
Building a Backtracking Facility in Smalltalk
Without Kernel Support

Wilf R. LaLonde and Mark Van Gulik

School of Computer Science
Carleton University

Ottawa, Ontario, Canada KlS 5B6

Abstract Languages like Snobol, Prolog, and Icon
were designed with backtracking facilities from the outset
and these facilities are deeply intertwined with the
implementation. Retrofitting a backtracking facility in a
language that wasn’t designed for it has never been
achieved. We report on an experiment to retrofit Smalltalk
with a backtracking facility. The facility is provided
through a small number of primitives written in the
language (no modifications to the kernel were made). The
ability to do this is a direct result of the power provided
by the objectification of contexts.

1 Introduction

Backtracking is a?fmdt to retrofit into a
language that was not designed to
support it.

Backtracking is widely acknowledged to be a powerful
computational facility. It has existed for some time in
languages like Snob01 [4], Icon [3], and Prolog [I]. In
each of theses cases, the facility is integral to the language
and as a consequence deeply intertwined with the
implementation. There has never been a successful retrofit
of backtracking in a language that was not designed for it.
There are two reasons for this: (1) the facility interacts
with the existing language making it difficult if not
impossible to define clear semantics for the combined
language or (2) the extension affects the entire
implementation causing a totally different implementation
to have to be developed.

This research was supported by NSERC (Natural Sciences
and Engineering Research Council of Canada).

Permission to copy without fee all or part of this material is granted provided

that ahe copies are not made or distributed for direct commercial advantage.

the ACM copyright notice and the title of the publication and its date appear,

and notice IS given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish. requires a fee and/

or specific permission.

0 1988 ACM O-89791-284-5/88/0009/0105 $1.50

We report on an experiment to add backtracking to
Smalltalk [2]. The addition is achieved by the introduction
of 3 methods to the existing library. More important, this
extension is written in the language and does not require
kernel support. That it could be done is a testimonial to
the power of the object-oriented paradigm. More
specifically, the extension was possible because contexts
could be manipulated as objects and used for purposes not
originally conceived by the originators of the system.

Although we used Smalltalk as the implementation
vehicle, the ideas are much more general. In particular, the
same could be done in any language that provides access
to the underlying contexts (stack frames); e.g., Lisp. It
can also be done in a language with reflective capabilities
171 (see [6] for a recent exposition on reflection) or one in
which the processor source code is available.

2 The Core Backtracking Facility

Backtracking provides alternative
solutions when the initial solutions are
unacceptable.

Backtracking is a facility that permits computations
with multiple solutions and multiple solution techniques.
Coupled with unification in Prolog, it leads to a powerful
symbolic processing capability. In Smalltalk, the facility
can be integrated into a stream-like facility that can be
used to compute any number of solutions. It can also be
used for problems with an infinite number of solutions.

To add the core backtracking facility to Smalltalk, we
introduce two basic operations: “self succeed: aBlock”
where aBlock computes a value, say anobject, that is
meant to be returned as a solution and “self fail” which
indicates that another solution is required. The succeed
operation is similar to “TanObject”, which returns
anobject from the current method but expects that a
subsequent failure will cause the computation to come
back to return further solutions. Writing “tanobject”
explicitly is interpreted as a special case of the succeed
dictating that no further solutions are available; hence
computation will not “come back”. The fail operation
forces the computation to resume after the most recent
succeed statement: i.e., intuitively, it is as if the return

September 25-SO,1988 OOPSLA ‘88 Proceedings

had not been made and computation were simply
continuing after the succeed.

Both primitives cause major changes to the semantics
of methods that use them since backtracking is not a
standard facility in Smalltalk. Consequently, using
methods that backtrack is not the same as using methods
that don’t. The converse, however, is more important.
Arbitrary Smalltalk code can be integrated into
backtracking methods without impact as long as it is side-
effect free. As we will see, backtracking cannot undo
global side-effects although it does undo all local side-
effects.

