
Communication as Fair Distribution of Knowledge

Jean-Marc Andreoli and Remo Pareschi

ECRC, Avabellastrasse 1’7
D-8000 Munich 81, Germany

{jeanmarc,remo}@ecrc.de

Abstract

?Ve introduce an abstract form of interobject

communication for object-oriented concurrent pro-

gramming based on the proof theory of Linear

Logic, a logic introduced to provide a theoret-

ical basis for the study of concurrency. Such

a form of communication, which we call forum-

based communication, can be seen as a refinement

of blackboard-based communication in terms of a

more local notion of resource consumption. Forum-

based communication is introduced as part of a new

computational model for the object-oriented con-

current programming language LO, presented at

last year OOPSLA/ECOOP (1990), which exploits

the proof-theory of Linear Logic also to achieve a

powerful form of knowledge-sharing.

1 Introduction

The programming language LO (for Linear Ob-

jects) [G, 4, 31 1 ras been designed to supply a 1ogica.l

framework for object-oriented concurrent program-

ming, with the purpose of rigorously accounting

for its various aspects (concurrent communication,

knowledge sharing, object creation, object termi-

nation etc.) in terms of the proof-theoretic behav-

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 89791-446.5/91/0010/0212...$1.50

ior of logical connectives, thus making very sim-

ple and completely abstract the operational seman-

tics of the system; its formal background is given

by Linear Logic [ll], a logic introduced by Jean-

Yves Girard to provide a theoretical basis for the

study of concurrency. LO’s view of active, concur-

rent objects as structured entities capable of shar-

ing knowledge has on the other hand been illus-

trated in [4] in terms of a sociological metaphor:

objects can be thought of as complex organizations,

which inherit the problem solving capabilities of

their suborganizations. Procedural knowledge is

correspondingly encoded by specifying state tran-

sitions (methods) of the form

Cl 73.. . ‘B C, o- Body.

where each Ci is an atomic logical formula. The

logical (proof-theoretic) interpretation of methods

hinges on the identification of objects, and of sys-

tems of objects, with proof trees and goes as fol-

lows: if, in constructing a proof tree in the Lin-
ear Logic calculus of sequents, we have reached an

open node containing, among others, components

Cl . . . Cn, then expand this node into another

node obtained by replacing Cr . . . C, with the

contents specified in Body, and leaving the remain-

ing components untouched; this may lead to the

creation of other nodes, or to a stop in the evo-

lution of that branch of the proof, depending on

the logical nature of the information provided by

Dody. The sociological interpretation goes instead

as follows: if an organization contains in its current

state a suborganization whose member elements

OOPSLA’91, pp. 212-229

212

are Cl . . . C,, then let the given suborganization

perform the task specified in Body, thus changing

its own state and, consequently, that of the whole

organization. According to both the logical and

the sociological interpretation, objects evolve by

explicitly performing actions: elements in the cur-

rent state of affair may irreversibly disappear, to

be replaced by new ones. On the sociological side

this, and nothing else, could have been expected;

but, on the logical side, such a capability to deduc-

tively deal with change in open worlds of indepen-

dently coexisting entities specifically exploits the

fact that Linear Logic accounts not just for truth,

but also for the complementary notion of action,

which had been instead neglected in more tradi-

tional logical developments. Thus, logic and soci-

ology agree to each other, the first one giving us

a rigorously defined abstract operational semantics

for the language, and the other an anthropomor-

phic view of it which fits well within the tradition

of object-oriented programming.

LO’s organizational approach to knowledge shar-

ing can be viewed as a form of intraol?ject commu-

nication, with objects acting as structured entities:

for the capability of a subob ject to handle a certain

task is transmitted to the entire object in terms

of the operational semantics of method triggering.

We have argued that this form of inheritance does

not suffer from the computational drawbacks of dy-

namic approaches to knowledge sharing like dele-

gation [HI, since it avoids the proliferation of del-

ega.te objects, which act as “bureaucrats” whose

only purpose is delivering requests for ta,sks some-

one else is going to do; on the other hand, none of

the malleability of delegation is lost, as LO’s ob-

jects have a completely flexible structure, where

new types of components can be added at run

time, while other ones may altogether disa.ppear;

nor does this entail populating our universe with

anything more but simple “individuals” and their

aggregations - abstract in its operational seman-

tics, LO is quite concrete in its ontology: no notion

of class is introduced, and the object-subobject re-

lationship suffices to achieve inheritance (this can

be contrasted with the class-superclass relationship

characterizing class-based 1anguages)l.

However, another equally crucial and pri-

mary form of communication characterizes object-

oriented concurrent programming: inter-object com-

munica,tion, where separate entities exchange infor-

mation, whether they be structured or not. This is

the basic ingredient for object-based concurrency,

particularly in languages of the Actor family [a],

of which LO is an offspring on the side of its

logic programming branch [27]; communication of

such kind reduces procedure calls to exchanges of

messages between objects, thus leading to a com-

pletely decentralized and truly concurrent model

of computation. The computational model for LO

present,ed in [6, 4, 31 h as dealt with interobject

communication simply by importing the technique

of “shared logical variables” directly from concur-

rent logic programming languages based on Horn

logic, like Concurrent Prolog [26], Parlog [la] and

GIIC [29]. However, such a solution is to be consid-

ered as temporary and not completely satisfactory

mainly for the following (strictly related) reasons:

(i) It is committed to a specific implementation

choice (the use of unification of logical vari-

ables in order to achieve communication) and

thus defies LO’s effort towards a completely

abstract operational semantics, which can be

supported by different kinds of implementa-

tions and architectures.

(ii) It burdens the programmer with the task

of dealing her/himself with problems related

to stream-based communication, like stream-

merging in many-to-one communication.

(iii) Although intraobject and interobject commu-

nication appear as conceptually dual, they are

not so at the operational level: the intraobject

case is accounted for in terms of proof con-

struction, while unification handles the inter-

object case. The situation would become quite

‘Obviously, we view classes and aggregations of individ-

uals as quite different entities: the former are abstractions

on individuals, the other are simply obtained by putting

together simpler individuals to obtain more complex (com-

posite) ones.

213

more pleasant by making proof construction

capable of handling both cases; it would also

be quite more in the spirit of Linear Logic,

which is based on a system of dualities of log-

ical operators.

In this paper, we provide a computational model

for LO which refines the one described in the pre-

vious papers precisely by making proof construc-

tion responsible both for intraobject and interob-

ject communication. In such a new model, proof

construction is going to be seen as a bidirectional

process, where, by starting from a partially de-

fined initial node, we both go ahead in building

the branches of the proof-tree and in further spec-

ifying its initial node. Thus, perhaps not surpris-

ingly, dual communication concepts can both be

accounted for via a fully symmetric approach to

proof construction. This is obtained by permitting

partially specified nodes to be instantiated upon

the triggering of methods, which are now written

as

Cl 2-3 . . . F?c;‘B”c;+~‘B . ..z ‘C,o- Body.

