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Abstract 

?Ve introduce an abstract form of interobject 

communication for object-oriented concurrent pro- 

gramming based on the proof theory of Linear 

Logic, a logic introduced to provide a theoret- 

ical basis for the study of concurrency. Such 

a form of communication, which we call forum- 

based communication, can be seen as a refinement 

of blackboard-based communication in terms of a 

more local notion of resource consumption. Forum- 

based communication is introduced as part of a new 

computational model for the object-oriented con- 

current programming language LO, presented at 

last year OOPSLA/ECOOP (1990), which exploits 

the proof-theory of Linear Logic also to achieve a 

powerful form of knowledge-sharing. 

1 Introduction 

The programming language LO (for Linear Ob- 

jects) [G, 4, 31 1 ras been designed to supply a 1ogica.l 

framework for object-oriented concurrent program- 

ming, with the purpose of rigorously accounting 

for its various aspects (concurrent communication, 

knowledge sharing, object creation, object termi- 

nation etc.) in terms of the proof-theoretic behav- 
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ior of logical connectives, thus making very sim- 

ple and completely abstract the operational seman- 

tics of the system; its formal background is given 

by Linear Logic [ll], a logic introduced by Jean- 

Yves Girard to provide a theoretical basis for the 

study of concurrency. LO’s view of active, concur- 

rent objects as structured entities capable of shar- 

ing knowledge has on the other hand been illus- 

trated in [4] in terms of a sociological metaphor: 

objects can be thought of as complex organizations, 

which inherit the problem solving capabilities of 

their suborganizations. Procedural knowledge is 

correspondingly encoded by specifying state tran- 

sitions (methods) of the form 

Cl 73.. . ‘B C, o- Body. 

where each Ci is an atomic logical formula. The 

logical (proof-theoretic) interpretation of methods 

hinges on the identification of objects, and of sys- 

tems of objects, with proof trees and goes as fol- 

lows: if, in constructing a proof tree in the Lin- 
ear Logic calculus of sequents, we have reached an 

open node containing, among others, components 

Cl . . . Cn, then expand this node into another 

node obtained by replacing Cr . . . C, with the 

contents specified in Body, and leaving the remain- 

ing components untouched; this may lead to the 

creation of other nodes, or to a stop in the evo- 

lution of that branch of the proof, depending on 

the logical nature of the information provided by 

Dody. The sociological interpretation goes instead 

as follows: if an organization contains in its current 

state a suborganization whose member elements 

OOPSLA’91, pp. 212-229 
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are Cl . . . C,, then let the given suborganization 

perform the task specified in Body, thus changing 

its own state and, consequently, that of the whole 

organization. According to both the logical and 

the sociological interpretation, objects evolve by 

explicitly performing actions: elements in the cur- 

rent state of affair may irreversibly disappear, to 

be replaced by new ones. On the sociological side 

this, and nothing else, could have been expected; 

but, on the logical side, such a capability to deduc- 

tively deal with change in open worlds of indepen- 

dently coexisting entities specifically exploits the 

fact that Linear Logic accounts not just for truth, 

but also for the complementary notion of action, 

which had been instead neglected in more tradi- 

tional logical developments. Thus, logic and soci- 

ology agree to each other, the first one giving us 

a rigorously defined abstract operational semantics 

for the language, and the other an anthropomor- 

phic view of it which fits well within the tradition 

of object-oriented programming. 

LO’s organizational approach to knowledge shar- 

ing can be viewed as a form of intraol?ject commu- 

nication, with objects acting as structured entities: 

for the capability of a subob ject to handle a certain 

task is transmitted to the entire object in terms 

of the operational semantics of method triggering. 

We have argued that this form of inheritance does 

not suffer from the computational drawbacks of dy- 

namic approaches to knowledge sharing like dele- 

gation [HI, since it avoids the proliferation of del- 

ega.te objects, which act as “bureaucrats” whose 

only purpose is delivering requests for ta,sks some- 

one else is going to do; on the other hand, none of 

the malleability of delegation is lost, as LO’s ob- 

jects have a completely flexible structure, where 

new types of components can be added at run 

time, while other ones may altogether disa.ppear; 

nor does this entail populating our universe with 

anything more but simple “individuals” and their 

aggregations - abstract in its operational seman- 

tics, LO is quite concrete in its ontology: no notion 

of class is introduced, and the object-subobject re- 

lationship suffices to achieve inheritance (this can 

be contrasted with the class-superclass relationship 

characterizing class-based 1anguages)l. 

However, another equally crucial and pri- 

mary form of communication characterizes object- 

oriented concurrent programming: inter-object com- 

munica,tion, where separate entities exchange infor- 

mation, whether they be structured or not. This is 

the basic ingredient for object-based concurrency, 

particularly in languages of the Actor family [a], 

of which LO is an offspring on the side of its 

logic programming branch [27]; communication of 

such kind reduces procedure calls to exchanges of 

messages between objects, thus leading to a com- 

pletely decentralized and truly concurrent model 

of computation. The computational model for LO 

present,ed in [6, 4, 31 h as dealt with interobject 

communication simply by importing the technique 

of “shared logical variables” directly from concur- 

rent logic programming languages based on Horn 

logic, like Concurrent Prolog [26], Parlog [la] and 

GIIC [29]. However, such a solution is to be consid- 

ered as temporary and not completely satisfactory 

mainly for the following (strictly related) reasons: 

(i) It is committed to a specific implementation 

choice (the use of unification of logical vari- 

ables in order to achieve communication) and 

thus defies LO’s effort towards a completely 

abstract operational semantics, which can be 

supported by different kinds of implementa- 

tions and architectures. 

(ii) It burdens the programmer with the task 

of dealing her/himself with problems related 

to stream-based communication, like stream- 

merging in many-to-one communication. 

(iii) Although intraobject and interobject commu- 

nication appear as conceptually dual, they are 

not so at the operational level: the intraobject 

case is accounted for in terms of proof con- 

struction, while unification handles the inter- 

object case. The situation would become quite 

‘Obviously, we view classes and aggregations of individ- 

uals as quite different entities: the former are abstractions 

on individuals, the other are simply obtained by putting 

together simpler individuals to obtain more complex (com- 

posite) ones. 
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more pleasant by making proof construction 

capable of handling both cases; it would also 

be quite more in the spirit of Linear Logic, 

which is based on a system of dualities of log- 

ical operators. 