We begin with a simple example. Suppose the
following method were added as a class method, say in
Object.

examples

return123
self succeed: [11.
self succeed: [2].
73
“Transcript print: self returnl23; show: ’ ‘.
self fail”

When the contents of the comment at the end of the
method is executed, 1, then 2, and finally 3 is printed on
the transcript followed by a notier indicating that no
more backtracking is possible (we will come back to the
notifier later). What is happening is that “self succeed:
[l]” is causing 1 to he retumed to the sender (as the print
parameter) which in turn is sent to the transcript for
printing. The show: is then executed followed by the
fail. At that point. computation is “backed up” to the last
succeed point where a second answer is computed; i.e.,
“self succeed: [2]” and the process leading to the second
fail repeated. This second fail causes “?3” to be
executed (indicating no more answers are forthcoming);
when the third fail is reached, a notifier indicates that
there are no more answers.

The backtracking facility is more flexible than we
might expect. To illustrate this, we could execute “self
returnl23” in a workspace or browser. The scenario
might proceed as shown in Listing 1. To eliminate the
error notifier at the end, a third block primitive called
capture is introduced. It serves to limit the range of the
backtracking and always returns nil. For example, the
first example above can be redone in the following way
using capture to ensure that 1, 2, and 3 are printed on
the transcript followed by a normal return.

lJ?ansclipt
print: self returnl23; show: ’ ‘.
self fail] capture

A captured block with a fail facility is effectively a
loop. From the point of view of semantics, however, it is
quite different. In particular, backtracking causes the state
of the computation to be undone so that it is in the same
state it was prior to returning a solution (assuming
additional solutions are also provided). The backtracking
facility undoes all the effects of local computation; i.e.,
local variables are nz$ored to their former state. However,
global effects are not undone.

Consequently, the standard technique for summing
elements in a loop (for example) cannot be used naively
with the backtracking facility. For example, the following
code does not work. It returns 3 and not the expected 6
which is 1+2+3. Can you deduce why?

ISlllllI

sumto.
[sum t sum + self return123. self fail] capture.
tsum

The reason is evident from the backtracking
semantics. When method return123 is about to return 1,
sum has value 0. It is true that the 1 returned is added to 0
and sum updated to 1. However, when the fail is
executed, backtracking causes the computation to be
restored to the state it was in when method return123

“Type self return123 in a workspace, highlight it, and select printIt from the menu.”
self whtmlZ2

“The result of execution is the following:”
self return123 1

“Type self fail to get an alternative solution, highlight it, and select printIt.”
self return123 1 &f fi3jj

“The result of execution is the following:”
self return123 1 self fail 2

“Execute another self fail again to get the final solution.”
self return123 1 self fail 2 self fail 3

“If we execute self fail one more time, an error notifier appears.”

Listing 1: An example that uses the backtracking primitives

108 OOPSLA ‘88 Proceedings SeplemherS3Q, 1988

was about to return 1. Hence sum is restored to its
original state; i.e., to 0. When the 2 is returned, this is
added to sum (now 0 again) so that sum is updated to 2.
The same thing happens again for the next fail. However,
even though sum is restored to 0, “t3” is executed instead
of a succeed. Hence no further backtracking will be
possible. After 3 is added to 0 again to update sum to 3,
the fail determines that no more backtracking is possible
and the capture causes a normal return. Sum ends up being
3.

If we understand the backtracking semantics, it is
possible to produce the desired effect. The idea is to make
global modifications. This does not necessarily mean
modifying global variables although that would work too.
For instance, we could do the following instead.

return123 result is obtained by executing “self
succeed: [I]” which causes 1 to be be obtained and
subsequently returned to be printed. When the fail is
encountered, the system backtracks to the last succeed:
(the “self succeed: [l]) which results in the execution of
“self succeed: [2]“. Hence the computation is repeated
with 2 (just as it did with 1). The next fail repeats this
again with 3 instead of 2. With a subsequent fail ,
however, no more values from return123 are available
so backtracking backs up even further to the point
immediately after the first succeed: in method
returnAValue. Hence the process starts all over again
with 1, 2, and 3 successively returned. Finally,
backtracking will occur to compute the third value and
another 1.2, and 3 wilI be successively returned.