Here, the components A Ci+r, . . . , “C, (if any)

are added to the unspecified part of the node once

the method is triggered, while the components

Cl, . . . , C; must be found already there. But

the unspecified part of any node gets percolated

from the unspecified part of the initial node, and is

therefore shared by all objects; consequently, when-

ever the triggering of a method by an object makes

new components to be added to the unspecified

part of the node, then these components are prop-

agated back to the root of the proof tree and can

in turn be used by other objects. To stick to the

organizational metaphor, we can think of the un-

specified part of the initial node as a kind of dis-

cussion forum: this is a suborganization shared by

all organizations, through which they excha.nge in-

formation between each other. From the point of

view of proof construction, whenever information is

exchanged, we make progress in building the proof

tree in the direction of the root; on the other hand,

making progress towards the leaves along a certain

branch of the proof tree has to do with information

which is strictly local to the object identified with

the given branch, thus accounting for intraobject

communication.

Now, communication in a forum is characterized

by two basic kinds of speech acts:

a the act of the speaker’s addressing one specific

hearer, in front of the remaining part of the

audience (specific communication);

l the act of the speaker’s addressing the whole

audience (generic communication).

In both cases, communication is achieved through

a shared communication medium, even when it is

specific; moreover, generic communication is al-

ways fair, in the sense that no receiver can limit

only to her/himself the use of a message which

is meant for the whole community. As we shall

see, our approach to forum-based interobject com-

munication will support both specific and generic

communication, and will maintain the fairness of

generic communication. But we shall also ensure

the safeness and the privacy of specific communi-

cation, by providing a clean way of generating pri-

vate names to be used as mail addresses labeling

messages which have to be specifically addressed,

so that the capability to read one of such mes-

sages requires acquaintance of the corresponding

mail address; alternatively, from the point of view

of the speaker/hearer relationship, we can think

of such private names as “interpretation keys”,

whose acquaintance unlocks the meanings of the

messages with which they are associated. Fur-

thermore, we shall characterize the relationship be-

tween such a novel form of communication and the

well-established blackboard-based communication

(see for instance [lo]): as it will be shown, forum-
based communication can both be viewed as a

logical version of blackboard-based communication

and also as an operational refinement of it in the

sense of being endowed with a more local notion of

resource consumption (corresponding to the prop-

erty of fairness of generic communication) which

makes it fully adequate for distributed computing.

214

We shall also compare our approach to communi-

cation with the one adopted for Concurrent Con-

straint Logic Programming (CCLP) languages de-

scribed in [24, 151; indeed, both approaches imple-

ment a logic-based form of fair generic communi-

cation, and appear as complementing each other in

the following sense: in the case of forums the items

of information can be removed from the “visual

field” of agents (i.e., once accessed they are actu-

ally consumed, albeit just within the local scope

of the accessing agent); in the case of CCLP lan-

guages, items of information are instead perma-

nently stored for all agents.

The remaining part of this paper is organized as

follows: Section 2 will give a description of the new

computational model of LO leading to forum-based

communication, and will formally characterize it

both in terms of an operational (proof-theoretic)

semantics and a model-theoretic semantics; Sec-

tion 3 will describe two applications of this new

model of computation, the first one of which (a

graphical application) will be characterized by spe-

cific communication, while the other (a concurrent

chart parser) will be characterized by generic com-

munication and will provide us with an instance of

a highly general methodology for distributed prob-

lem solving; Section 4 will compare our approach

with related work, and Section 5 will give a brief

overview of ongoing directions of research.

2 Description of the Language

LO

2.1 Formulae, Sequents, Proofs

The syntax of the language LO uses three connec-

tives of Linear Logic: “par” (written ‘8), “with”

(written &), and “top” (written T). We also make

use of the Linear implication (written c-) which

can be defined in terms of the other connectives

of Linear Logic. Two classes of Linear formulae,

namely “goals” G and “methods” M, are built re-

cursively from the class A of atomic formulae (i.e.

simple terms possibly containing variables), as fol-

lows:
G=AIGzGITIG&G
M=Ao-GIAWU

A “program” is a set of methods and a “context”

is a multiset of grovnd goals (i.e. containing no

free variables). An LO “sequent” is a pair written

P I- C where P is a program and C is a context.

2.1.1 Definition of the Inference Figures

for LO

A proof is a tree structure whose nodes are la-

beled with sequents. By convention, a proof tree is

graphically represented with its root at the bottom

and growing upward. Its branches are obtained as

instances of the inference figures of the following

sequent system, which defines LO’s operational se-

mantics.

l Decomposition

PI
P k C,G,G

P I- C,GI’BGZ PI P I- C,T

14
P I- C,G1 P t- C,G2

P I- C,Gl&G2

0 Propagation

bl
P k C,G

P I- C,Al,...,A,

In these figures, P and C denote, respectively, a

program and a context. G,Gr, G2 denote ground

goals and the expression C,G denotes the context

obtained as the multiset union of C and the single-

ton G.

In the propagation inference figure [o-l, we take

[P] to be the set of all the ground instances of

the methods in P. The letters Al,. . . , A, denote

ground atoms. Thus, the context in the lower se-

quent contains (in the sense of multiset inclusion)

a submultiset of atoms which matches exactly the

head of a ground instance of a method from the

program. The upper sequent is obtained by re-

placing in the lower sequent this submultiset with

215

the body of the selected instance of method (i.e. a

ground goal).

Notice that, by definition, the elements of a mul-

tiset are not ordered. Therefore, the order of the

atoms in the head of a method is not relevant.

2.1.2 Operational Interpretation of the In-

ference Figures

Read bottom-up, a proof gives a static representa-

tion (a “snapshot”) of the overall dynamic evolu-

tion of a system of objects viewed as active pro-

cesses (agents). Each sequent at the node of a

proof-tree encodes the state of an object at a given

time. The branches of the proof-tree represent ob-

ject state transitions.

Thus, the sequent system of LO can be inter-

preted as a general specification of a set of valid

object state transitions: the lower sequent in each

inference figure is the input state of a valid tran-

sition, whose output states (if any) are the upper

sequents.

l Inference figure [T], which has no upper se-

quents, encodes a transition without output

states. In other words, it allows termination

of objects.

l Inference figure [a] has two upper sequents

which share a part of their context. Thus,

the two output states of this transition can be

viewed as clones, that is, as independent enti-

ties with a similar structure. In other words,

the connective & allows creation of objects by

cloning.