In this paper, we provide a computational model 

for LO which refines the one described in the pre- 

vious papers precisely by making proof construc- 

tion responsible both for intraobject and interob- 

ject communication. In such a new model, proof 

construction is going to be seen as a bidirectional 

process, where, by starting from a partially de- 

fined initial node, we both go ahead in building 

the branches of the proof-tree and in further spec- 

ifying its initial node. Thus, perhaps not surpris- 

ingly, dual communication concepts can both be 

accounted for via a fully symmetric approach to 

proof construction. This is obtained by permitting 

partially specified nodes to be instantiated upon 

the triggering of methods, which are now written 

as 

Cl 2-3 . . . F?c;‘B”c;+~‘B . ..z ‘C,o- Body. 

Here, the components A Ci+r, . . . , “C, (if any) 

are added to the unspecified part of the node once 

the method is triggered, while the components 

Cl, . . . , C; must be found already there. But 

the unspecified part of any node gets percolated 

from the unspecified part of the initial node, and is 

therefore shared by all objects; consequently, when- 

ever the triggering of a method by an object makes 

new components to be added to the unspecified 

part of the node, then these components are prop- 

agated back to the root of the proof tree and can 

in turn be used by other objects. To stick to the 

organizational metaphor, we can think of the un- 

specified part of the initial node as a kind of dis- 

cussion forum: this is a suborganization shared by 

all organizations, through which they excha.nge in- 

formation between each other. From the point of 

view of proof construction, whenever information is 

exchanged, we make progress in building the proof 

tree in the direction of the root; on the other hand, 

making progress towards the leaves along a certain 

branch of the proof tree has to do with information 

which is strictly local to the object identified with 

the given branch, thus accounting for intraobject 

communication. 

Now, communication in a forum is characterized 

by two basic kinds of speech acts: 

a the act of the speaker’s addressing one specific 

hearer, in front of the remaining part of the 

audience (specific communication); 

l the act of the speaker’s addressing the whole 

audience (generic communication). 

In both cases, communication is achieved through 

a shared communication medium, even when it is 

specific; moreover, generic communication is al- 

ways fair, in the sense that no receiver can limit 

only to her/himself the use of a message which 

is meant for the whole community. As we shall 

see, our approach to forum-based interobject com- 

munication will support both specific and generic 

communication, and will maintain the fairness of 

generic communication. But we shall also ensure 

the safeness and the privacy of specific communi- 

cation, by providing a clean way of generating pri- 

vate names to be used as mail addresses labeling 

messages which have to be specifically addressed, 

so that the capability to read one of such mes- 

sages requires acquaintance of the corresponding 

mail address; alternatively, from the point of view 

of the speaker/hearer relationship, we can think 

of such private names as “interpretation keys”, 

whose acquaintance unlocks the meanings of the 

messages with which they are associated. Fur- 

thermore, we shall characterize the relationship be- 

tween such a novel form of communication and the 

well-established blackboard-based communication 

(see for instance [lo]): as it will be shown, forum- 
based communication can both be viewed as a 

logical version of blackboard-based communication 

and also as an operational refinement of it in the 

sense of being endowed with a more local notion of 

resource consumption (corresponding to the prop- 

erty of fairness of generic communication) which 

makes it fully adequate for distributed computing. 
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We shall also compare our approach to communi- 

cation with the one adopted for Concurrent Con- 

straint Logic Programming (CCLP) languages de- 

scribed in [24, 151; indeed, both approaches imple- 

ment a logic-based form of fair generic communi- 

cation, and appear as complementing each other in 

the following sense: in the case of forums the items 

of information can be removed from the “visual 

field” of agents (i.e., once accessed they are actu- 

ally consumed, albeit just within the local scope 

of the accessing agent); in the case of CCLP lan- 

guages, items of information are instead perma- 

nently stored for all agents. 

The remaining part of this paper is organized as 

follows: Section 2 will give a description of the new 

computational model of LO leading to forum-based 

communication, and will formally characterize it 

both in terms of an operational (proof-theoretic) 

semantics and a model-theoretic semantics; Sec- 

tion 3 will describe two applications of this new 

model of computation, the first one of which (a 

graphical application) will be characterized by spe- 

cific communication, while the other (a concurrent 

chart parser) will be characterized by generic com- 

munication and will provide us with an instance of 

a highly general methodology for distributed prob- 

lem solving; Section 4 will compare our approach 

with related work, and Section 5 will give a brief 

overview of ongoing directions of research. 

2 Description of the Language 

LO 

2.1 Formulae, Sequents, Proofs 

The syntax of the language LO uses three connec- 

tives of Linear Logic: “par” (written ‘8), “with” 

(written &), and “top” (written T). We also make 

use of the Linear implication (written c-) which 

can be defined in terms of the other connectives 

of Linear Logic. Two classes of Linear formulae, 

namely “goals” G and “methods” M, are built re- 

cursively from the class A of atomic formulae (i.e. 

simple terms possibly containing variables), as fol- 

lows: 
G=AIGzGITIG&G 
M=Ao-GIAWU 

A “program” is a set of methods and a “context” 

is a multiset of grovnd goals (i.e. containing no 

free variables). An LO “sequent” is a pair written 

P I- C where P is a program and C is a context. 

2.1.1 Definition of the Inference Figures 

for LO 

A proof is a tree structure whose nodes are la- 

beled with sequents. By convention, a proof tree is 

graphically represented with its root at the bottom 

and growing upward. Its branches are obtained as 

instances of the inference figures of the following 

sequent system, which defines LO’s operational se- 

mantics. 

l Decomposition 

PI 
P k C,G,G 

P I- C,GI’BGZ PI P I- C,T 

14 
P I- C,G1 P t- C,G2 

P I- C,Gl&G2 

0 Propagation 

bl 
P k C,G 

P I- C,Al,...,A, 

In these figures, P and C denote, respectively, a 

program and a context. G,Gr, G2 denote ground 

goals and the expression C,G denotes the context 

obtained as the multiset union of C and the single- 

ton G. 

In the propagation inference figure [o-l, we take 

[P] to be the set of all the ground instances of 

the methods in P. The letters Al,. . . , A, denote 

ground atoms. Thus, the context in the lower se- 

quent contains (in the sense of multiset inclusion) 

a submultiset of atoms which matches exactly the 

head of a ground instance of a method from the 

program. The upper sequent is obtained by re- 

placing in the lower sequent this submultiset with 
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the body of the selected instance of method (i.e. a 

ground goal). 

