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Abstract

We introduce a statically-typed language extensibility mech-
anism called active type-checking and translation (AT&T)
that aims toward expressiveness, safety and composability.
This mechanism allows users to equip type definitions with
type-level functions that control the compilation process di-
rectly, at points that are relevant to that type’s semantics.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications—Extensible Lan-
guages; D.3.4 [Programming Languages]: Processors—
Compilers; F.3.1 [Logics & Meanings of Programs]: Spec-
ifying and Verifying and Reasoning about Programs—
Specification Techniques

Keywords extensible languages, type-level computation,
typed compilation, specification languages

1. Extended Abstract

Programming languages have historically been specified and
implemented monolithically. To introduce new primitive
constructs, researchers or domain experts have developed
a new language or a dialect of an existing language, with the
help of tools like domain-specific language frameworks and
compiler generators [1]. Unfortunately, taking a so-called
language-oriented approach [3], where different languages
are used for different components of an application, can lead
to problems at language boundaries: a library’s external in-
terface must only rely on constructs that can be expressed in
all possible calling languages. This means that specialized
invariants cannot be checked statically, decreasing reliability
and performance. It also often requires that developers gen-
erate verbose and unnatural “glue” code, defeating a primary
purpose of specialized languages: hiding these low-level de-
tails from end-user developers.
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Extensible programming languages promise to decrease
the need for new standalone languages by providing more
granular, language-based support for introducing new prim-
itive constructs (that is, constructs that cannot be adequately
expressed in terms of existing syntactic forms and primitive
operations.) Developers would gain the freedom to choose
those constructs that are most appropriate for their applica-
tion domain and development discipline. Researchers would
gain the ability to distribute new constructs for evaluation
by a broader development community without requiring the
approval of maintainers of mainstream languages, who are
naturally risk-averse and uninterested in niche domains and
still-emerging techniques.

A major example motivating our work is in the area of
parallel programming abstractions. Many implemented ab-
stractions require adding new type-checking and compila-
tion logic to a language. Unfortunately, this has led to the
development of new languages. An example for data paral-
lel programming on accelerators and GPUs is the OpenCL
language. Although OpenCL is largely based on C99, it is
a distinct language and requires a separate set of tools. We
would like a language that allows us to express the novel all
of the novel aspects of OpenCL directly, so that it can be
imported as easily as a library is today.

A significant challenge that faces language extensibility
mechanisms is in maintaining the overall safety properties
of the language and compilation process in the presence of
arbitrary combinations of user extensions. The mechanism
must ensure that basic metatheoretic and global safety guar-
antees of the language cannot be weakened, that extensions
are safely composable, and that type checking and compila-
tion remains decidable. The correctness of an extension itself
should be modularly verifiable, so that its users can rely on
it for verifying and compiling their own code. These are the
issues that we seek to address in this work.

The approach we describe, active type-checking and
compilation (AT&T), makes use of type-level computation
in a novel way. To review, in languages supporting type-
level computation, the syntactic class of types is not simply
declarative. Instead, it forms a programming language itself
(the type-level language). Types themselves are one kind
of value in this language, but there can be many others.



To ensure the safety of type-level computations, kinds clas-
sify type-level terms, just as types classify expression-level
terms. A growing number of implemented languages now
feature more sophisticated type-level languages, including
Haskell. Type-level computation occurs during compilation,
rather than at run-time, because type-level terms that are
used where types would normally be expected must be re-
duced to normal form before type-checking can proceed.
In this work, we wish to allow extensions to strengthen the
static semantics of our language. Naturally, extension spec-
ifications will also need to be evaluated during compilation
and manipulate representations of types. This observation
suggests that the type-level language may be able to serve
directly as a specification language. In this work, we show
that this is indeed the case.

By introducing some new constructs at the type-level,
developers are able to specify the semantics of the prim-
itive operators associated with newly-introduced families
of primitive types using type-level functions. The compiler
front-end invokes these functions to synthesize types for and
assign meanings to expressions, by translation into a typed
internal language. Unlike conventional metaprogramming
systems, these type-level specifications do not directly ma-
nipulate or rewrite expressions. Instead, they examine and
manipulate the types of these expressions. By using a suf-
ficiently constraining kind system and incorporating tech-
niques from typed compilation into the type-level language
directly, the global safety properties of the language and
compilation process can be guaranteed. In other words, users
can only increase the safety of the language.

We focus on extending the static semantics of a language
with a fixed, though flexible, grammar. Techniques for ex-
tensible parsing have been proposed in the past, but we do
not discuss this further here. We also focus on extending im-
plementations, rather than declarative specifications, of lan-
guage constructs. Extracting a compiler from a declarative
language specification (e.g. one written in Twelf) has not yet
been shown practical, but we note that a future mechanism
of this sort could target a language implementing AT&T.

The organization and key contributions of this work are:

e We develop a core calculus, A\, and give examples of
language features that can be expressed with it. We judg-
mentally specify the front-end compilation process and
state several lemmas that lead to useful safety theorems
for the compiler and language as a whole. We show how
AT&T requires that the language provide a solution to a
type-level variant of Wadler’s expression problem [2].

® We introduce the Ace programming language, which is
based fundamentally on an elaboration of AT&T that sup-
ports a richer set of syntactic forms and a variant of type
inference. It uses object-oriented inheritance to solve the
type-level expression problem. A number of practical ex-
tensions have been written using Ace, including a com-
plete implementation of the OpenCL type system (based

114

import ace.OpenCL as OpenCL
T = OpenCL.int.global_ptr

@0penCL.fn(T, T, T)

def sum(a, b, dest):
gid = get_global_id(0)
dest[gid] = algid]l + blgidl

Figure 1. An Ace function that uses the OpenCL extension.

typedef __global int* T;

__kernel void sum(T a, T b, T c) {
size_t gid = get_global_id(0);
dest[gid] = algid] + blgidl;

Figure 2. The corresponding OpenCL function.

on C99) as a library. Figure 1 shows how such an ex-
tension could be used. OpenCL’s types are represented as
objects in the type-level language (in Ace, this is Python).
Here, OpenCL. int.global_ptris the object represent-
ing the __global int* type. This object is an instance
of a class extending ace.Type, and specifies methods
for verifying and translating operations, such as indexing
(algid]), into target language code. Compiling this code
produces a function exactly equivalent to the OpenCL
function in Figure 2.

e We briefly describe another point in the design space,
a language design we call Birdie. Birdie lifts an exten-
sion of the Gallina language, used by the Coq proof as-
sistant, into the type level (leading to a language with
dependent kinds). This additional complexity allows for
full proofs of correctness for type-level specifications,
and can allow proofs soundness of functional specifica-
tions against conventional inductive specifications. The
expression problem is solved using a constrained for-
mulation of open data types, rather than using object-
oriented inheritance. Birdie is ongoing work.
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