
A Coordination Methodology and Technology for Agile
Businesses

Lu[s Andrade 1, Jose Luiz Fiadeiro 1,2,
Jo~.o Gouveia ', Georgios Koutsoukos ', Michel Wermelinger ',3

~ATX Software SA, Alameda Antbnio Sergio 7, 1C, 2795-023 Linda-a-Velha, Portugal
2Dep. de Inform~.tica, Fac. de Ciencias, Univ. de Lisboa, Campo Grande, 1700 Lisboa, Portugal

3Dep. de Informatica, Univ. Nova de Lisboa, 2829-516 Caparica, Portugal
{landrade, jgouveia, gkoutsoukos} @ atxsoftware.com

jose@fiadeiro.org mw@di.fct.unl.pt

1. MOTIVATION
The engineering of Business Systems is under the increasing

pressure to come up with software solutions that allow companies
to face very volatile and turbulent environments (as in the telecom-
munications domain [3]). This means that the complexity of soft-
ware has definitely shifted from construction to evolution, and that
new methods and technologies are required.

Most often, the nature of changes that occur in the business are
not at the level of the components that model business entities, but
at the level of the business rules that regulate the interactions be-
tween the entities. Therefore, we believe that sucessful methodolo-
gies and technologies will have to provide abstractions that reflect
the architecture of such systems by supporting a clear separation
between computation, as performed by the core business compo-
nents, and coordination, as prescribed by business rules. This sepa-
ration should help in localising change in the system, both in terms
of identifying what needs to be changed in the system and circum-
scribing the effects of those changes.

In our opinion, the lack of abstractions for supporting the mod-
elling of interactions and architectures explains why component-
based and object-oriented approaches have not been able to deliver
their full promise regarding system evolution. Usually, interactions
are coded in the way messages are passed, features are called, and
objects are composed, leading to intricate spaghetti-like structures
that are difficult to understand, let alone change. Moreover, new
behaviour is often introduced through new subclasses which do not
derive from the "logic" of the business domain, widening the gap
between specification and design.

The approach we have been developing [1] builds on previous
work on coordination models and languages, software architecture,
and parallel program design languages. Instead of delegation we
use explicit architectural connectors that encapsulate coordination
aspects: this makes a clear separation between computations and
interactions and externalises the architecture of the system. Instead
of subclassing we advocate superposition as a structuring principle:

Copyright is held by the author/owner.
OOPSLA'02, November 4-8, 2002, Seattle, Washington, USA.
ACM 1-58113-626-9/02/0011.

interactions are superposed on components in a non-intrusive and
incremental way, allowing evolution through reconfiguration, even
at run-time.

The main advantages of our approach are adequacy and flexibil-
ity. The former is achieved by having a strict separation of com-
putation, coordination, and configuration, with one primitive for
each concept, stating clearly the pre-conditions for each coordina-
tion and reconfiguration rule. As for flexibility, interactions among
components can be easily altered at run-time through (un)plugging
of coordination rules, and it is possible to state exactly which coor-
dination rules are in effect for which components, and which con-
figuration policies apply to which parts of the system.

In the following sections we briefly summafise our approach for
different phases of software development. More details are pro-
vided by the publications available at www.atxsoftware.com.

2. LAWS FOR DESIGN
At the modelling level, business entities and rules are specified

in an implementation-independent way, by coordination interfaces
and coordination laws, respectively. A coordination interface indi-
cates a collection of services that must be provided and events that
must be generated by all components that implement the interface.
A coordination law states when and how to react to the events of
the components that are subject to that law. Put in another way, ser-
vices are provisions, events are requests, and laws bind provisions
to requests, stating exactly when a request is attended and which
services are used to process it. We stress that services and events
are at the conceptual level; the implementation artefacts (messages,
remote procedure calls, intenupts, etc.) they are mapped to depend
on the implementation platform.

As an example, taken from the banking domain, consider two
kinds of components: customers and accounts. We wish to model
two business rules: normal customers may not overdraw their ac-
counts, but VIP customers may overdraw up to some limit which is
negotiated between the bank and the customer. For these rules, the
full specification of accounts and customers is irrelevant. The only
necessary services and events are given by the following interfaces:

coordination interface account-debit
type-id account
services debit(m: money); balance() : money
properties balance() after debit(m) is balance() - m
end interface

coordination interface customer-withdrawal

48

type-id customer
services owns(a: account) : boolean
events withdraw(m: money; a: account)
end interface

Notice that there is no pre-condition on the 'debit ' operation of
the account because such interaction rules may be subject to evo-
lution and hence are best given by coordination laws. The law for
normal customers is as follows.

coordination law normal-withdrawal
partners a:account-debit, c:customer-withdrawal
when c.withdraw(m,a)
with a.balanceO> n and c.owns(a)
do a.debit(n);
end law

As can be seen, each law has a set of subjects, indicated by the
interfaces they must implement, and a coordination rule. The rule
consists of an event (when), a guard (with) and a body (do). When-
ever the event occurs, if the guard is true then the rule body is exe-
cuted; if the guard is false, the body is not executed and a failure is
reported.