Notice that, by definition, the elements of a mul- 

tiset are not ordered. Therefore, the order of the 

atoms in the head of a method is not relevant. 

2.1.2 Operational Interpretation of the In- 

ference Figures 

Read bottom-up, a proof gives a static representa- 

tion (a “snapshot”) of the overall dynamic evolu- 

tion of a system of objects viewed as active pro- 

cesses (agents). Each sequent at the node of a 

proof-tree encodes the state of an object at a given 

time. The branches of the proof-tree represent ob- 

ject state transitions. 

Thus, the sequent system of LO can be inter- 

preted as a general specification of a set of valid 

object state transitions: the lower sequent in each 

inference figure is the input state of a valid tran- 

sition, whose output states (if any) are the upper 

sequents. 

l Inference figure [T], which has no upper se- 

quents, encodes a transition without output 

states. In other words, it allows termination 

of objects. 

l Inference figure [a] has two upper sequents 

which share a part of their context. Thus, 

the two output states of this transition can be 

viewed as clones, that is, as independent enti- 

ties with a similar structure. In other words, 

the connective & allows creation of objects by 

cloning. 

0 Inference figure [3] aggregates, within the 

same object, two different components. It al- 

lows construction of object states with mul- 

tiple elements, which lies at the basis of the 

object/subobject relationship in LO. 

0 Inference figure [o-l allows the transforma.tion 

of an aggregation of components (a subobject) 

within an object. 

Notice that, for each transition, the pr0gra.m (left- 

hand side of the sequents) never changes while the 

context (right-hand side) is always modified (at 

least one formula is replaced by another). In other 

words, the program contains the unrestricted re- 

sources of the object, that is, those which can be 

reused as many times as needed, while any element 

from the context is a restricted resource, which dis- 

appears once used. 

LO proofs are characterized by two levels of con- 

currency: AND-concurrency, involving processes 

evolving on different branches of the proof; and 

OF&concurrency, involving different subprocesses 

aggregated within a single process, evolving on a 

single branch. These two forms of concurrency 

correspond to the two forms of communication 

which, in the introduction, we have called, re- 

spectively, interobject and intraob ject communica- 

tion. The terminology for AND/OR-concurrency 

has been chosen to make a direct connection with 

Linear Logic, where the connective & responsi- 

ble for AND-concurrency is the (additive) conjunc- 

tion whereas the connective ‘6 responsible for OR- 

concurrency is the (multiplicative) disjunction. 

2.2 Computational Model 

In this paper, we keep the basic computational 

mechanism already proposed in previous papers, 

which can be summarized as follows: 

I Computation = Proof Search I 

The important novelty here is in the specification of 

the class of proofs to be searched, called the target 

proofs, associated with a given query. 

2.2.1 Contextual Proof Search 

A query is a pair consisting of a program P and a 

ground goal G. Target proofs are then defined as 

follows: 

Definition 1 A target proof is an LO-proof such 
that its root is a sequent of the form P I- C,G, 
where C is a context (also called an answer context 
for the query). 

In other words, proofs are searched in such a way 

that the context of their root node may prop- 
erly contain the query goal. This new model of 
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computation can be used within the two different 

paradigms of transformational and reactive pro- 

gramming [ 131. 

l In the “transformational” paradigm, the sys- 

tems reads an input, processes it and produces 

an output. The input is here the initial query 

and the output is any possible answer context 

C. The elements of C can be viewed as con- 

straints and thus, a query can be interpreted 

as “find a set of constraints from which a given 

formula is derivable”. 

l In the “reactive” paradigm, several agents 

interact together by exchanging messages. 

There is no notion of input and output in this 

case; the initial query is used only for the pur- 

pose of bringing into life certain agents. The 

answer context C acts as a medium of commu- 

nication between agents. C is initially unspec- 

ified but each agent can read and write in it 

during a state transition; each time an agent 

writes in C, the written formula is automati- 

cally propagated to all the other agents. This 

kind of communication we call forum-based 
communication, by viewing a sender agent as 

a speaker talking in front of an audience gath- 

ered in a forum. 

In this paper, we focus on the second paradigm, 

where the answer context is used as a communica- 

tion medium. 

2.2.2 Example 

Consider the following propositional LO program 

P: 
pzao-r. 
qZa’Z?bhT. 
r’Sbc--T. 

The following proof II (where the program P is 

omitted from the left hand side of the sequents) is 

a possible target proof for the query (P ; p& q). 

r-i-i - 

b-1 “‘FT 
D-1 - 

b-l 
II = [&] 

t-b7r b-1 ,+:,‘, k b,p 7 3 
tb,a, p&q 

Thus, the multiset b, a is an answer context for the 

query above. Let us go into the details of a possi- 

ble construction of II. Initially, the search tree is 

reduced to a single node 

III-J = l-c, p&q 

where C is a still unspecified context. 

1. Inference figure [&I applies to the single node 

of II0 and expands it to 

2. At this point, no inference figure applies with- 

out making some assumption on the content of 

C. For example, if we assume that C contains 

a (i.e. C = C’,a), then the first method of 

P applies to the leftmost leaf of II1 (inference 

figure [o-l), and yields 

b-1 
I- C’,r 

k C’,a,P 
t- C’, a7 q 

II2 = [&I t-C’,a, P&q 
3. To continue, we need further assumptions on 

C. For example, if we assume that C’ contains 

b (i.e. C’ = C”, b), then the second method of 

P applies to the rightmost leaf of II2 (inference 

figures [o-l, and then [T]), and yields 

b-l 
t- C”, b> r 

II3 = 14 I- P, b, a, p 
I- P, b, a, p & q 

4. Now, the third method of P applies to the left- 

most leaf of II3, and yields 

r-d - 

b-1 
’ ’ ’ t- c”, T 

I-P b r PI - 
b-1 

II4 = [&I 
t- C”, b, 6,; b-3 

t-C” T 
!- P,b,(I,q 

I- C”,b,a, p&q 

5. Finally, II is identified as the instance of II4 in 

which C” is the empty multiset. 