0 Inference figure [3] aggregates, within the

same object, two different components. It al-

lows construction of object states with mul-

tiple elements, which lies at the basis of the

object/subobject relationship in LO.

0 Inference figure [o-l allows the transforma.tion

of an aggregation of components (a subobject)

within an object.

Notice that, for each transition, the pr0gra.m (left-

hand side of the sequents) never changes while the

context (right-hand side) is always modified (at

least one formula is replaced by another). In other

words, the program contains the unrestricted re-

sources of the object, that is, those which can be

reused as many times as needed, while any element

from the context is a restricted resource, which dis-

appears once used.

LO proofs are characterized by two levels of con-

currency: AND-concurrency, involving processes

evolving on different branches of the proof; and

OF&concurrency, involving different subprocesses

aggregated within a single process, evolving on a

single branch. These two forms of concurrency

correspond to the two forms of communication

which, in the introduction, we have called, re-

spectively, interobject and intraob ject communica-

tion. The terminology for AND/OR-concurrency

has been chosen to make a direct connection with

Linear Logic, where the connective & responsi-

ble for AND-concurrency is the (additive) conjunc-

tion whereas the connective ‘6 responsible for OR-

concurrency is the (multiplicative) disjunction.

2.2 Computational Model

In this paper, we keep the basic computational

mechanism already proposed in previous papers,

which can be summarized as follows:

I Computation = Proof Search I

The important novelty here is in the specification of

the class of proofs to be searched, called the target

proofs, associated with a given query.

2.2.1 Contextual Proof Search

A query is a pair consisting of a program P and a

ground goal G. Target proofs are then defined as

follows:

Definition 1 A target proof is an LO-proof such
that its root is a sequent of the form P I- C,G,
where C is a context (also called an answer context
for the query).

In other words, proofs are searched in such a way

that the context of their root node may prop-
erly contain the query goal. This new model of

216

computation can be used within the two different

paradigms of transformational and reactive pro-

gramming [131.

l In the “transformational” paradigm, the sys-

tems reads an input, processes it and produces

an output. The input is here the initial query

and the output is any possible answer context

C. The elements of C can be viewed as con-

straints and thus, a query can be interpreted

as “find a set of constraints from which a given

formula is derivable”.

l In the “reactive” paradigm, several agents

interact together by exchanging messages.

There is no notion of input and output in this

case; the initial query is used only for the pur-

pose of bringing into life certain agents. The

answer context C acts as a medium of commu-

nication between agents. C is initially unspec-

ified but each agent can read and write in it

during a state transition; each time an agent

writes in C, the written formula is automati-

cally propagated to all the other agents. This

kind of communication we call forum-based
communication, by viewing a sender agent as

a speaker talking in front of an audience gath-

ered in a forum.

In this paper, we focus on the second paradigm,

where the answer context is used as a communica-

tion medium.

2.2.2 Example

Consider the following propositional LO program

P:
pzao-r.
qZa’Z?bhT.
r’Sbc--T.

The following proof II (where the program P is

omitted from the left hand side of the sequents) is

a possible target proof for the query (P ; p& q).

r-i-i -

b-1 “‘FT
D-1 -

b-l
II = [&]

t-b7r b-1 ,+:,‘, k b,p 7 3
tb,a, p&q

Thus, the multiset b, a is an answer context for the

query above. Let us go into the details of a possi-

ble construction of II. Initially, the search tree is

reduced to a single node

III-J = l-c, p&q

where C is a still unspecified context.

1. Inference figure [&I applies to the single node

of II0 and expands it to

2. At this point, no inference figure applies with-

out making some assumption on the content of

C. For example, if we assume that C contains

a (i.e. C = C’,a), then the first method of

P applies to the leftmost leaf of II1 (inference

figure [o-l), and yields

b-1
I- C’,r

k C’,a,P
t- C’, a7 q

II2 = [&I t-C’,a, P&q
3. To continue, we need further assumptions on

C. For example, if we assume that C’ contains

b (i.e. C’ = C”, b), then the second method of

P applies to the rightmost leaf of II2 (inference

figures [o-l, and then [T]), and yields

b-l
t- C”, b> r

II3 = 14 I- P, b, a, p
I- P, b, a, p & q

4. Now, the third method of P applies to the left-

most leaf of II3, and yields

r-d -

b-1
’ ’ ’ t- c”, T

I-P b r PI -
b-1

II4 = [&I
t- C”, b, 6,; b-3

t-C” T
!- P,b,(I,q

I- C”,b,a, p&q

5. Finally, II is identified as the instance of II4 in

which C” is the empty multiset.

Of course this construction is far from being the

only possible one. At each step, we have made sev-

eral decisions, some of which were arbitrary. Hence

the need to define a control strategy.

217

2.3 Proof Search Control

2.3.1 The “tell” marker

A large amount of non-determinism in proof search

is eliminated by the following result, which identi-

fies a complete subset of LO-proofs, so that the

search procedure can be restricted to proofs in this

subset.

Theorem 1 A sequent P I- C is derivable in LO
if and only if it has a ‘ffocusing” proof, i.e. one
in which the bottom context in each occurrence of

the propagation inference fisure [o-l contains only
atoms.

This result is a special case of a more general theo-

rem for full Linear Logic (called the “focusing” the-

orem), stated in [3], and which is in fact stronger: if

any of the decomposition inference figures ([T] , [&I

or [z]) applies at one node of the proof, then it can

deterministically be applied immediately. There-

fore, as long as the current context contains a non-

atomic goal, the proof search procedure can be

made completely deterministic.

However, once the context contains only atoms,

and it is therefore time for the propagation infer-

ence figure [o-l to be applied, we are faced with

a non-deterministic choice which we would like to

control. Here the crucial problem is that of select-

ing an appropriate method from the program. By

adopting a blind search strategy, any method could

be triggered: for, as long as no restriction is put on

the context, it would always be possible to assume

that the method’s head is entirely contained in the

yet unspecified part of the context. We introduce

therefore a pragmatic tool which gives the user con-

trol on such assumptions. Let A be a special sym-

bol, called the “tell” marker, which can be used to

prefix any atom in the head of a method. Thus, the

first method of program P of Section 2.2.2 could be

marked as follows:

p;SAao-r

This means that, to apply this method, the atom

p (unmarked) must be found in the already speci-
fied part of the context, while the atom a (marked)

must be assumed in the still unspecified part of the

context. Of course, when triggering the method,

both the marked and the unmarked atoms of the

head (here p, a) are replaced by the body of the

method (here, r alone). Thus, the head of each

method is split into two groups of atoms: those

(unmarked) which are asked from the context (i.e.

from its already specified part) and those (marked)

which are told to the context (i.e. to its still un-

specified part).