I sumHolder I
sumHolder f- Array with: 1.
sumHolder at: 1 put: 0.
IsumHolder

at: 1

The next example illustrate a similar interaction. In
this case, it should be clear that “(1 1)” is printed on the
transcript the first time. What value is printed next?

returnArray

fArray
put: (sumHolder at: 1) + self return123. with: self return 123
self fail] capture. with: self return123

TsumHolder at: 1 ” rIYans&pt

The notion that backtracking restores the state of the
computation to its former state is crucial. It is what
makes Prolog such a powerful language. The user, for
example, doesn’t have to worry about restoring the
bindings to the logic variables (it’s automatic). What we
see above is an interface interaction between two systems:
the standard Smalltalk system and the backtracking
system. In the next section, we introduce the notion of a
backtracking stream that provides a more intuitive
interface between the two systems. It provides less
knowledgeable users with better control over the
computation. We don’t expect users to program in the
manner indicated above.

print: self returnArray; show: ’ ‘.
self fail] capture”

Since the last succeed: executed was “self succeed:
[ll” in the second call to return123, we should expect
the fail to cause “(1 2)” to be printed followed next by
“(1 3)” for the next fail. Another fail should cause
backtracking to the first call to return123 which causes
it to return 2 and then invoke the second “self
returnl23” anew. Hence the next value output is “(2
l)“, then “(2 2)“, and finally “(2 3)“. Further backtracking
results in “(3 l)“, then “(3 2)“, and finally “(3 3)“.

A Minor Extension

For the moment, we continue with further examples
that illustrate the backtracking primitives succeed:, fail,
and capture. Consider the following:

Because it is relatively inconvenient to write code like

returnAValue
self succeed: [self returnl231. “first value”
self succeed: [self returnl231. “second value”
tself return123 “third value”
” rIianscript

self succeed: [I].
self succeed: [2].
self succeed: [3].

.*.

print: self returnAValue; show: ’ ‘.
self fail] capture”

we extended method succeed: to accept a non-block as a
parameter. This value is returned unchanged. Now we can
write the following instead of the above.

In this case, “1 2 3 1 2 3 1 2 3” is printed on the
transcript. Why? Method returnAValue is designed to
return three values. However, each value has itself three
possibilities: 1,2, and then 3. The initial returnAValue
message causes the first succeed: to be executed which
means that the return123 result is returned. The

self succeed: 1.
self succeed: 2.
self succeed: 3.

. . .

The modified version has the same semantics as the
Origin& as long as the succeed parameter is computed

September 2530,1988 OOPSIA ‘88 Proceedings 107

without using backtracking methods. In the latter case, an
unnatural backtracking order results; more specifically,
backtracking to the succeed: occurs before backtracking
to the succeed parameter. For example, if method
returnAValue were rewritten as follows, the output
wouldbel 11232323.

returnAValue
self succeed: self return123. “first value”
self succeed: self returnl23. “second value”
?self return123 “third value”
” [Transcript

print: self ieturnhvalue; show: ’ ‘.
self fail] capture”

For simplicity, we explain only the first two results.
The first call causes “self returnl23” to be evaluated and
its result (namely 1) to be returned from the first succeed,
call it S, in returnAValue. When a subsequent fail
occurs, the last succeed: is S; hence execution proceeds
with the second succeed: in returnAValue. In this
case, the result of the second “self returnl23” (namely
the second 1) is computed and returned. In essence, the
difference between the two methods is the execution order;
e.g.,

self succeedl: [self succeed21
a order succeed1 succeedz.

self succeedl: self succeed2
3 order succeed2 succeed 1.

3 Backtracking Streams

BackrTacking strtmns can be designed to
provide a moreflm’ble and more nutwal
facility.

The backtracking facility provided above is difficult to
control and use because it affects the normal execution of
well-understood objects. In particular, providing a solution
in any method that uses a backtracking method causes the
current execution state to be retained for later resumption
when a failure occurs. This failure can occur arbitrarily far
in the future. If a suitable solution is obtained and
alternative solutions are no longer desired, it is impossible
to deactivate the backtracking facility. After all,
backtracking could occur in any method at any point in
time. Even if we could deactivate the facility, it is
impossible to selectively deactivate specific parts.

