
An Aspect-Oriented Generative Approach
Uirá Kulesza

Computer Science Department
PUC-Rio, Brazil

55-21-2540-6915

uira@inf.puc-rio.br

Alessandro Garcia
Computer Science Department

PUC-Rio, Brazil
55-21-2540-6915

afgarcia@inf.puc-rio.br

Carlos Lucena
Computer Science Department

PUC-Rio, Brazil
55-21-2540-6915

lucena@inf.puc-rio.br

ABSTRACT
The integration of generative and aspect-oriented techniques is
not a trivial task. This paper describes our experience in the
definition of an aspect-oriented generative approach for the
context of multi-agent systems. Our generative approach is
composed of: (i) a domain-specific language called Agent-DSL,
which allows to model crosscutting and non-crosscuting agent
features; (ii) an aspect-oriented architecture that models a family
of software agents; and (iii) a code generator that maps
abstractions of the Agent-DSL to specific compositions of objects
and aspects in specific implementations of agent architectures.
The use of aspect-oriented techniques in the definition of our
generative approach brought benefits to the modeling and code
generation of crosscutting features since early design stages.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.11 [Software Engineering]: Software Architectures –
Domain-Specific Architectures; D.2.13 [Software Engineering]:
Reusable Software – Reuse models, Domain engineering.

General Terms
Design, Languages.

Keywords
Generative Programming, Aspect-Oriented Software
Development, Multi-Agent Systems.

1. INTRODUCTION
Over the last years, generative programming and aspect-oriented
software development have been proposed, aiming at increasing
maintainability and reusability of software systems.
Generative Programming (GP) [1] is an approach based on
domain engineering. It addresses the study and definition of
methods and tools to enable the automatic production of software
families from a high-level specification. GP promotes the
separation of problem and solution spaces, giving flexibility to
evolve both independently.
Aspect-Oriented Software Development (AOSD) [2] is an
evolving paradigm to modularize crosscutting concerns that
existing paradigms (e.g.: object-oriented) are not able to capture
explicitly. Crosscutting concerns are concerns that often crosscut
several modules in a software system. AOSD encourages modular

descriptions of complex software by providing support for cleanly
separating the basic system functionality from its crosscutting
concerns. Aspect is the abstraction used to modularize the
crosscutting concerns.

The use of aspect-oriented techniques in the definition of a
generative approach can bring additional benefits for the
development of system families, especially to the modeling and
generation of crosscutting features since early development
stages. However, the integration of generative and aspect-oriented
technologies is not a trivial task. So far there is little
understanding of the interplay between these techniques.
This paper describes an aspect-oriented generative approach for
the development of multi-agent systems (MASs). The purpose of
the generative approach is threefold: (i) to uniformly support
crosscutting and non-crosscutting features of software agents
starting at early development stages; (ii) to abstract the common
and variable agent features; and (iii) to enable the code generation
of aspect-oriented (AO) agent architectures.

2. THE GENERATIVE APPROACH
Figure 1 depicts our aspect-oriented generative approach that is
composed of:

 (i) a domain-specific language (DSL), called Agent-DSL, which
is used to collect and model orthogonal and crosscutting features
of software agents;
(ii) an AO architecture that models a family of software agents. It
is centered on the definition of aspectual components to
modularize the crosscutting agent features at the architectural
level;
(ii) a code generator that maps abstractions of the Agent-DSL to
specific compositions of objects and aspects in agent
architectures.

Figure 1 also illustrates that MAS developers use the Agent-DSL
language to describe models with the specific features of a given
MAS. The code generator supports the generation of code
associated with those features on the basis of our AO agent
architecture. The development of the generative approach was
organized into the typical phases of domain engineering
processes: (i) domain analysis; (ii) domain design; and (iii)
domain implementation.

2.1 Domain Analysis
In the domain analysis, we investigated the different concerns
encountered in the development of software agents. These
concerns were organized and modeled by using feature models.
The main agent features found were: knowledge, interaction,

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

166

adaptation, autonomy and collaboration. Each of them is
composed of specific subfeatures [3, 4].