Now consider the program P of Section 2.2.2

with the following marking:

pF? *ao-r.
q??a3”b+T.
r’Fbo-T.

It is easy to check that the proof construction de-

scribed in Section 2.2.2 is the only possible one with

respect to the marking above.

The interactions between the two branches cre-

ated at step 1 in the search illustrates the com-

munication mechanism obtained by this use of the

markings in the head of the methods: first the left

branch sends a message a to the right branch (step

2); then the right branch receives this message a,

sends a message b to the left branch and terminates

(step 3). Finally, the left branch receives the mes-

sage b and terminates (step 4). In both send and

receive operations, the message is locally consumed

by the concerned agent and disappears from its

scope, but not from the scope of the other agent(s).

There lies the fundamental difference between our

forum-based communication and blackboard-based

systems (like Linda [lo], for instance), where, once

an agent consumes a resource, it takes it away glob-

ally also for all the other agents. Similarly, the “fo-

rum based” communication mechanism differs from

the one available in the CCLP languages described

in [24, 151, where “told” constraints are never re-

moved from the local “visual field” of an agent.

Clearly, communication of this kind directly de-

pends on the possibility of suspending and resum-

ing computation. Indeed, notice that after step 1,

no method applies to the right branch. However,

no failure occurs because of this. Instead computa-

218

tion on the right branch gets suspended; resuming

it must wait for the transition on the left branch

(step 2) t o ro p d uce the atom (u) needed to trigger

a method on the right branch. Thus, in LO’s proof

theory, the closed-world notion of failure character-

izing traditional logic programming languages is re-

placed by the open-world one of suspension. Dead-

locks may follow from the situation of suspension

of all proof processes.

2.3.2 Information Hiding via Variable In-

stantiation

It has been shown above that the use of the tell

marker * provides a form of control on the choice

of methods. But, once a method has been se-

lected, another kind of choice is required, in de-

termining an instantiation for the variables of the

selected method (this problem did not appea,r in

previous examples since the methods contained no

variables). Unification is the traditional solution

for this problem; however, we opt here for another

mechanism, which suits better the proposed com-

putational model. It ca.n be summarized as follows:

l Instantiation of variables occurring in the un-

marked atoms of the head is effected by sim-

ple pattern matching with the corresponding

atoms in the context.

l All the other variables of the method are in-

stantiated with distinct “new” constants, that

is, constants which do not appear in the por-

tion of the proof built so far.

Assume for instance that we have a branch of the

proof where the current context is given by

where C is the still unspecified part of the context,

and we want to apply the following method2.

P(X) ‘s 4 23 “4X, Y) o- t(y)

This is possible since the unmarked atoms of the

head, namely p(X), (I, match a submultiset of the

2We follow the convention of starting variable identifiers

with an uppercase letter.

already known part of the context, namely p(a), q.

This matching instantiates the variable X to a.

The (only) other variable, Y, is instantiated with

some arbitrary new constant, say c. Now, the

method is fully instantiated and can be triggered

by assuming that the atom s(a,c) is in C (since

this atom is prefixed with the tell marker). Thus

C = s(u, c),C’, and a new node can be added to the

proof:

b-1
t- C’, r, t(c)

I- C’, 4% C),P(4, Q7 r

This mechanism for variable instantiation provides

a clean way to generate new unique identifiers.

Such identifiers can then be used as mail addresses

for messages to be sent in the specific mode. The

fact that each mail address thus created is bound

to be different from any other previously or subse-

quently created ensures the safeness and privacy of

specific communication; information items labeled

with a given mail address will be hidden from those

potential receivers unacquainted with it3.

2.4 Phase Semantics

It has been shown in [3] that LO’s sequent system

is sound and complete wrt Linear Logic. More pre-

cisely,

Theorem 2 A sequent P k C is derivable in LO
if and only if the sequent I- (! P)-‘-, C is derivable
in Linear Logic, where p is the conjunction (&) of
the methods of P (universally quantified) and ! is
the Linear modality “of-course”.

Notice the use of the modality ! to prefix the pro-

gram P in its Linear Logic version; this explicitly

marks the elements of the program (the methods)

as unrestricted resources, which can be used as

31dentifiers of this kind are related to the eigenvariables

used in proof theory to introduce fresh constants in the

proof; eigenvariables have been recently proposed in [21] as

a way of adding information hiding to logic programming.

The difference is that eigenvariables have just “forward” and,

therefore, local scope on the branch of the proof where they

are introduced; by contrast our newly created identifiers are

propagated back to the root of the proof tree, so they have

global scope.

219

many times as needed, whereas the elements of the

context C (the goals) are instea,d bounded resources

which can be used just once.

Theorem 2 above shows in proof-theoretic terms

that LO is a fragment of Linear Logic. But there is

also a model-theoretic characterization of this fact,

based on the “Phase Semantics” proposed in [ll]

as an interpreta.tion of Linear Logic; such a charac-

terization applies to the computational model pre-

sented here in a particularly perspicuous manner.

Take a phase model M to be a given set of

“phases”; the denotation of a formula F in M,
written [F]M, is a “fact” of M, i.e. a subset

of the set of phases verifying certain properties4.

Intuitively, the phases can be viewed as actions,

and the denotation of F is the set of actions which

must alternatively be performed so as to make F
true. This provides a constructive, dynamic notion

of truth, which can be contrasted with the non-

constructive, static truth of Boolean semantics.

Denotations of formulae in phase models satisfy

two nice properties, shared with Boolean seman-

tics:

0 Compositionality:

The denotation of a complex (non-atomic) for-

mula depends solely on the denotations of its

components; thus, e.g.

[F & Gl = [Fl n [G]
[FsGl = ([Fllo [Cl*)'

where o and 1 are operators of the phase

mode15.

l Soundness and completeness of the proof sys-

tem:

A formula is provable if and only if it holds in

all models; i.e.

I- F if and only if for all M, M I= F

t- is the provability relation of Linear Logic

and M I= F means that the empty phase be-
longs to the denotation of F in M.

*See [ll] for the exact definitions.

5See [ll] for the exact definitions.

However, the Phase Semantics has another pleas-

ant feature which does not hold in the Boolean

case: there is a “canonical” phase model6 M, in

which the following property holds.

k F if and only if M, I= F

Such a canonical model can be directly connected

to the computational model proposed here, since

computing a query Q can be viewed as building its

denotation [Q]mo in the canonical model, by enu-

merating the elements (phases) of the set [Q]M~.

