
Many-Core Virtual Machines
Decoupling Abstract from Concrete Concurrency

Stefan Marr1 Theo D’Hondt
Software Languages Lab

Vrije Universiteit Brussel, Belgium
stefan.marr@vub.ac.be

Abstract
We propose to search for common abstractions for concur-
rency models to enable multi-language virtual machines to
support a wide range of them. This would enable domain-
specific solutions for concurrency problems. Furthermore,
such an abstraction could improve portability of virtual ma-
chines to the vastly different upcoming many-core architec-
tures.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors; D.1.3 [Programming Techniques]:
Concurrent Programming

General Terms Design, Languages, Performance

Keywords Multi-language virtual machines, concurrency,
many-core, abstraction, machine model, parallel program-
ming models

1. Problem Statement
Since the processor manufacturers reached the boundaries
of what is feasible to achieve computational speedups in
terms of increased clock rates, they changed their scaling
dimension from clock rate to core count, i. e., the number
of computing units on a single chip. With this change, they
are still able to deliver more computing power with every
new processor generation by shifting the burden of realizing
speedups to the software developers[9]. However, for the
development of end-user applications, today’s systems still
lack comprehensive support to make concurrency accessible
and its complexity manageable.

The most widely used programming model for concur-
rency is shared memory with threads and locks. Unfortu-
nately, this model has very narrow limits. Even though fine-

Copyright is held by the author/owner(s).
SPLASH’10, October 17–21, 2010, Reno/Tahoe, Nevada, USA.
ACM 978-1-4503-0240-1/10/10.

grained locks have proven to allow high-performance con-
currency, programming complexity increases fast with a ris-
ing number of threads and shared resources. Therefore, this
model does not scale up to the degree of concurrency in
many-core system. The use of disciplined concurrency mod-
els avoiding shared state, is almost the only choice to cope
with the inherent complexity. With the actor model and soft-
ware transactional memory, there are promising candidates
available. However, the general forms of these models also
have their problems, thus, we expect domain-specific solu-
tions for the different application domains to become an im-
portant approach to handle concurrency.

Another aspect of the changing processor designs is an
increase in the diversity of processor architectures. Proces-
sor designers experiment with various different approaches
to arrange cores on the chip and to connect them to the
memory system, using various different caching strategies,
and possibly explicit inter-core communication. For in-
stance, the Cell B.E., Intel’s Larrabee[6], and Tilera’s TILE
architecture[11] are fundamentally different especially with
respect to their memory architecture.

High-level language virtual machines (VMs) like the Java
Virtual Machine (JVM) and Microsoft’s Common Language
Runtime (CLR) have become the major means to tackle these
kind of problems and are used as multi-language runtime
environments. Ongoing efforts like the introduction of the
invokedynamic bytecode extend the capabilities of this
platform to handle a large number of different programming
paradigms[5].

However, concurrency is a concept for which VMs do
not provide sufficient abstraction. The JVM and CLR have
rudimentary support for threads and locks in their instruction
set architectures, and Erlang as notable exception provides
explicit support for the actor model in its BEAM opcodes
set[3]. But there is no VM which exposes more than one
concurrency model to the programmer or provides means
to abstract from the different concrete concurrency models
provided by the hardware. We expect that VMs have to

1 Supported by a doctoral scholarship of the Institute for the Promotion of
Innovation through Science and Technology in Flanders, Belgium.

239



handle both aspects to be able to provide software developers
with the necessary, possibly domain-specific tools to cope
with concurrency.

2. Research Goal
Our main goal is to identify common abstractions of dif-
ferent abstract concurrency models which are also appro-
priate to be mapped efficiently onto the various upcoming
many-core architectures[4]. Thus, the concurrency models
on the different levels of implementation are to be decou-
pled. For this, we will experiment with an VM with ex-
plicit support for some form of disciplined concurrency. The
VM has to provide appropriate abstractions to generalize the
broad range of abstract concurrency models to be usable as
a foundation for new language designs.