Of course this construction is far from being the 

only possible one. At each step, we have made sev- 

eral decisions, some of which were arbitrary. Hence 

the need to define a control strategy. 
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2.3 Proof Search Control 

2.3.1 The “tell” marker 

A large amount of non-determinism in proof search 

is eliminated by the following result, which identi- 

fies a complete subset of LO-proofs, so that the 

search procedure can be restricted to proofs in this 

subset. 

Theorem 1 A sequent P I- C is derivable in LO 
if and only if it has a ‘ffocusing” proof, i.e. one 
in which the bottom context in each occurrence of 

the propagation inference fisure [o-l contains only 
atoms. 

This result is a special case of a more general theo- 

rem for full Linear Logic (called the “focusing” the- 

orem), stated in [3], and which is in fact stronger: if 

any of the decomposition inference figures ([T] , [&I 

or [z]) applies at one node of the proof, then it can 

deterministically be applied immediately. There- 

fore, as long as the current context contains a non- 

atomic goal, the proof search procedure can be 

made completely deterministic. 

However, once the context contains only atoms, 

and it is therefore time for the propagation infer- 

ence figure [o-l to be applied, we are faced with 

a non-deterministic choice which we would like to 

control. Here the crucial problem is that of select- 

ing an appropriate method from the program. By 

adopting a blind search strategy, any method could 

be triggered: for, as long as no restriction is put on 

the context, it would always be possible to assume 

that the method’s head is entirely contained in the 

yet unspecified part of the context. We introduce 

therefore a pragmatic tool which gives the user con- 

trol on such assumptions. Let A be a special sym- 

bol, called the “tell” marker, which can be used to 

prefix any atom in the head of a method. Thus, the 

first method of program P of Section 2.2.2 could be 

marked as follows: 

p;SAao-r 

This means that, to apply this method, the atom 

p (unmarked) must be found in the already speci- 
fied part of the context, while the atom a (marked) 

must be assumed in the still unspecified part of the 

context. Of course, when triggering the method, 

both the marked and the unmarked atoms of the 

head (here p, a) are replaced by the body of the 

method (here, r alone). Thus, the head of each 

method is split into two groups of atoms: those 

(unmarked) which are asked from the context (i.e. 

from its already specified part) and those (marked) 

which are told to the context (i.e. to its still un- 

specified part). 

Now consider the program P of Section 2.2.2 

with the following marking: 

pF? *ao-r. 
q??a3”b+T. 
r’Fbo-T. 

It is easy to check that the proof construction de- 

scribed in Section 2.2.2 is the only possible one with 

respect to the marking above. 

The interactions between the two branches cre- 

ated at step 1 in the search illustrates the com- 

munication mechanism obtained by this use of the 

markings in the head of the methods: first the left 

branch sends a message a to the right branch (step 

2); then the right branch receives this message a, 

sends a message b to the left branch and terminates 

(step 3). Finally, the left branch receives the mes- 

sage b and terminates (step 4). In both send and 

receive operations, the message is locally consumed 

by the concerned agent and disappears from its 

scope, but not from the scope of the other agent(s). 

There lies the fundamental difference between our 

forum-based communication and blackboard-based 

systems (like Linda [lo], for instance), where, once 

an agent consumes a resource, it takes it away glob- 

ally also for all the other agents. Similarly, the “fo- 

rum based” communication mechanism differs from 

the one available in the CCLP languages described 

in [24, 151, where “told” constraints are never re- 

moved from the local “visual field” of an agent. 

Clearly, communication of this kind directly de- 

pends on the possibility of suspending and resum- 

ing computation. Indeed, notice that after step 1, 

no method applies to the right branch. However, 

no failure occurs because of this. Instead computa- 
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tion on the right branch gets suspended; resuming 

it must wait for the transition on the left branch 

(step 2) t o ro p d uce the atom (u) needed to trigger 

a method on the right branch. Thus, in LO’s proof 

theory, the closed-world notion of failure character- 

izing traditional logic programming languages is re- 

placed by the open-world one of suspension. Dead- 

locks may follow from the situation of suspension 

of all proof processes. 

2.3.2 Information Hiding via Variable In- 

stantiation 

It has been shown above that the use of the tell 

marker * provides a form of control on the choice 

of methods. But, once a method has been se- 

lected, another kind of choice is required, in de- 

termining an instantiation for the variables of the 

selected method (this problem did not appea,r in 

previous examples since the methods contained no 

variables). Unification is the traditional solution 

for this problem; however, we opt here for another 

mechanism, which suits better the proposed com- 

putational model. It ca.n be summarized as follows: 

l Instantiation of variables occurring in the un- 

marked atoms of the head is effected by sim- 

ple pattern matching with the corresponding 

atoms in the context. 

l All the other variables of the method are in- 

stantiated with distinct “new” constants, that 

is, constants which do not appear in the por- 

tion of the proof built so far. 

Assume for instance that we have a branch of the 

proof where the current context is given by 

where C is the still unspecified part of the context, 

and we want to apply the following method2. 

P(X) ‘s 4 23 “4X, Y) o- t(y) 

This is possible since the unmarked atoms of the 

head, namely p(X), (I, match a submultiset of the 

2We follow the convention of starting variable identifiers 

with an uppercase letter. 

already known part of the context, namely p(a), q. 

This matching instantiates the variable X to a. 

The (only) other variable, Y, is instantiated with 

some arbitrary new constant, say c. Now, the 

method is fully instantiated and can be triggered 

by assuming that the atom s(a,c) is in C (since 

this atom is prefixed with the tell marker). Thus 

C = s(u, c),C’, and a new node can be added to the 

proof: 

b-1 
t- C’, r, t(c) 

I- C’, 4% C),P(4, Q7 r 

This mechanism for variable instantiation provides 

a clean way to generate new unique identifiers. 

Such identifiers can then be used as mail addresses 

for messages to be sent in the specific mode. The 

fact that each mail address thus created is bound 

to be different from any other previously or subse- 

quently created ensures the safeness and privacy of 

specific communication; information items labeled 

with a given mail address will be hidden from those 

potential receivers unacquainted with it3. 

2.4 Phase Semantics 

It has been shown in [3] that LO’s sequent system 

is sound and complete wrt Linear Logic. More pre- 

cisely, 

Theorem 2 A sequent P k C is derivable in LO 
if and only if the sequent I- ( ! P)-‘-, C is derivable 
in Linear Logic, where p is the conjunction (&) of 
the methods of P (universally quantified) and ! is 
the Linear modality “of-course”. 