More precisely, in the canonical model M,, the

phases are the multisets I? of formulae of Linear

Logic, and the denotation of a formula F is given

by

IF1 MO ef {I’/ H’,F}

Now, notice that given an LO query (P; G), the

computational model proposed in the previous sec-

tion precisely attempts to enumerate the elements

of [(!F) -O G]mM,. Indeed, for any answer con-

text C to the query, the following three equivalent

properties hold:

(i) P l- C, G is derivable in LO (by Definition 1 of

an answer context).

(ii) l- (! P)*, C, G is derivable in Linear Logic

(from (i), by application of Theorem 2).

(iii,) t C, (! F) 4 G and hence C E I(! P) --o Gl M,,

(from (ii) by definition of the Linear implica-

tion -o and of the canonical denotation).

As a matter of fact, the proof search procedure

described in the previous section can only gener-

ate atomic phases (i.e. containing only atoms). If

the control strategy induced by the use of the tell

marker * were ignored, i.e. if all the possible mark-

ings and all the possible variable instantiations

were allowed for all the program methods, then all

the atomic phases of [(! p) --o G] ,u, would be gen-

erated by exploring all the alternatives at each non-

deterministic choice in the procedure (with a back-

track mechanism, for instance). This complements

6See [ll] for the exact definitions.

220

the soundness result given by (i) - (ii;) above with

a completeness result of our operational search pro-

cedure with respect to the Phase Semantics. From

a practical point of view, completeness and compu-

tational tractability are however incompatible: by

imposing one specific marking upon the methods,

the programmer enforces the order in which the

atomic phases of [(!p) -o G]M~ are enumerated,

but, at the same time, enables possible situations of

deadlock which preclude some atomic phases ever

to be constructed.

3 Applications

We illustrate the expressiveness of the computa-

tional model described above by two simple appli-

cations. The first one (Section 3.1) gives an exam-

ple of specific communication, and the second one

(Section 3.2) an example of generic communication.
From now on we replace the logical symbols ‘8, &,

T and o- with, respectively, keyboard typable sym-

bols Q, &, #t and O-, which are used in the actual

implementation of LO.

3.1 Specific Communication: Computer
Graphics

We describe here a simple graphical applica-

tion for manipulating geometrical drawings on a

2-Dimensional display. This example is a modifi-

cation of the one given in [4], where it was used to

illustrate LO’s approach to knowledge sharing in

terms of intraob ject communication, while streams

were used for interobject communication; here, we

replace streams with the use of the forum as a com-

munication medium, and we stress aspects of inter-

object communication. The evolution of the sys-

tem of agents is modeled by the construction of a

proof tree as in Section 2.2.2.

There are three kinds of communicating agents:

the user (of the drawings), the drawings and the

display device. Hence, the query which brings into

life such agents is given by the goal

user & drawings 8 display.

together with a program containing methods exe-

cutable by these three agents. The unspecified con-

text which is incrementally specified by searching

a target proof for the query acts as the forum for

communication between agents. Communication

here is specific, in that it will involve one agent

specifically addressing other agents by posting to

their mail addresses.

We focus here on the behavior of the drawing
agents. At the moment of its creation, a drawing

is represented as a context containing the following

components:

drawing , noshape , id(S) , center(O)

S is an identifier used as a mail address for the

drawing for the purpose of sending messages to it.

0 is a point of the screen, encoded in the form of

a pair of coordinates, specifying the center of the

drawing. Initially, we only need one single pro-

totype drawing, with mail address proto; such a

prototype, located at the center of the screen, is

initialized by expanding the drawings agent in the

query, and can be later cloned to create new draw-

ings. Expansion of the drawings top-level agent is

obtained via the following method:

drawings <>- drawing Q noshape Q

id(proto) Q center(m(O,O)).

Cloning is triggered upon reception of a message

dup/2 (with 2 arguments) told to the forum by,

say, the user agent: the first argument and the sec-

ond argument of this message are, respectively, the

mail address of the drawing we clone from and the

mail address of the newly cloned drawing. Immedi-

ately after cloning, the two drawings differ only by

their mail addresses; however, from now on, they

follow completely independent evolutions. This is

achieved by the following cloning method for draw-

ings, which exploits crucially the connective &, like

all methods dealing with creations of new agents:

drawing 0 id(S) Q dup(S,Sl) Q ^ack(S) O-

drawing Q (id(S) & id(S1)).

The sender of the dup/2 message can ensure

uniqueness of the mail address of the new drawing

221

by using the mechanism for generating new iden-

tifiers described in Section 2.3.2. Notice also how

the atom ack(S) is sent back to the forum as a

message acknowledging that the requested creation

has taken place. This is because, in this applica-

tion, the order in which messages are processed is

important: for instance, cloning or printing an ob-

ject before or after moving it leads to two different

results. Acknowledgement messages take a very

simple form in this application, as we assume that

there is only one single sender that needs to be

acknowledged (the user); in a situation where mul-

tiple senders need to be acknowledged, such mes-

sages should contain not just the address of the ac-

knowledging agent, but also the “return” address

of the original sender, to ensure that they are prop-

erly delivered.

Once created by cloning, each drawing agent can

be modified. For example, to move a drawing (by a

specified amount D) we have the following method.

drawing Q id(S) Q center(O) (D

move(S,D) Q ^ack(S) O-

drawing (P id(S) (D center(O+D).

The prototype drawing proto has no specific

shape, and, therefore, neither have its clones at

the time of their creation. Giving shape to such

formless entities involves using a method like the

following one, which constrains a drawing to be a

square with sides of length A.

drawing 0 noshape Q id(S) Q

make-square(S,A) Q ^ack(S) <>-

drawing (D square 0

id(S) Q side(A).

Printing a square is done via the following method.

square (D side(A) (0 center(O) Q id(S) Q

print(S) 0 -ack(S) Q

^line(Ml,M2) 0 -line(M2,M3) Q

-line(M3,M4) (D ̂ line(M4,Ml) O-

square Q side(A) Q

center(O) (D id(S).

The points Ml ,M2 ,M3 ,M4 are the four vertices of the
square. They must be computed from the center

0 and side A of the square (for clarity, this compu-

tation is omitted here). The four messages line/2

sent upon triggering of this method correspond to

graphical commands to print the four edges of the

square and are meant for the display agent. No-

tice that there is no need for the messages to this

agent to be ordered (we assume here for simplicity

sake that the display agent consumes only line/2

messages, and the order in which lines are printed

is irrelevant). Therefore, a drawing object does not

need to wait for an acknowledgement to such mes-

sages to pursue its activity.

The flow of information is represented in Fig. 1.

Agents are represented in square boxes and mes-

sages in round boxes (only their topmost functor is

displayed). An arrow from an agent to a message

(resp. from a message to an agent) means that the

agent produces (resp. consumes) the message.