The analysis and design is approached iteratively to find
an appropriate compromise between the different instances
of the currently most important concurrency models as well
as between these models itself. Currently, actors[1, 8], soft-
ware transactional memory[7], and shared-memory models
are most important. The analysis and design process will it-
erate over the different concurrency models and chose a suit-
able compromise for the different instances of the current
model under investigation. The compromise will be guided
from the viewpoint of the language designer as well as from
the viewpoint of the VM implementer.

Important is also the mapping on a concrete concurrency
model provided by a specific hardware architecture. The
simplest, but still important one is an intra-core communi-
cation. This is the standard case for single-core processors,
possible with multiple hardware threads. The next step is
a uniform memory access model like it is used for current
multi-core systems and could be used for subsets of cores on
many-core systems as well. For real many-core systems only
a non-uniform memory access model is feasible. At least this
three concrete models have to be considered in the iterations
to be able to provide a suitable mapping from the VM to
different hardware architectures. Distributed systems, i. e.,
systems based on a number of physical nodes connected by
a network are not regarded by this project. Instead, the main
focus of this research are on the challenges with respect to
processor internal communication and the influence of the
different many-core architectures.

The results of this research should enable us to decou-
ple abstract and concrete concurrency models by using an
VM with inherent concurrency support. New abstract con-
currency models can be implemented on top of the VM and
a new concrete concurrency model or a new many-core ar-
chitecture can be supported by the generalization the VM
provides.

3. Current State and Future Work
Currently, we completed the initial phase of literature stud-
ies and prototyping of ideas. Thus, we investigated the state

of the art in concurrency support for virtual machines[3] and
experimented with support for threads and locks, as well as
actor abstractions on the instruction set level[4]. Our exper-
iments included also an analysis of high-level concurrency
constructs with a focus on barrier synchronization. However,
they turned out to be to divers and their high-level character
did not match the requirements for a concept that needs to
be directly supported by virtual machines.

Our future work will be based on the work of Ungar and
Adams[10]. With this multi- and many-core virtual machine,
we have a foundation for experimenting on the TILE archi-
tecture as well as commodity multi-core systems.

Furthermore, we will investigate the notions of locality
and encapsulation as fundamental concepts to concurrency.
Encapsulation refers to the guarantee given to an entity, for
instance an object or an actor, that its internal state is only
accessible by itself. Locality refers to the notion of a spacial
relation between entities. For instance, the objects grouped
together in an partitioned global address space model. We
aim to evaluate their capabilities to facilitate virtual machine
support for different concurrency models[2].

References
[1] G. Agha. ACTORS: A Model of Concurrent Computation in

Distributed Systems. MIT Press, 1986.

[2] S. Marr. Encapsulation and locality: A foundation for concur-
rency support in multi-language virtual machines? In Proc. of
SPLASH 2010 - Doctoral Symposium, 2010. (to appear).

[3] S. Marr, M. Haupt, and T. D’Hondt. Intermediate language
design of high-level language virtual machines: Towards com-
prehensive concurrency support. In Proc. of VMIL’09, pages
3:1–3:2. ACM, October 2009. (extended abstract).

[4] S. Marr, M. Haupt, S. Timbermont, B. Adams, T. D’Hondt,
P. Costanza, and W. D. Meuter. Virtual machine support for
many-core architectures: Decoupling abstract from concrete
concurrency models. In Prof. of PLACES’09, 2010.

[5] J. R. Rose. Bytecodes meet combinators: Invokedynamic on
the jvm. In Proc. of VMIL’09, pages 1–11. ACM, 2009.

[6] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee: A
many-core x86 architecture for visual computing. ACM Trans.
Graph., 27(3):1–15, 2008.

[7] N. Shavit and D. Touitou. Software transactional memory. In
Proc. of PODC’95, pages 204–213. ACM, 1995.

[8] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for java. In Proc. of ECOOP’08, pages 104–128, 2008.

[9] H. Sutter. The free lunch is over: A fundamental turn toward
concurrency in software. Dr. Dobbs Journal, 30(3), 2005.

[10] D. Ungar and S. S. Adams. Hosting an object heap on many-
core hardware: An exploration. In Proc. of DLS’09, 2009.

[11] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and A. Agar-
wal. On-chip interconnection architecture of the tile proces-
sor. IEEE Micro, 27(5):15–31, 2007.

240