To provide better control of the backtracking facility,
we introduce the notion of a backtracking stream, a
read stream that provides objects on demand via the
standard stream operations atEnd, peek , next,
contents, and do:. The latter two operations only apply
when the stream is finite.

Except for the fact that stream elements are only
obtained when needed, the above operations have the usual
stream semantics. At the moment, we don’t permit the
stream to be reset although it is a simple task to extend it.
To use a backtracking stream, it is sufficient to understand
how to create one. We create a backtracking stream by
executing

BacktrackingStream on: aBlock

where aBlock computes and returns the successive stream
elements via “self succeed: anobject” or “?anObject”,
the latter indicating that no more answers are forthcoming.
The stream itself takes care of executing “self fail”
eliminating the need for it in the block. The block result
itself is discarded. Thus a block that contains neither a
succeed: nor an ? will be guaranteed to be an empty
stream. For example, the following stream will return the
successive elements 1 through 10.

BacktrackingStream on:
[l to: 10 do: [:count I self succeed: count]]

In addition, to prevent backtracking streams from
affecting the contexts in which the block parameters are
defined, the stream executes the blocks in a copy of their
defining context. Thus a method fragment such as the
following is prevented from interacting.

. . .
count c 5.
stream1 t BacktrackingStream on:

[l to: 10 do: [:count I self succeed: count]].
count t count + 5. “count is 10
stream2 c BacktrackingStream on:

[lOO to: 104 do: [:count I self succeed: count]].
count t count + 5. “count is 15”
result t stream1 contents, stream2 contents.
count t count + 5. “count is 20
. . .

Each stream has its own copy of the method’s Iocal
variables. Thus executing “stream1 next” twice and
“stream2 next” once at the point where count is indicated
to be 15 (for example, using the debugger) would have the
effect of changing the count variable for stream1 to 2 and
the count variable for stream2 to 100; they don’t affect
each other since they are distinct variables. Neither would
the count in the method fragment be modified. If the
method fragment were executed as is, result would end up
with “(12 3 4 5 6 7 8 9 10 100 101 102 103 104)“.

Recall the example of the previous section where the
successive values computed by method return123 were
to be summed. With backtracking streams, the sum could
be computed as follows:

108 OOPSLA ‘88 Proceedings Sqtember 2530,1988

IaStreamI
aStream c BacktrackingStream on:

[self succeed: [self returnl2311.
sum c 0.
aStream do: [:element I sum t sum + element].
tsum

The following solution would also work just as well.
Why? The answer is simple. After the first succeed:
above, there is neither a second succeed: nor an 7 to
indicate another solution. Hence it is equivalent to a
standard t. Of course, the solution returned itself
backtracks so that the return occurs 3 times.

A Prime Number Generator

Backtracking streams are not restricted to a finite
number of solutions. For example, an infinite stream of
primes is generated in the example of Listing 2. A more
interesting example that uses backtracking (and failure) to
a greater degree is shown in Listing 3. The example
comes from LaLonde ES]. The task is to assign unique
digit values to variables b,i,g,o,y,m,a, and n so that the
equation big+boy=man is solved. An obvious
restriction is for b and m to be non-zero. Two snpport
methods are used: method digits which successively
returns the digits 0 through 9 (as characters) and method
“digitsDifferentFrom: astring” which successively
returns only those digits not in aString.

IaStreamI
aStream t BacktrackingStream on:

[tself returnl231.
sum c 0.
aStream do: [:element I sum c sum + element].

tsum

Numberclaasmethods

allPrimes
“Construct an infinite stream that generates primes.”