The example of this section illustrates the syn-

chro-

nization mechanism based on a send/acknowledge

protocol between agents sharing a common com-

munication medium, the forum. This communi-

cation mechanism is more flexible than the usual

stream-based one, in that it saves the programmer

from the burden involved in stream manipulations

(stream merging, explicit interobject connections,

etc.).

3.2 Generic Communication: Concur-
rent Chart Parsing

The example we provide here is a particularly in-

teresting case of distributed problem solving which

illustrates well the use of local resource consump-

tion in generic communication. The problem we

address specifically is concurrent parsing, a topic

which has attracted the interest of several re-

searchers in the object-oriented programming com-

munity [23, 301; on the other hand the problem-

solving technique we employ here can be fruitfully

generalized to more complex examples, like dis-

tributed expert systems operating on highly com-

plex domains, where different experts are required

to work independently on shared data, feeding back

222

n dUP
move

user

Figure 1: The flow of information

different outputs which all need to be taken in con-
sideration for the final solution of a given problem.

The program we describe amounts to a concur-

rent implementation of the Earley’s algorithm for

context-free parsing [9] and draws much in the

spirit of the active chart parsing methodology [16],

where incomplete phrasal subtrees are viewed as

agents consuming already completed elements to

produce other (complete or incomplete) subtrees.

However, in our case even the rules of the grammar

and the entries of the lexicon act as independent

units directly partaking in the computation. More-

over, as distinct from the usual sequential formula-

tions of chart parsing, here no superimposed sched-

uler is in charge of the task of feeding incomplete

subtrees with complete ones; instead, incomplete

elements behave as truly active decentralized com-

putational units which get their information from

the forum, where finished subtrees are told as soon

as they have been found. But we must preserve the

fact that, once a subtree is completed, this infor-

mation must be broadcast to all the active agents

which can make use of it; indeed, in the case of

ambiguous grammars, the number of such agents

may be greater than one, thus leading to differ-

ent parses for the same string. Local consumption

neatly deals with this problem.

3.2.1 The Program

We view parsing as being performed by four top-

level agents, a string scanner, a grammar, a dictio-

nary and a creator of new subtrees. This is ex-

pressed by the following method, which contains in

its head a single literal parsec1 ,S>, where I is the

input string and S is the symbol of the grammar

defining the set of strings with respect to which we

want to test membership of I.

parseCInput ,Symbol) <>-

grammar & dictionary &

scarmer(Input,Symbol) & create-tree.

The scanner agent, defined in the methods in

Fig. 2, performs the two following actions:

l It keeps popping words from the input and

producing pos (N) and word(W ,N) messages

where

- a pas(N) message supplies the informa-

tion that position N has been reached in

the input;

- a word(W ,N) message supplies the infor-

mation that there is a word W between

positions N and N+l in the input.

Positions are encoded as integers in the “suc-

cessor” notation.

l Upon reaching the end of the input string, it

sends a seek(O ,S) message, where S is the tar-

geted grammar symbol, and then reduces itself

into an agent whose sole task is that of retriev-

ing answers. This is simply done by waiting

for trees covering the whole input string with

223

scanner(I,S) 0-
scan(I,O) (D target(S).

scan(CWlIl,N) (D ̂pos(N) (Q ̂word(W,N) O-
scan(I,s(N)).

scan(Cl,N) Q target(S) 0 ̂ seek(O,S) C>-
wait(N,S).

wait(N,S) 0 ctree(O,N,S,T) 0 -answer(T) <>-
wait(N,S).

Figure 2: Methods for scanning

grammar <>-

s ==> [np,vpl &

nP ==> [det,n] t

"P ==> Cpnl &

w ==> Cnp ,ppI 8t

VP ==> Ctv,npl &

VP ==> cvp ,ppI $

PP ==> Cprep,npl .

dictionary <>-
entry(a,det) &
entry(robot,n) &
entry(telescope,n) &
entry(terry,pn) t

entry(saw,tv) &
entry(with,prep).

Figure 3: A grammar and a dictionary

entry(W,S) 0 word(W,N) Q ^ctree(N,s(N),S,S-W) <>-

entry(W,S).

(S ==> Ss) Q seek(N,S) 0 pas(N) 0 -new(N,N,S,Ss,S) <>-
(S ==> Ss).

Figure 4: Methods for lexical entries and rules

create-tree Q new(M,N,S,[],T) 0 ^ctree(M,N,S,T) O-
create-tree (P ctree(M,N,S,T).

create-tree 0 new(M,N,S,CSlISsl,T) Q ^seek(N,Sl) c>-
create-tree & itree(M,N,S,Si,Ss,T).

itree(M,N,S,Sl,Ss,T) 0 ctree(N,P,Sl,Tl) (D -new(M,P,S,Ss,T-Tl) O-
itree(M,N,S,Sl,Ss,T).

Figure 5: Creation and completion of trees

224

symbol S to appear in the forum; the structure

T with which any of such trees has been repre-

sented is then explicitly added as an answer.

The grammar and the dictionary agent expand,

respectively, into a set of grammatical rules and of

lexical entries, each originating a different agent;

a sample dictionary and grammar7 are given in

Fig. 3. Notice that the grammar is an ambiguous

one. The behavior of lexical entries and rule agents

is defined in terms of the methods in Fig. 4. Lex-

ical entry agents accept as messages words with

which they match and send back corresponding

complete preterminal trees, labeling the given word

with a preterminal symbol. On the other hand, rule

agents consume seek(N ,S> messages together with

pas(N) messages, if the sought grammar symbol S

corresponds to their own left-hand side symbol; in

this case, they issue back a message for the creation

of a new agent encoding an incomplete (empty)

tree. Crucial is here the fact that the consump-

tion by rule agents of seek/2 messages must be

concomitant with the consumption of matching (in

the sense of being characterized by the same integer

argument) pas/l messages; indeed, this correctly

ensures that a rule agent can produce no more than

one empty incomplete tree for any position of the

input string, given that, for any N, it will be able to

consume no more than one pos (N) message. In this

way, we prevent the possibility of infinite loops of

the left-recursive kind deriving from rules like the

fourth and the sixth one in the grammar of Fig. 3;

furthermore, we block the possibility of redundant

analyses. This will be illustrated in describing a

sample run of the parser further on in this section.