The law for VIP customers has a local attribute to hold the limit
up to which the customer may overdraw the account.

coordination law vip-withdrawal
partners a:account-debit, c:customer-withdrawal
attributes credit:money
when c.withdraw(m,a)
with a.balanceO + credit > n and c.owns(a)
do a.debit(n);
end law

It is important to notice that laws are instantiated to groups of
component instances, which allows complete flexibility in setting
up which business rules govern which interactions among business
entities, and how. For the example at hand, it is possible to have
an account owned by three customers such that one customer can-
not overdraw the account, and the other two can overdraw it with
different limits.

Last, but not least, the use of superposition means that the com-
bination of laws has a cumulative effect. If the same event triggers
two or more laws, the union of the bodies is executed atomically if
the conjunction of the guards is true, and jointly fails if any of the
guards is false.

3. CONTRACTS FOR IMPLEMENTATION
Coordination laws can be instantiated for specific types of com-

ponents, events and services once the target development platform
has been chosen. This instantiation leads to what we call coordi-
nation contracts, which correspond to connector types as known
in the area of Software Architectures. Coordination contracts are
then applied to specific component instances that implement the
prescribed coordination interfaces.

In the environment that we built for supporting the proposed
coordination-based development method, component types are Java
classes and events consist, basically, of method calls.This means
that for laws to be properly enforced, contracts must intercept in
a transparent way the messages sent among contract participants.
Transparent means that components are not aware they are being
coordinated, and therefore have no way to bypass the contracts.
For this to be achieved, a design pattern [2] was developed that al-
lows contracts to be used without programmers having to modify

the source code of the application classes. The tool automatically
generates the design pattern implementation for the components in-
dicated to be under coordination.

Due to space limitations, for coordination contract examples we
refer the readers to the listed papers.

4. CONTEXTS FOR CONFIGURATION
A running system consists of a set of components and a set of

contracts establishing interconnections between components. The
configuration of the system can evolve-- in order to reflect how the
system adapts itself or reacts to changes in business context - -by
removing, adding, and replacing components and contracts. How-
ever, such changes do not occur in an ad-hoc fashion. Normally,
there are restrictions on which laws can be applied to which com-
ponents, and to which changes are possible.

Coordination contexts are the primitive we propose to capture
business activities that include not only access to the services pro-
vided by the system but also reconfiguration operations. A context
provides a "view", or "gateway", through which an agent (be it hu-
man or computational) can interact with the system. Each context
is available to only some agents. For instance, the following con-
text allows to manage the accounts of a given customer, and can
only be available to a bank manager, because customers may not
change their normal/VIP status.

coordination context AccountManagement (c : customer)
component types Account, Customer
contract types Normal, VIP
constants maxCredit: money = 100000
invariants forall a:Account c.owns(a) implies

exists Normal(c,a) xor exists VIP(c,a)
configuration services

new_account(a:account, m:money):
pie not exists a
post exists a and c.owns(a) and exists Normal(c,a) and

a.balance0 = m
subscribe_VIP(a:account,limit:money):

pre exists Normal(c,a) and limit < maxCredit
post exists VIP(c,a) and VIP(c,a).credit = limit and

not exists Normal(c,a)
configuration rules

automaticVIP:
when exists Normal(c,a) and a.balance0 > 100000
post exists VIP(c,a) and VIP(c,a).credit= 10000 and

not exists Normal(c,a)

As can be seen from the example, contexts provide both for ser-
vices to be invoked on demand by the agents as well as rules that
are to be automatically applied when some conditions become true.
This helps in maintaining invariants over the part of the system that
belongs to the context.

5. REFERENCES
[1] L. Andrade and J. L. Fiadeiro. Coordination: the evolutionary

dimension. In Proc. TOOLS 38, pages 136-147. IEEE
Computer Society Press, 2001.

[2] J. Gouveia, G. Koutsoukos, L. Andrade, and J. L. Fiadeiro.
Tool support for coordination-based software evolution. In
Proc. TOOLS 38, pages 184--196. IEEE Computer Society
Press, 2001.

[3] G. Koutsoukos, J. Gouveia, L. Andrade, and J. L. Fiadeiro.
Managing evolution in telecommunication systems. In New
Developments in Distributed Applications and Interoperable
Systems, pages 133-139. Kluwer, 2001.

49