I sieve candidate limit subcollection I
~Backtrack.ingStream on: [

sieve t OrderedCollection with: 2.
self succeed: 2. “The first prime is a special case.”
candidate+ 1.
[true] whileTrue: [

candidate c candidate + 2. “3, then 5.7,9, etc.”
“Is it prime?”
limit t candidate sqrt truncated.
subcollection t sieve select: [:element I element c= limit].
subcollection

detect: [:pmviousFVime I (candidate 1 previousprime) = 0]
ifNone: [

self succeed: candidate. “found one” sieve add: candidate]]].

BacktrackingStream class methods

primeExample
I stream first50Primes I
fifst50Primes c OrderedCollection new. stream c Number allPrimes.
50 timesRepeat: [fustSOPrimes add: stream next].
tfirst50Primes
“BacktrackingStream primeExample”

Listing 2: An example that uses backtracking streams

Septemtxr25-30,1988 OOPSLA ‘88 Proceedings 108

A Puzzle Solver

BacktrackingStream class methods

digits
‘012345678’ do: [:aCharacter I self succeed: acharacter]. ‘&9

digitsDifferentFrom: aString
I aDigit I
aDigit c- self digits. (&ring includes: aDigit) ifl’rue: [self fail). ?aDigit

The actual method for computing solutions is shown below. Of interest is the fact that there are 64 solutions.

puzzIeExample
“Solve the BIG + BOY = MAN puzzle.”

I stream b m bString first i bmString o bmistring a bmiostring g bmioaString y bmioagSt.ring n
bmioagyString big boy man bigInteger boyInteger manInteger answer I
stream c BacktrackingStream on: [

b c self digitsDifferentFrom: I’.
b = $0 ifTrue: [self fail].

m c self digitsDifferentFrom: @String t (Suing with: b)).
m = $0 ifTrue: [self fail].
(m digitvalue between: (first t- 2*b digitvalue) and: first+l)

ifFalse: [self fail].

i t self digitsDifferentFrom: (bmString t bString, (String with: m)).
o e- self digitsDifferentFrom: (bmistring t bmString, (String with: i)).
a c self digitsDifferentFrom: (bmio!Mng c bmistring, (String with: 0)).

(a digitvalue between: (first +- i digitvalue + o digitvalue) and: first+l)
ifFalse: [self fail].

g c- self digitsDifferentFrom: (bmioaSuing c bmiostring, (String with: a)).
y c self digitsDifferentFrom: (bmioagstring t- bmioasaing, (String with: g)).
n t self digitsDifferentFrom: (bmioagyString t bmioagstring, (String with: y)).

(n digitvalue between: (first c g digitvalue + y digitvalue) and: first+l)
ifFalse: [self fail].

big t String with: b with: i with: g.
boy t String with: b with: o with: y.
man t String with: m with: a with: n.
bigInteger t big inject: 0 into: [:sum :character I IO*sum + character digitvalue].
boyInteger c boy inject: 0 into: [:sum :character I lO*sum + character digitvalue].
manInteger c man inject: 0 into: [:sum :character I lO*sum + character digitvalue].

answer e big, ‘+I, boy, I=‘, man. Transcript cr; show: answer. “For debugging only.”
bigInteger + boyInteger = manInteger ifFalse: [self fail]. Transcript show: ’ ***I. “For debugging only.”
self succeed: answer].

Tstream contents
“BacktrackingStream exampIeS
“The 64 solutions begin with 213+265=478’ ‘215+263=478’ ‘213+276=489’ . ..‘I

Listing 3: Another example that uses backtracking streams

110 OOPSLA ‘88 Proceedings September 25-30,1938

4 Implementing The Backtracking
Primitives

Backtracking can be implemented easily
in Smalltalk because contexts are
objects. Well!!! if you canjigure it out.

The backtracking facility is based on a suitable
implementation of the succeed: primitive. Intuitively,
the implementation of the primitive is easy to describe.
When succeed: is encountered, a normal return is
prohibited because some later backtracking might need to
resume at a point after the succeed:. Instead of returning
to the sender, the primitive must instead cause a copy of
the sender context to be “called”. This is equivalent to the
notion of a success continuation as used in typical
implementations of Prolog. The copied context can be
executed as normal except that returns from it must be
modified to repeat the above process; i.e., to continue in
this success continuation mode. New message sends are
unaffected. Unless interrupted by a fail operation, this
success continuation mode will eventually lead to
executing the last message in the process that contains it.
The fail operation deactivates the success continuation
mode and causes a normal return to be executed, this is
done by “backing up” execution to the point immediately
after the most recent succeed: if there is one, just as
though the succeed had simply returned its evaluated
parameter. Thus “(self succeed: 12) + 5” results in the
value 17 being computed after the fail returns execution.
A series of snapshots illustrating this notion is shown
later.