Notice the use of the modality ! to prefix the pro- 

gram P in its Linear Logic version; this explicitly 

marks the elements of the program (the methods) 

as unrestricted resources, which can be used as 

31dentifiers of this kind are related to the eigenvariables 

used in proof theory to introduce fresh constants in the 

proof; eigenvariables have been recently proposed in [21] as 

a way of adding information hiding to logic programming. 

The difference is that eigenvariables have just “forward” and, 

therefore, local scope on the branch of the proof where they 

are introduced; by contrast our newly created identifiers are 

propagated back to the root of the proof tree, so they have 

global scope. 
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many times as needed, whereas the elements of the 

context C (the goals) are instea,d bounded resources 

which can be used just once. 

Theorem 2 above shows in proof-theoretic terms 

that LO is a fragment of Linear Logic. But there is 

also a model-theoretic characterization of this fact, 

based on the “Phase Semantics” proposed in [ll] 

as an interpreta.tion of Linear Logic; such a charac- 

terization applies to the computational model pre- 

sented here in a particularly perspicuous manner. 

Take a phase model M to be a given set of 

“phases”; the denotation of a formula F in M, 
written [F]M, is a “fact” of M, i.e. a subset 

of the set of phases verifying certain properties4. 

Intuitively, the phases can be viewed as actions, 

and the denotation of F is the set of actions which 

must alternatively be performed so as to make F 
true. This provides a constructive, dynamic notion 

of truth, which can be contrasted with the non- 

constructive, static truth of Boolean semantics. 

Denotations of formulae in phase models satisfy 

two nice properties, shared with Boolean seman- 

tics: 

0 Compositionality: 

The denotation of a complex (non-atomic) for- 

mula depends solely on the denotations of its 

components; thus, e.g. 

[F & Gl = [Fl n [G] 
[FsGl = ([Fllo [Cl*)' 

where o and 1 are operators of the phase 

mode15. 

l Soundness and completeness of the proof sys- 

tem: 

A formula is provable if and only if it holds in 

all models; i.e. 

I- F if and only if for all M, M I= F 

t- is the provability relation of Linear Logic 

and M I= F means that the empty phase be- 
longs to the denotation of F in M. 

*See [ll] for the exact definitions. 

5See [ll] for the exact definitions. 

However, the Phase Semantics has another pleas- 

ant feature which does not hold in the Boolean 

case: there is a “canonical” phase model6 M, in 

which the following property holds. 

k F if and only if M, I= F 

Such a canonical model can be directly connected 

to the computational model proposed here, since 

computing a query Q can be viewed as building its 

denotation [Q]mo in the canonical model, by enu- 

merating the elements (phases) of the set [Q]M~. 

More precisely, in the canonical model M,, the 

phases are the multisets I? of formulae of Linear 

Logic, and the denotation of a formula F is given 

by 

IF1 MO ef {I’/ H’,F} 

Now, notice that given an LO query (P; G), the 

computational model proposed in the previous sec- 

tion precisely attempts to enumerate the elements 

of [( !F) -O G]mM,. Indeed, for any answer con- 

text C to the query, the following three equivalent 

properties hold: 

(i) P l- C, G is derivable in LO (by Definition 1 of 

an answer context). 

(ii) l- ( ! P)*, C, G is derivable in Linear Logic 

(from (i), by application of Theorem 2). 

(iii,) t C, ( ! F) 4 G and hence C E I( ! P) --o Gl M,, 

(from (ii) by definition of the Linear implica- 

tion -o and of the canonical denotation). 

As a matter of fact, the proof search procedure 

described in the previous section can only gener- 

ate atomic phases (i.e. containing only atoms). If 

the control strategy induced by the use of the tell 

marker * were ignored, i.e. if all the possible mark- 

ings and all the possible variable instantiations 

were allowed for all the program methods, then all 

the atomic phases of [( ! p) --o G] ,u, would be gen- 

erated by exploring all the alternatives at each non- 

deterministic choice in the procedure (with a back- 

track mechanism, for instance). This complements 

6See [ll] for the exact definitions. 
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the soundness result given by (i) - (ii;) above with 

a completeness result of our operational search pro- 

cedure with respect to the Phase Semantics. From 

a practical point of view, completeness and compu- 

tational tractability are however incompatible: by 

imposing one specific marking upon the methods, 

the programmer enforces the order in which the 

atomic phases of [( !p) -o G]M~ are enumerated, 

but, at the same time, enables possible situations of 

deadlock which preclude some atomic phases ever 

to be constructed. 

3 Applications 

We illustrate the expressiveness of the computa- 

tional model described above by two simple appli- 

cations. The first one (Section 3.1) gives an exam- 

ple of specific communication, and the second one 

(Section 3.2) an example of generic communication. 
From now on we replace the logical symbols ‘8, &, 

T and o- with, respectively, keyboard typable sym- 

bols Q, &, #t and O-, which are used in the actual 

implementation of LO. 

3.1 Specific Communication: Computer 
Graphics 

We describe here a simple graphical applica- 

tion for manipulating geometrical drawings on a 

2-Dimensional display. This example is a modifi- 

cation of the one given in [4], where it was used to 

illustrate LO’s approach to knowledge sharing in 

terms of intraob ject communication, while streams 

were used for interobject communication; here, we 

replace streams with the use of the forum as a com- 

munication medium, and we stress aspects of inter- 

object communication. The evolution of the sys- 

tem of agents is modeled by the construction of a 

proof tree as in Section 2.2.2. 

There are three kinds of communicating agents: 

the user (of the drawings), the drawings and the 

display device. Hence, the query which brings into 

life such agents is given by the goal 

user & drawings 8 display. 

together with a program containing methods exe- 

cutable by these three agents. The unspecified con- 

text which is incrementally specified by searching 

a target proof for the query acts as the forum for 

communication between agents. Communication 

here is specific, in that it will involve one agent 

specifically addressing other agents by posting to 

their mail addresses. 

We focus here on the behavior of the drawing 
agents. At the moment of its creation, a drawing 

is represented as a context containing the following 

components: 

drawing , noshape , id(S) , center(O) 

S is an identifier used as a mail address for the 

drawing for the purpose of sending messages to it. 

