the time of writing, there

are numerous language workbenches developed and main-

tained [5]. We considered the particularly prominent and

advanced environments Spoofax, Xtext, and Rascal.

Spoofax. Spoofax is a mature language workbench for

specifying languages and corresponding development en-

vironments [13]. It integrates a number of specialized lan-

guages for language development, e.g. SDF3 for syntax def-

initions based on context-free grammars and the Stratego

transformation language. Spoofax provides an editor with

code navigation between specification languages, an outline

for SDF3 grammars, a visualization of a parse tree of an ex-

ample input, and a testing language for syntax and semantics

definitions including a test runner.

The translation of language definitions to an implementa-

tion is initiated manually, and takes several seconds, exclud-

ing the duration for generating the new tools. Afterwards,

the developer has to manually refresh any opened input vi-

sualizations or test runners. Spoofax does not include an in-

teractive debugger. However, due to the design of the SDF3

syntax definition formalism, some programming errors pos-

sible in PEG-based grammar languages can not occur, e.g.

wrong ordering of choices.

Xtext. The Xtext workbench allows syntax definitions

through grammars and semantics definitions through code

generation. Based on the syntax definition, Xtext can gen-

erate an editor, including code highlighting and navigation

for the language under development [6]. Xtext also pro-

vides an editor with code highlighting and navigation for
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the syntax definitions. As the code generators are defined in

Java, the DSL developer can use all Java tools provided by

Eclipse. Besides the editor, Xtext does currently not provide

any other tools for the language developer. Also, to use the

newly developed language, the developer has to explicitly

start a generation process and launch a new Eclipse instance.

The complete process can take several seconds.

Rascal. At the core of the Rascal environment is the Ras-

cal programming language, which is a general-purpose pro-

gramming language with extensions for programming lan-

guage specification [15].

In contrast to other language workbenches, Rascal pro-

vides tooling mostly through an interactive REPL integrated

into Eclipse. This REPL allows the developer to dynamically

load language specifications like modules. If the language

exposes an eval or parse function, then it can be used in-

teractively in the Rascal REPL. Further, the command line

provides a module to visualize a parse result as an interac-

tive parse tree. The REPL allows interactive exploration of a

language implementation. However, whenever the language

definition changes, the developer has to restart the language

console manually to use the changed definition. Currently,

Gramada does not provide special tools for the interactive

exploration of semantics yet. Instead, the Squeak/Smalltalk

tools, such as the workspace and the object explorer, can be

used to explore the language.

7. Conclusion and Future Work

Live programming based on immediate and continuous feed-

back is beneficial for program comprehension and program-

mer productivity. Especially, feedback on the impact of

changes to the system is important. With regard to imme-

diacy of feedback, we distinguished the adaptation and the

emergence phase. We further used the previously defined

concept of steady frames to qualify continuous feedback.

Gramada We proposed the language development envi-

ronment Gramada, designed to provide immediate and con-

tinuous feedback on changes to DSLs. First, it includes

the language development framework Ohm/S, which is a

Smalltalk adaptation of the Ohm [4, 35] framework. Ohm/S

additionally features the incremental compilation of gram-

mars and a dynamic lookup of rules. Second, Gramada pro-

vides tools, like the input sandbox and the syntax test runner,

which create a steady frame for the activity of modifying

grammars through continuously and consistently providing

feedback on the behavior of grammars.

Squeak/Smalltalk Implementation We implemented Gra-

mada on top of Squeak/Smalltalk and Vivide. The imple-

mentation of Ohm/S demonstrates how engineering tech-

niques used to decrease system response times during ap-

plication development can also be applied to language de-

velopment. The tools shorten the emergence phase by re-

evaluating examples on changes to the examples or the lan-

guage definition.

Evaluation Results In a quantitative analysis of the re-

sponse times of Gramada, we have found that the adaptation

phase of rules is generally shorter than 200 ms. Also, the

input sandbox combined with the parse tree visualizer pro-

vides a median emergence phase duration of under 500 ms

for the grammar of a general-purpose language. This results

in an overall response time of under 1 second. The auto tester

tool running syntax tests results in an emergence phase of 1

to 3 seconds. We further discussed properties of the steady

frame the Gramada tool set can provide.

These results show that live programming is possible in

language development. Thereby, Gramada can improve the

overall feedback loop of DSL development and make lan-

guage implementations easier to understand. This can help

making DSLs more accessible in software development.

Future Work. Gramada enables live language develop-

ment. In addition to improvements on the tool set, it also

brings up new research opportunities.

Although short feedback loops and the resulting impres-

sion of immediacy are generally beneficial, it remains to be

shown how they impact the process of understanding, as well

as how they impact developers for the particular task of lan-

guage development. Both aspects, productivity and acces-

sibility, of language development could be evaluated with

respect to changes to the response time in Gramada.

Gramada provides several tools providing immediate and

continuous feedback for syntax definitions. So far, the se-

mantics can be developed with short feedback loops, as

they are defined through Smalltalk methods. While the

workspace in Squeak/Smalltalk allows the interactive explo-

ration of language semantics, it still requires manual inter-

ventions to produce results. Additional tool support can help

to shorten the emergence phase for the semantics definitions

further. To keep response times low despite re-evaluations of

examples, an incremental evaluation of semantics would be

beneficial, e.g. for the the HTML rendering of a QL form.

Instead of re-evaluating the changed attribute on the whole

parse tree, the evaluation can be limited to affected sub-trees.

Further, the Gramada tool set could be extended to a lan-

guage workbench. To achieve this, it would not only require

concepts to describe and generate tool support for the de-

scribed DSLs, but also mechanisms to enable immediate and

continuous feedback on changes to them. Gramada should

allow the developer to create the DSL tools in the same en-

vironment and see changes to them directly after a modifi-

cation of a definition. Thereby, it could create an environ-

ment providing immediacy for developing new languages,

for using these languages, and for common general-purpose

application development.
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A. Detailed Benchmark Results

Figure 12. A Tukey box plot of all measurements of adap-

tion times only containing the rule compilation part with re-

gard to the number of expressions nodes in the rule abstract

syntax tree. The plot shows a linear increase in compilation

time (Pearson correlation coefficient of 0.935).

In addition to the overall adaptation phase duration in

Ohm/S we have also measured the duration of the two phases

making up the adaptation phase: compiling a rule and serial-

izing a grammar into a Smalltalk class for persistence. When

looking at the result diagram (Figure 10) there is a recog-

nizably slow increase of the adaptation phase duration (see

Figure 12) with the increase in the node count. The measure-

ments of the two individual phases reveal that this results

from the fact, that the serialization phase duration (see Fig-

ure 13) does not depend on the rule complexity but makes

up a considerable portion of the overall duration.

Figure 13. A Tukey box plot of all measurements of adap-

tion times only containing the serialization part. The chart

indicates that there is no correlation between the execution

time and the rule complexity (Pearson correlation coefficient

of -0.093).
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