I Method Context Ml
for message example1

The implementation relies on a small number of
operations that manipulate contexts, the SmalltaIk
terminology for stack frames. Two kinds of contexts are
available: method contexts (the usual kind) and block
contexts (contexts for blocks). When a method such as
example1 below executes, the to:do: message is sent to
1 which in turn sends a value: message to the block as
indicated in Figure 1. Three contexts are constructed: a
method context for message examplel, a method context
for message to:do:. and a block context for executing the
block containing the code “sum t sum + index. sum >
1000 ifTrue: [tindex]“.

Number class method

example1
“How many consecutive inte, g’
added to get a value larger than 11
1SUllll

sumto.
1 to: IO00 do: [:index I

sum c sum + index.
sum > 1000 ifTrue: [%nd le

“We never get to this point.”

Number instance method

to: aLimit do: aBlock

ers must be
Ooo?”

XII.

\

“A while loop is used to successively invoke
aBlock with a changing index. Only the

3lock value: message is shown.”

. . . aBlock value: aLoopIndexValue . . .

Method Context M2
for message to:do:

sum tsum + index.
sum > 1000

iff rue: [T index]

Figure 1: An example calling sequence

September 25-30,1988 OOPSIA ‘88 Proceedings 111

A context M’s home is defined to be M if M is a
method context and the defining method context if it is a
block context. In the above example, M3k home is MI.
This notion is particularly important because the return
statement Tindex in Figure 1 returns not from the context
it is in but from the home context; i.e., it returns from
the method context for exam pl e 1. It is just a
convenience that the home context for M2 is M2 and the
home context for Ml is Ml. Note that M3 would return
to M2 only if no explicit return statement were
encountered; i.e., if the end of the block were reached (in
that case, the last value computed by the block is
returned).

A summary of the operations used for implementing
backtracking is given below with a short explanation.
Although these operations are Smalltalk specific,
corresponding operations in other suitably powerful
languages could be used.

thiscontext A pseudo variable containing
the context that is currently
executing.

acontext home Returns the home as defined
above; e.g., M3’s home is Ml,
MI’s home is Ml.

acontext sender Returns the sending context;
e.g., M3s sender is M2, M2’s
senderisMI.

aContext method Returns the compiled method
for the context; e.g., MI and
M3’s method is the compiled
version of examplel.

acontext copy Returns a copy of the context.

acontext swapSender: anotherContext

Changes the receiver’s sender to
anotherContext; also, returns
the old sender (which we ignore
most of the time);
anotherContext could be nil
instead of a context object.

aContext ternpAt: i Returns the value of the ith
temporary variable defined in
the context;. counting starts
with the parameters and then
proceeds to the local variables:
e.g., if a method h a s
parameters pI and p;! and local

variables 11,12, the third
temporary is II.

acontext releaseTo: oldcontext

Release (by setting the
temporaries in the context
stack to nil) all contexts from
the receiver, its sender, its
sender’s sender, etc. up to but
excluding oldcontext. It is a
superfluous method that helps
the garbage collector.

aRlockContext fixTemps

Changes the receiver’s home
context to a copy and sets the
copy’s sender to nil.

A final crucial point is that contexts keep track of
where they should resume executing when control returns
to them. For example, if we can (somehow) return from
M3 above to Ml, execution would resume at the point
where message to:do: was initially sent. This is of course
what happens when Tindex is executed in M3.