0 is a point of the screen, encoded in the form of 

a pair of coordinates, specifying the center of the 

drawing. Initially, we only need one single pro- 

totype drawing, with mail address proto; such a 

prototype, located at the center of the screen, is 

initialized by expanding the drawings agent in the 

query, and can be later cloned to create new draw- 

ings. Expansion of the drawings top-level agent is 

obtained via the following method: 

drawings <>- drawing Q noshape Q 

id(proto) Q center(m(O,O)). 

Cloning is triggered upon reception of a message 

dup/2 (with 2 arguments) told to the forum by, 

say, the user agent: the first argument and the sec- 

ond argument of this message are, respectively, the 

mail address of the drawing we clone from and the 

mail address of the newly cloned drawing. Immedi- 

ately after cloning, the two drawings differ only by 

their mail addresses; however, from now on, they 

follow completely independent evolutions. This is 

achieved by the following cloning method for draw- 

ings, which exploits crucially the connective &, like 

all methods dealing with creations of new agents: 

drawing 0 id(S) Q dup(S,Sl) Q ^ack(S) O- 

drawing Q (id(S) & id(S1)). 

The sender of the dup/2 message can ensure 

uniqueness of the mail address of the new drawing 
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by using the mechanism for generating new iden- 

tifiers described in Section 2.3.2. Notice also how 

the atom ack(S) is sent back to the forum as a 

message acknowledging that the requested creation 

has taken place. This is because, in this applica- 

tion, the order in which messages are processed is 

important: for instance, cloning or printing an ob- 

ject before or after moving it leads to two different 

results. Acknowledgement messages take a very 

simple form in this application, as we assume that 

there is only one single sender that needs to be 

acknowledged (the user); in a situation where mul- 

tiple senders need to be acknowledged, such mes- 

sages should contain not just the address of the ac- 

knowledging agent, but also the “return” address 

of the original sender, to ensure that they are prop- 

erly delivered. 

Once created by cloning, each drawing agent can 

be modified. For example, to move a drawing (by a 

specified amount D) we have the following method. 

drawing Q id(S) Q center(O) (D 

move(S,D) Q ^ack(S) O- 

drawing (P id(S) (D center(O+D). 

The prototype drawing proto has no specific 

shape, and, therefore, neither have its clones at 

the time of their creation. Giving shape to such 

formless entities involves using a method like the 

following one, which constrains a drawing to be a 

square with sides of length A. 

drawing 0 noshape Q id(S) Q 

make-square(S,A) Q ^ack(S) <>- 

drawing (D square 0 

id(S) Q side(A). 

Printing a square is done via the following method. 

square (D side(A) (0 center(O) Q id(S) Q 

print(S) 0 -ack(S) Q 

^line(Ml,M2) 0 -line(M2,M3) Q 

-line(M3,M4) (D ̂ line(M4,Ml) O- 

square Q side(A) Q 

center(O) (D id(S). 

The points Ml ,M2 ,M3 ,M4 are the four vertices of the 
square. They must be computed from the center 

0 and side A of the square (for clarity, this compu- 

tation is omitted here). The four messages line/2 

sent upon triggering of this method correspond to 

graphical commands to print the four edges of the 

square and are meant for the display agent. No- 

tice that there is no need for the messages to this 

agent to be ordered (we assume here for simplicity 

sake that the display agent consumes only line/2 

messages, and the order in which lines are printed 

is irrelevant). Therefore, a drawing object does not 

need to wait for an acknowledgement to such mes- 

sages to pursue its activity. 

The flow of information is represented in Fig. 1. 

Agents are represented in square boxes and mes- 

sages in round boxes (only their topmost functor is 

displayed). An arrow from an agent to a message 

(resp. from a message to an agent) means that the 

agent produces (resp. consumes) the message. 

The example of this section illustrates the syn- 

chro- 

nization mechanism based on a send/acknowledge 

protocol between agents sharing a common com- 

munication medium, the forum. This communi- 

cation mechanism is more flexible than the usual 

stream-based one, in that it saves the programmer 

from the burden involved in stream manipulations 

(stream merging, explicit interobject connections, 

etc.). 

3.2 Generic Communication: Concur- 
rent Chart Parsing 

The example we provide here is a particularly in- 

teresting case of distributed problem solving which 

illustrates well the use of local resource consump- 

tion in generic communication. The problem we 

address specifically is concurrent parsing, a topic 

which has attracted the interest of several re- 

searchers in the object-oriented programming com- 

munity [23, 301; on the other hand the problem- 

solving technique we employ here can be fruitfully 

generalized to more complex examples, like dis- 

tributed expert systems operating on highly com- 

plex domains, where different experts are required 

to work independently on shared data, feeding back 
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n dUP 
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user 

Figure 1: The flow of information 

different outputs which all need to be taken in con- 
sideration for the final solution of a given problem. 

The program we describe amounts to a concur- 

rent implementation of the Earley’s algorithm for 

context-free parsing [9] and draws much in the 

spirit of the active chart parsing methodology [16], 

where incomplete phrasal subtrees are viewed as 

agents consuming already completed elements to 

produce other (complete or incomplete) subtrees. 

However, in our case even the rules of the grammar 

and the entries of the lexicon act as independent 

units directly partaking in the computation. More- 

over, as distinct from the usual sequential formula- 

tions of chart parsing, here no superimposed sched- 

uler is in charge of the task of feeding incomplete 

subtrees with complete ones; instead, incomplete 

elements behave as truly active decentralized com- 

putational units which get their information from 

the forum, where finished subtrees are told as soon 

as they have been found. But we must preserve the 

fact that, once a subtree is completed, this infor- 

mation must be broadcast to all the active agents 

which can make use of it; indeed, in the case of 

ambiguous grammars, the number of such agents 

may be greater than one, thus leading to differ- 

ent parses for the same string. Local consumption 

neatly deals with this problem. 

3.2.1 The Program 

We view parsing as being performed by four top- 

level agents, a string scanner, a grammar, a dictio- 

nary and a creator of new subtrees. This is ex- 

pressed by the following method, which contains in 

its head a single literal parsec1 ,S>, where I is the 

input string and S is the symbol of the grammar 

defining the set of strings with respect to which we 

want to test membership of I. 

parseCInput ,Symbol) <>- 

grammar & dictionary & 

scarmer(Input,Symbol) & create-tree. 