Creating and completing new trees is accounted

for in terms of the methods in Fig. 5. The top-level

create-tree agent consumes messages of the form

new (M, N , S, Ss , T) where M and N are, respectively,

the two string positions spanned by the new tree to

be created, S is the root of the tree, Ss is a list of

symbols corresponding to the roots of the complete

subtrees which are still needed in order to make this

‘The symbol ==> appearing in the grammar rules is not

a primitive of LO but simply a convenient infix notation for

a binary term constructor.

tree complete, and T is the representation associ-

ated with the tree itself. It then deterministically

chooses between the following two actions:

l in case the list Ss is empty, it sends a mes-

sage ctree(M,N,S,T) to signal that a com-

plete tree with root S and representation T has

been found between positions M and N;

l in case the list Ss is of the form [Sl I Ssll , it

sends a message of the form seek(N,Sl) and

then creates an incomplete tree agent of the

form itree(M,N,S,Sl,Ssl,T).

As for incomplete tree agents of the form

itree(M,N,S,Sl,Ss,T), they consume complete

trees of the form ctree(N,P,Sl,Tl) to produce

messages of the form new(M,P,S,Ss,T-Tl). Thus,

requests for the creation of new trees can come ei-

ther from rule agents as answers to seek/2 mes-

sages, or from incomplete tree agents; in the former

case such requests can be thought of as leading to

the formulation of further hypotheses which need

to be verified in order to satisfy a certain initial

hypothesis (this is known as step of prediction in

the usual formulations of the Earley algorithm),

while in the second case they follow from having

progressed “one step” in the verification of a cer-

tain hypothesis (this is known as a step of comple-
tion). Fig. 6 shows the flow of information among

the agents. The convention are the same as in

the previous section (Fig. l), except that we also

make use of a thicker arrow to explicitly connect

the create-tree agent with the agents it creates.

3.2.2 A Sample Run

Let us now briefly consider a sample run of the

parser. Assuming the grammar and the lexicon in

Fig. 3, consider the goal

?- parsec

[terry,saw,a,robot,with,a,telescopel,

s>

After running the parser, the following two an-

swers, corresponding to the two parses of the input

sentence, will be found in the global context.

225

I
/

I
.L t

\,,

r I \

rule .,
entry a

grammar dictionn

Figure 6: The flow of information

answer (

s- (np- (pn-terry))

- (vp- (tv-saw)

-(np-(np-(det-a)-(n-robot))

-(pp-(prep-with)

- (np- (det-a)

-(n-telescope)))))).

answer (

s-(np-(pn-terry))

-(vp-(vp-(tv-saw)

-(np-(det-a)-(n-robot)))

-(pp-(prep-with)

- (np- (det-a)

-(n-telescope))))).

These two answers originate from the fact that the

same complete trees can be consumed by several

agents encoding different incomplete trees; specifi-

cally, the agents encoded as

itree(l,2,vp,np,n,vp-(tv-saw))

itree(2,2,np,np, Cppl ,np)

will both consume the complete tree

ctree(2,4,np,(np-(det-a)-(n-robot)))

Furthermore, the agents encoded as

itree(l,4,vp,pp, Cl,
(vp-(vp-(tv-saw)

- (np- (det-a) -(n-robot)))))

itree(2,4,np,pp, Cl,
(np-(np-(det-a)-(n-robot))))

will both consume the complete tree

ctree(4,7,pp,
(pp- (prep-with)

-(np-(det-a)-(n-telescope))))

As a consequence, we end up with two different

analyses for the substring saw a robot with a tele-
scope. On the other hand, notice that the rules

226

whose left-hand side symbol is np will receive in

the course of parsing more than one seek(2,np)

message to create empty trees with root np and

starting position 2; however, any of such rules will

never create more than one of such trees, as seek/2

messages must be consumed together with match-

ing pas/l messages, and any rule will be able to

consume at most one pas(2) message. Thus, both

redundant analyses and infinite loops deriving from

left-recursion are in this way avoided. This a.p-

preach to enforcing redundancy checking is quite

simple and elegant and comes natural in a decen-

tralized, object-oriented style of programming; it

can be contrasted with the more usual way of en-

forcing it, which is obtained by explicitly compar-

ing newly created trees with previously existing

ones.

3.2.3 Summary

We can summarize the salient points of this imple-

mentation of a chart parser as follows:

l with respect to sequential implementations,

we do not need to take care of specifying a

scheduler which handles the feeding of incom-

plete trees with complete ones;

l with respect to concurrent, stream-based im-

plementations (see for instance [28]) we do not

need to bother about the merging of streams

of messages coming from different producers;

l with respect to what would be possible in stan-

dard blackboard-based communication, we ex-

ploit the specific feature of local consump-

tion characterizing forum-based communica-

tion, which allows different agents to feed

themselves on the same input to produce dif-

ferent outputs.

This produces a concise, “conceptual” style of

programming, with little burden on requirements

which do not come from the problem itself, but

are instead imposed by particular implementation

choices. Since the Earley algorithm is an instance

of the technique of dynamic programming, this ap-

proach can be generalized to other examples of dy-

namic programming, as shown in [5].

4 Related Work

We have seen how forum-based communication,

which lies at the basis of the computational model

for LO presented here, provides a refinement of

blackboard-based communication [lo] in terms of

local consumption. Proposals for a more local form

of blackboard-based communication were also pre-

sented in [19] in a non-logical setting, sharing our

same intent of making use of blackboards in the

context of object-oriented programming. [7] pro-

vides instead a logical version of blackboard-based

communication in its standard global interpreta-

tion.

LO can also be seen as an instance of Concurrent

Constraint Programming [25], the programming

paradigm towards which the concurrent branch of

logic programming languages is naturally evolving.

(In a nutshell, we can think of Concurrent Con-

straint Programming as what becomes of logic pro-

gramming once it is stripped of its obsolete com-

mitments to Classical Logic, minimal Herbrand

models, closed-world assumption etc., and compu-

tation is explicitly viewed as the interaction of logi-

cal agents refining an initial amount of information

by incrementally adding new chunks of informa-

tion, i.e. constraints.) Indeed, LO can be con-

sidered as a Concurrent Constraint language with

agents whose point of view of the outside world

changes over time: once an agent has seen a piece

of the outside landscape (the forum) then it will

not see it anymore, unless it copies it explicitly into

its own “local” landscape. This can be contrasted

with the Concurrent Constraint Logic Program-

ming languages described in [24, 151, where agents

never change their point of view with respect to

the outside world (the store of constraints). These

two ways of implementing concurrent agents clearly

complement each other, as they cover different as-

pects of concurrent problem solving. Merging of

the two approaches in a Linear Logic setting could

227

be possible by permitting permanent elements to

be added to the forum; such elements would be dis-

tinguished from the non-permanent ones in the fact

of being marked by Linear Logic modalities which

give them explicitly the status of unrestricted re-

sources.