For tutorial purposes, consider how we might
simulate Tindex from within the block without using a
retnrn statement. More specifically, consider executing

thisContext
swapsender:

thisContext sender sender

in M3. Observe that thisContext is M3. Since M3’s
sender is M2 and M2’s sender is Ml, it should be clear
that M3’s sender is changed to MI. Hence when control
reaches the end of the block, it automatically returns to
MI bypassing M2. We could have alternatively had it
return to MI’s sender by having executed the following
instead:

thiscontext
swapSender:

thisContext sender sender sender

We now present our three primitives. Method
capture is trivial but methods succeed: and fail are
quite complex. Without comments, the three methods
easily fit on a page (as shown in Listing 4). However, the
comments are crucial. Without them, only extremely
knowledgeable Smalltalk experts would successfully
decipher them; perhaps some of you might consider it a
challenge to work from Listing 4. For the others (myself
included), the detailed comments and the additional
explanation provided by Listing 5 will help substantially.

112 OOPSLA ‘88 Proceedings September 2!5-30,1988

The Uncommented Code

BlockContext instance methods

backtracking

capture
“If you change this method you must run the following code to make it work:

CaptureMethod t BlockContext CompiledMethodAt: #capture”
self value “The real work is done by fail.”

Object instance methods

backnacking

succeed: aBlockOrPreviouslyEvaluatedExpression
“If you change this method you must run the following code to make it work:

SucceedMethod t Object compiledhlethodht: #succeed:”

I caller succeedResult callerCopy result I
caller t thiscontext sender home sender.

succeedResult c aBlockOrPreviousIyEvaluatedExpression.
(aBlockOrPreviouslyEvaIuatedExpression isKindOf: BlockContext)

ifTrue: [succeedResult c aBlockOrPreviouslyEvaluatedExpression value].
result t succeedResult.

[we] whileTrue: [
[caller method = SucceedMethod] whileTrue: [caller t caller ternpAt: 21.
Caller-Copy c caller copy.
callerCopy swapSender: thisContext.
caller t caller sender. “Remember who should get the result.”
result t [thiscontext swapSender: CallerCopy. result] value].

fail

I oldcontext method succeedOrCaptureContext I
oldcontext t thisContext sender.

[((method t oldContext method) == SucceedMethod) I (method == CaptureMethod)]
whileFalse: [

oldcontext t oldcontext sender.
oldcontext isNil iffrue: [self notify: ‘backtracking failure (off end of process)‘]].

succeedOrCaptureContext t oldContext home.
oldContext c succeedOrCaptureContext sender.
thisContext sender releaseTo: oldContext.
thiscontext swapsender: oldcontext.

method= SucceedMethod
ifTrue: [TsucceedOrCaptureContext ternpAt: 3 “succeedResult”]
ifFalse: [tnil]

Listing 4: Uncommented primitives

September 2530,1988 OOPSLA ‘88 Proceedings 113

The Commented Code

Two glob& are used: CaptureMethod and SucceedMethod (see methods capture and succeed: for their initialization).

BlockContext instance methods

baaracking

capture
“[exprl] capture evaluates expression1 and returns nil. If backtracking occurs, it is prevented from backtracking past
this capture point.”

“If you change this method you must run the following code to make it work:
CaptureMethod t BlockContext CompiledMethodAt: #capture”

self value “The real work is done by fail.”

Object instance methods

backli-acking

succeed: aE%ckOr~viouslyEvaluatedExpression
“If you change this method you must run the following code to make it work:

SucceedMethod t Object compiIedMethodAt: #succeed:”

“Pretend to return the evaluated parameter to the caller, the sender of the sender’s home context, exactly like the ‘7
instruction does in the sender. This is achieved by copying the caller, m&ing the copy return to this context, and
faking a return into the copy. If a fail later occurs, back up to the actual sender of this message with the evaluated
parameter as the result. If the copy returns (to here), fake the return to that copy’s original sender, skipping over
sections currently being traced by other succeed: contexts (a brief discussion explains why below; a slightly more
detailed discussion is in the paper).”