The scanner agent, defined in the methods in 

Fig. 2, performs the two following actions: 

l It keeps popping words from the input and 

producing pos (N) and word(W ,N) messages 

where 

- a pas(N) message supplies the informa- 

tion that position N has been reached in 

the input; 

- a word(W ,N) message supplies the infor- 

mation that there is a word W between 

positions N and N+l in the input. 

Positions are encoded as integers in the “suc- 

cessor” notation. 

l Upon reaching the end of the input string, it 

sends a seek(O ,S) message, where S is the tar- 

geted grammar symbol, and then reduces itself 

into an agent whose sole task is that of retriev- 

ing answers. This is simply done by waiting 

for trees covering the whole input string with 
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scanner(I,S) 0- 
scan(I,O) (D target(S). 

scan(CWlIl,N) (D ̂pos(N) (Q ̂word(W,N) O- 
scan(I,s(N)). 

scan(Cl,N) Q target(S) 0 ̂ seek(O,S) C>- 
wait(N,S). 

wait(N,S) 0 ctree(O,N,S,T) 0 -answer(T) <>- 
wait(N,S). 

Figure 2: Methods for scanning 

grammar <>- 

s ==> [np,vpl & 

nP ==> [det,n] t 

"P ==> Cpnl & 

w ==> Cnp ,ppI 8t 

VP ==> Ctv,npl & 

VP ==> cvp ,ppI $ 

PP ==> Cprep,npl . 

dictionary <>- 
entry(a,det) & 
entry(robot,n) & 
entry(telescope,n) & 
entry(terry,pn) t 

entry(saw,tv) & 
entry(with,prep). 

Figure 3: A grammar and a dictionary 

entry(W,S) 0 word(W,N) Q ^ctree(N,s(N),S,S-W) <>- 

entry(W,S). 

(S ==> Ss) Q seek(N,S) 0 pas(N) 0 -new(N,N,S,Ss,S) <>- 
(S ==> Ss). 

Figure 4: Methods for lexical entries and rules 

create-tree Q new(M,N,S,[],T) 0 ^ctree(M,N,S,T) O- 
create-tree (P ctree(M,N,S,T). 

create-tree 0 new(M,N,S,CSlISsl,T) Q ^seek(N,Sl) c>- 
create-tree & itree(M,N,S,Si,Ss,T). 

itree(M,N,S,Sl,Ss,T) 0 ctree(N,P,Sl,Tl) (D -new(M,P,S,Ss,T-Tl) O- 
itree(M,N,S,Sl,Ss,T). 

Figure 5: Creation and completion of trees 
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symbol S to appear in the forum; the structure 

T with which any of such trees has been repre- 

sented is then explicitly added as an answer. 

The grammar and the dictionary agent expand, 

respectively, into a set of grammatical rules and of 

lexical entries, each originating a different agent; 

a sample dictionary and grammar7 are given in 

Fig. 3. Notice that the grammar is an ambiguous 

one. The behavior of lexical entries and rule agents 

is defined in terms of the methods in Fig. 4. Lex- 

ical entry agents accept as messages words with 

which they match and send back corresponding 

complete preterminal trees, labeling the given word 

with a preterminal symbol. On the other hand, rule 

agents consume seek(N ,S> messages together with 

pas(N) messages, if the sought grammar symbol S 

corresponds to their own left-hand side symbol; in 

this case, they issue back a message for the creation 

of a new agent encoding an incomplete (empty) 

tree. Crucial is here the fact that the consump- 

tion by rule agents of seek/2 messages must be 

concomitant with the consumption of matching (in 

the sense of being characterized by the same integer 

argument) pas/l messages; indeed, this correctly 

ensures that a rule agent can produce no more than 

one empty incomplete tree for any position of the 

input string, given that, for any N, it will be able to 

consume no more than one pos (N) message. In this 

way, we prevent the possibility of infinite loops of 

the left-recursive kind deriving from rules like the 

fourth and the sixth one in the grammar of Fig. 3; 

furthermore, we block the possibility of redundant 

analyses. This will be illustrated in describing a 

sample run of the parser further on in this section. 

Creating and completing new trees is accounted 

for in terms of the methods in Fig. 5. The top-level 

create-tree agent consumes messages of the form 

new (M, N , S, Ss , T) where M and N are, respectively, 

the two string positions spanned by the new tree to 

be created, S is the root of the tree, Ss is a list of 

symbols corresponding to the roots of the complete 

subtrees which are still needed in order to make this 

‘The symbol ==> appearing in the grammar rules is not 

a primitive of LO but simply a convenient infix notation for 

a binary term constructor. 

tree complete, and T is the representation associ- 

ated with the tree itself. It then deterministically 

chooses between the following two actions: 

l in case the list Ss is empty, it sends a mes- 

sage ctree(M,N,S,T) to signal that a com- 

plete tree with root S and representation T has 

been found between positions M and N; 

l in case the list Ss is of the form [Sl I Ssll , it 

sends a message of the form seek(N,Sl) and 

then creates an incomplete tree agent of the 

form itree(M,N,S,Sl,Ssl,T). 

As for incomplete tree agents of the form 

itree(M,N,S,Sl,Ss,T), they consume complete 

trees of the form ctree(N,P,Sl,Tl) to produce 

messages of the form new(M,P,S,Ss,T-Tl). Thus, 

requests for the creation of new trees can come ei- 

ther from rule agents as answers to seek/2 mes- 

sages, or from incomplete tree agents; in the former 

case such requests can be thought of as leading to 

the formulation of further hypotheses which need 

to be verified in order to satisfy a certain initial 

hypothesis (this is known as step of prediction in 

the usual formulations of the Earley algorithm), 

while in the second case they follow from having 

progressed “one step” in the verification of a cer- 

tain hypothesis (this is known as a step of comple- 
tion). Fig. 6 shows the flow of information among 

the agents. The convention are the same as in 

the previous section (Fig. l), except that we also 

make use of a thicker arrow to explicitly connect 

the create-tree agent with the agents it creates. 

3.2.2 A Sample Run 

Let us now briefly consider a sample run of the 

parser. Assuming the grammar and the lexicon in 

Fig. 3, consider the goal 

?- parsec 

[terry,saw,a,robot,with,a,telescopel, 

s> 

After running the parser, the following two an- 

swers, corresponding to the two parses of the input 

sentence, will be found in the global context. 
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Figure 6: The flow of information 

answer ( 

s- (np- (pn-terry)) 

- (vp- (tv-saw) 

-(np-(np-(det-a)-(n-robot)) 

-(pp-(prep-with) 

- (np- (det-a) 

-(n-telescope)))))). 

answer ( 

s-(np-(pn-terry)) 

-(vp-(vp-(tv-saw) 

-(np-(det-a)-(n-robot))) 

-(pp-(prep-with) 

- (np- (det-a) 

-(n-telescope))))). 