Linear Logic has been exploited to account for

concurrency also in [l, 171; however, the back-

ground there is functional programming, instead of

logic programming. [14] exploits the intuitionistic

(sequential) version of Linear Logic to refine the

control mechanisms of sequential logic programs.

[20] describes a general framework for “rewriting

logics” , suitable for accounting for change in a con-

current programming context. [22] approaches the

problem of locality of interaction among concur-

rent subsystems from the point of view of process

algebras.

5 Open Problems

Our main effort is currently in the direction of find-

ing an efficient execution model for the language.

Indeed, from a practical point of view, LO offers

challenging but reasonably solvable implementa-

tion issues. We currently have a toy interpreter for

the language, written in Prolog (with coroutining

facilities to simulate concurrency). Selection and

access to the methods is one of the main bottle-

neck of the interpreter; implementations technique

used in production systems are currently being ex-

plored to overcome this problem [S]. We also think

of a compilation process, based on a type-inference

mechanism, which would avoid the accumulation of

useless messages in object states (a garba.ge collec-

tor could complete the job at runtime). The ulti-

mate compiler should be able to detect cases of spe-

cific communication (one-to-one) and implement it

as such, that is, without propagating a specifically

sent message to the whole forum in such a case, but

sending it directly to the intended receiver. Inter-

mediate cases between specific and generic commu-

nication, for instance when an object addresses a

certain group of objects, could also be given a spe-

cial treatment.

Acknowledgement

We are grateful to Gerard Comyn and Alexander

Herold for helpful comments on this paper. We

also thank Nabiel Elshiewy for helpful discussions.

References

PI

PI

PI

WI

PI

PI

171

PI

S. Abramsky. Computational interpretations

of linear logic. Technical report, DOC, Impe-

rial College, London, U.K., 1990.

G. Agha and C. Hewitt. Actors: a conceptual

foundation for concurrent object-oriented pro-

gramming. In B. Shriver and P. Wegner, ed-

itors, Research Directions in Object-Oriented
Programming. MIT Press, 1987.

J.M. Andreoli. Proposition pour une synthkse

des paradigmes de la programmation logique

et de la programmation par objets, 1990.

These d’Informatique de l’Universit6 de Paris

VI (Paris, France).

J.M. Andreoli and R. Pareschi. LO and

behold! concurrent structured processes.

In Proc. of OOPSLA/ECOOPW, Ottawa,

Canada, 1990.

J.M. Andreoli and R. Pareschi. Dynamic pro-

gramming as multi-agent programming, 1991.

ECOOP’91 workshop on Object-based con-

current computing.

J.M. Andreoli and R. Pareschi. Linear ob-

jects: Logical processes with built-in inheri-

tance. New Generation Computing, To ap-

pear, 1991. (Sp ecial issue, Selected papers

from ICLP’SO).

A. Brogi and P. Ciancarini. The concurrent

language shared prolog. ACM Transactions

on Programming Languages and Systems, To

appear, 1991.

M. Clemente. Forthcoming MS Thesis, TU

Miinchen.

228

[9] J. Earley. An efficient context-free parsing al-
gorithm. Communications of the ACM, 13(2),

1970.

[lo] D. Gelernter. Generative communication in

linda. ACM Transactions on Programming
Languages and Systems, 7, 1985.

[l l] J.Y. Girard. Linear logic. Theoretical Com-
puter Science, 50, 1987.

[12] S. Gregory. Parallel Logic Programming in
Parlog. Addison-Wesley, 1987.

[13] D. Hare1 and A. Pnueli. On the development

of reactive systems. In K.R. Apt, editor, Logic
and Models of Concurrent Systems. Springer

Verlag, 1985.

[14] J.S Hodas and D. Miller. Logic programming

in a fragment of intuitionistic linear logic. In

Proc. of LICS’91, 1991. To appear.

[15] K. Kahn and V.A. Saraswat. Actors as a spe-
cial case of concurrent constraint logic pro-

gramming. In Proc. of OOPSLA/ECOOP’90,
Ottawa, Canada, 1990.

[lG] M. Kay. Algorith m schemata and data struc-

ture in syntactic processing. Technical report,

Xerox Part, Palo Alto, U.S.A., 19SO.

[17] Y. Lafont. Interaction nets, In Proc. of 17th
ACM Symposium on Principles of Program-
ming Languages, San Francisco, U.S.A., 1990.

[18] H. Lieberman. Concurrent object oriented

programming in ACTl. In A. Yonezawa a,nd

M. Tokoro, editors, Object Oriented Concur-

rent Programming. MIT Press, 1987.

[19] A. Matsuoka and S. Kawai. Using tuple

space communication in distributed object ori-

ented languages. In Proc. of OOPSLA’6S, San

Diego, U.S.A., 1988.

[20] J. Meseguer. A logical theory of concurrent ob-

jects. In Proc. of OOPSLA/ECOOP’90, 1990.

[21] D. Miller. Lexical scoping as universal quan-

tification. In Proc. of the 6th International
Conference on Logic Programming, Lisboa,

Portugal, 1989.

[22] L. Monteiro and F.C.N. Pereira. A sheaf-

theoretic model of concurrency. Technical re-

port, CSLI, Menlo Park, U.S.A., 1986.

[23] C. Numaoka and M. Tokoro. A decentralized

parsing method using communicating multiple

concurrent objects. In Proc. of 2nd Interna-
tional Conference of Technology of Object Ori-
ented Languages and Systems, Pa.ris, France,

1990.

[24] V.A. Sara.swat. Concurrent Constraint Pro-
gramming Languages. PhD thesis, Carnegie-

Mellon University, Pittsburg, U.S.A., 1989.

[25] V.A. Saraswat, M. R.inard, and P. Panan-

gaden. Semantic foundations of concurrent

constraint programming. Technical report,

Xerox Part, Palo Alto, U.S.A., 1990.

[2G] E. Shapiro. A subset of concurrent prolog

and its interpreter. Technical report, Insti-

tute for New Generation Computer Technol-

ogy, Tokyo, Japan, 1983.

[27] E. Shapiro. The family of concurrent logic pro-

gramming languages. Technical report, The

Weizmann Institute of Science, Rehovot, Is-

ra.el, 1989.

[28] R. Trehan and P.F. Wilk. A parallel chart-
pa,rser for the commited choice logic lan-

guages. In Proc. of the 5th International
Conference on Logic Programming, Seattle,

U.S.A., 1988.

[29] I<. Ueda. G uarded Horn Clauses. PhD thesis,

Dept of Information Engineering, University

of Tokyo, Japan, 1986.

[30] A. Yonczawa and I. Ohsawa. Object-oriented

parallel parsing for context-free gramars. In

Proc. of COLING’SS, Hudapest, Hungary,

1988.

229