In order to support the representation of crosscutting features, we
have introduced a new kind of relation between features, called
“crosscuts”. We say that a feature A crosscuts a feature B, when
either A or one of its subfeatures depends and inspects B or one of
the subfeatures of B. The following agent features were
characterized as being crosscutting: interaction, adaptation,
autonomy and collaboration. Each of them inspects elements of
the knowledge feature in order to exhibit a specific agent
property. For example, the autonomy feature inspects changes on
the knowledge feature in order to detect the need for autonomous
proactive behavior.

Figure 1. The Aspect-Oriented Generative Approach

2.2 Domain Design
In the domain design, we have developed a generic aspect-
oriented (AO) agent architecture [3, 4] that considers each of the
crosscutting and non-crosscuting features modeled during domain
analysis. The architecture is composed of two kinds of
components: (i) a central Knowledge component that
modularizes the non-crosscutting subfeatures associated with the
knowledge feature; and (ii) the aspectual components that
separate the crosscutting agent features from each other and from
the Knowledge component. Aspectual components represent
crosscutting features at the architectural level.

A new notation has been used to graphically represent our AO
agent architecture. It was developed to enable the representation
of aspectual components. In the proposed notation, an aspectual
component may crosscut other aspectual or non-aspectual
components using its crosscutting interfaces. A crosscutting
interface may add new state or behavior to other components or
intercept (and modify) the existent behavior of components. Non-
aspectual (normal) components are represented in a similar way to
UML and offer their services through the normal interfaces.

2.3 Domain Implementation
In the domain implementation, we have used different
technologies to implement the central components of the

generative approach. First of all, the Agent-DSL was specified by
using the XML-Schema technology. This DSL is used to specify
the agency properties that agents could have to accomplish their
tasks.
The AO agent architecture was implemented by using the Java
and AspectJ programming languages. The basis of the
architecture implementation is an AO framework that contains
hot-spots as classes and aspects. The use of the aspect abstraction
in the definition of frameworks enabled us to define common and
variable behaviors of several crosscutting features.
In the configuration knowledge of the generative approach, we
implemented a code generator as an Eclipse plug-in. This
generator maps abstractions in the Agent-DSL to components and
aspects of the agent architecture. The main task of the generator is
to instantiate the AO framework, creating subclasses and
subaspects for specific hot-spots of the framework. Depending on
the agent descriptions provided, new types of agents (or roles)
with their respective agent properties can be generated. Java
Emitter Templates (JET), a generic template engine of the Eclipse
Modeling Framework (EMF), has been used to write the code
templates that specify the classes and aspects of the agent
architecture to be generated.

3. CONCLUSIONS
This work presented the definition process of an AO generative
approach. The goal of this approach is to explore the horizontal
domain that MASs represent in order to enable the code
generation of agent architectures. We organized the development
of the generative approach using typical phases encountered in
domain engineering processes. During the development process of
the generative approach, it was necessary to adapt modeling
notations used in generative programming due to the adoption of
the AO paradigm.
The integrated use of generative programming and AO techniques
brought additional benefits to the development of software
families, such as: (i) clear separation of orthogonal and
crosscutting features starting at early design phases; (ii) direct
mapping of crosscutting features in aspectual components; (iii)
simplified implementation of code generators, because the
composition of crosscutting concerns is accomplished by the
aspect weavers, and (iv) improved reuse of artifacts associated
with crosscutting agent features.

4. ACKNOWLEDGMENTS
The authors have been partially supported by CNPq and FAPERJ.

5. REFERENCES
[1] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications, Addison-Wesley, 2000.
[2] G. Kiczales, et al. “Aspect-Oriented Programming”. Proc.
of`ECOOP’97, LNCS 1241, Springer-Verlag, Finland, June 1997.
[3] U. Kulesza, A. Garcia, C. Lucena. “Generating Aspect-
Oriented Agent Architectures”. Proceedings of the 3rd Workshop
on Early Aspects, AOSD’2004, March 2004, Lancaster, UK.
[4] U. Kulesza, A. Garcia, C. Lucena, A. von Staa. “Integrating
Generative and Aspect-Oriented Technologies”. Proceedings of
the Brazilian Symposium on Software Engineering (SBES´2004),
Brasilia, Brazil, October, 2004.

Agent-DSL

AO Agent
Architecture
Generated

Specification
of agent
features

Code
Generator Frameworks +

Components

Code Templates

Classes and Aspects of
the Agent

167