These two answers originate from the fact that the 

same complete trees can be consumed by several 

agents encoding different incomplete trees; specifi- 

cally, the agents encoded as 

itree(l,2,vp,np,n,vp-(tv-saw)) 

itree(2,2,np,np, Cppl ,np) 

will both consume the complete tree 

ctree(2,4,np,(np-(det-a)-(n-robot))) 

Furthermore, the agents encoded as 

itree(l,4,vp,pp, Cl, 
(vp-(vp-(tv-saw) 

- (np- (det-a) -(n-robot) ) ) ) ) 

itree(2,4,np,pp, Cl, 
(np-(np-(det-a)-(n-robot)))) 

will both consume the complete tree 

ctree(4,7,pp, 
(pp- (prep-with) 

-(np-(det-a)-(n-telescope)))) 

As a consequence, we end up with two different 

analyses for the substring saw a robot with a tele- 
scope. On the other hand, notice that the rules 
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whose left-hand side symbol is np will receive in 

the course of parsing more than one seek(2,np) 

message to create empty trees with root np and 

starting position 2; however, any of such rules will 

never create more than one of such trees, as seek/2 

messages must be consumed together with match- 

ing pas/l messages, and any rule will be able to 

consume at most one pas(2) message. Thus, both 

redundant analyses and infinite loops deriving from 

left-recursion are in this way avoided. This a.p- 

preach to enforcing redundancy checking is quite 

simple and elegant and comes natural in a decen- 

tralized, object-oriented style of programming; it 

can be contrasted with the more usual way of en- 

forcing it, which is obtained by explicitly compar- 

ing newly created trees with previously existing 

ones. 

3.2.3 Summary 

We can summarize the salient points of this imple- 

mentation of a chart parser as follows: 

l with respect to sequential implementations, 

we do not need to take care of specifying a 

scheduler which handles the feeding of incom- 

plete trees with complete ones; 

l with respect to concurrent, stream-based im- 

plementations (see for instance [28]) we do not 

need to bother about the merging of streams 

of messages coming from different producers; 

l with respect to what would be possible in stan- 

dard blackboard-based communication, we ex- 

ploit the specific feature of local consump- 

tion characterizing forum-based communica- 

tion, which allows different agents to feed 

themselves on the same input to produce dif- 

ferent outputs. 

This produces a concise, “conceptual” style of 

programming, with little burden on requirements 

which do not come from the problem itself, but 

are instead imposed by particular implementation 

choices. Since the Earley algorithm is an instance 

of the technique of dynamic programming, this ap- 

proach can be generalized to other examples of dy- 

namic programming, as shown in [5]. 

4 Related Work 

We have seen how forum-based communication, 

which lies at the basis of the computational model 

for LO presented here, provides a refinement of 

blackboard-based communication [lo] in terms of 

local consumption. Proposals for a more local form 

of blackboard-based communication were also pre- 

sented in [19] in a non-logical setting, sharing our 

same intent of making use of blackboards in the 

context of object-oriented programming. [7] pro- 

vides instead a logical version of blackboard-based 

communication in its standard global interpreta- 

tion. 

LO can also be seen as an instance of Concurrent 

Constraint Programming [25], the programming 

paradigm towards which the concurrent branch of 

logic programming languages is naturally evolving. 

(In a nutshell, we can think of Concurrent Con- 

straint Programming as what becomes of logic pro- 

gramming once it is stripped of its obsolete com- 

mitments to Classical Logic, minimal Herbrand 

models, closed-world assumption etc., and compu- 

tation is explicitly viewed as the interaction of logi- 

cal agents refining an initial amount of information 

by incrementally adding new chunks of informa- 

tion, i.e. constraints.) Indeed, LO can be con- 

sidered as a Concurrent Constraint language with 

agents whose point of view of the outside world 

changes over time: once an agent has seen a piece 

of the outside landscape (the forum) then it will 

not see it anymore, unless it copies it explicitly into 

its own “local” landscape. This can be contrasted 

with the Concurrent Constraint Logic Program- 

ming languages described in [24, 151, where agents 

never change their point of view with respect to 

the outside world (the store of constraints). These 

two ways of implementing concurrent agents clearly 

complement each other, as they cover different as- 

pects of concurrent problem solving. Merging of 

the two approaches in a Linear Logic setting could 
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be possible by permitting permanent elements to 

be added to the forum; such elements would be dis- 

tinguished from the non-permanent ones in the fact 

of being marked by Linear Logic modalities which 

give them explicitly the status of unrestricted re- 

sources. 

Linear Logic has been exploited to account for 

concurrency also in [l, 171; however, the back- 

ground there is functional programming, instead of 

logic programming. [14] exploits the intuitionistic 

(sequential) version of Linear Logic to refine the 

control mechanisms of sequential logic programs. 

[20] describes a general framework for “rewriting 

logics” , suitable for accounting for change in a con- 

current programming context. [22] approaches the 

problem of locality of interaction among concur- 

rent subsystems from the point of view of process 

algebras. 

5 Open Problems 

Our main effort is currently in the direction of find- 

ing an efficient execution model for the language. 

Indeed, from a practical point of view, LO offers 

challenging but reasonably solvable implementa- 

tion issues. We currently have a toy interpreter for 

the language, written in Prolog (with coroutining 

facilities to simulate concurrency). Selection and 

access to the methods is one of the main bottle- 

neck of the interpreter; implementations technique 

used in production systems are currently being ex- 

plored to overcome this problem [S]. We also think 

of a compilation process, based on a type-inference 

mechanism, which would avoid the accumulation of 

useless messages in object states (a garba.ge collec- 

tor could complete the job at runtime). The ulti- 

mate compiler should be able to detect cases of spe- 

cific communication (one-to-one) and implement it 

as such, that is, without propagating a specifically 

sent message to the whole forum in such a case, but 

sending it directly to the intended receiver. Inter- 

mediate cases between specific and generic commu- 

nication, for instance when an object addresses a 

certain group of objects, could also be given a spe- 

cial treatment. 
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