I caller succeedResult callerCopy result I
caller t thisContext sender home sender.
“Note: (1) the sender is tbe method containing ‘self succeed: something’. (2) the home of the sender is the context
that ‘Tsomething would return from had it been used instead of ‘self succeed: something’. (3) the send= of the home
of the sender is where ‘tsomething’ would return to. ”

succeedResult e aBlockOrF%eviouslyEval~tedExpression.
(aBlockOrPreviouslyEval~tedExpression isKindOfz BlockContext)

ifTrue: [succeedResult t aBlockOrPreviouslyEvaluatedExpression value].
result t succeedResult.

“This method acts as a gate; i.e., when control returns to this method after the block parameter is evaluated, it copies
existing methods from the call stack and invokes them after modifying them to return to the gate. More specifically,
if the calling code is of the form cl, c2, c3, cn, gate when control returns, it is replaced by (n) cl, c2, c3,
gate, cn’ (notation ci’ denotes a copy of ci); once the gate method is reached again, the code is replaced by (...)
then (3) cl, c2, c3, gate, 0, then (2) cl, c2, c3, gate, c2’, and finally by (1) cl, c2, c3, gate, cl’. Only a
fail message will deactivate and pop the gate. Note that gates interior to the call stack; i.e., those between cl and
must be carefully skipped over (they don’t get used until the current gate is deactivated with a fail). See the more
detailed explanation later in this section.”

114 OOPSLA ‘88 Proceedings September 2530,1998

[true] whileTrue: [
“Skip interior gates by skipping to the context immediately prior to the copied context. Fortunately, this
context is still in instance variable ‘caller’ which happens to be the second temporary variable (local
variables come after the parameters which must also be counted). Note that the following works even if the
context is a block context instead of a method context because both have access to the home context’s
temporary variables.”
[caller method = SucceedMethod] whileTrue: [caller c caller ternpAt: 23.

“The following is tricky and works as follows: the copy is changed to return to this context; since contexts
keep track of their own resume point, it will in this case return from the last call, the message value
below. When message value is executed, a new block context is created to execute it (thii block context, for
example, would be listed as n Object >> succeed: in the debugger). This block context’s sender is changed
to the callerCopy by the swapSender: message. When the end of block is reached, result is returned to the
CallerCopy. It in turn will use this result, compute some new result, and return it to this method’s last call
point, the value message, which gets stored in result.”

callerCopy + caller copy.
callerCopy swapSender: thisContext.
caller c caller sender. “Remember who should get the result.”
result c [thisContext swapsender: callerCopy. result] value.

“When the new result comes back from the copy, we go back around the loop and repeat the process with
the copy’s sender, caller.“]

fail
“Causes a return to the context containing the last ‘succeed? message send.”

I oldcontext method succeedOrCaptureContext I

“Find the previous succeed: gate and cancel it (it is an emlr if none exists).”
oldcontext c- thiscontext sender.
[((method c oldContext method) == SucceedMethod) I (method == CaptnreMethod)]

whileFalse: [
oldContext c oldcontext sender.
oldContext isNil iffrue: [self notify: ‘backtracking failure (off end of process)‘]].

“Since the succeed: parameter is sometimes evaluated with a value message, oldContext might not be the home
context for the succeed: method’s context; if it is, asking for the home gets us the original context; otherwise, we
get the same context back. The same applies to the capture method’s context since it sends a value message.”
oldcontext t oldcontext home.
succ&~aptu&ontext t oldContext.

“Back up one more step to the sender of the succeed: or capture message.”
oIdContext c succeedOrCaptureContext sender.

“Release intermediate contexts and fudge this context so that we return to the old context”
thiscontext sender releaseTo: oIdContext.
thisContext swapsender: oldContext.

“For a succeed: message, return the SucceedResult; for the, capture, return nil.”
method== SUcceedMethod

iflrue: [TsucceedOrCaptureContext ternpAt: 3 “succeedResult”]
ifFalse: [tnil]

Listing 5: Commented primitives

September 25-Xl,1988 OOPSLA ‘88 Proceedings 115

Although several points in Listing 5 are tricky, they
are accompanied with a hopefully sufficient explanation to
make it understandable. However, there is one aspect that
has not been fully explained: why we need to access
temporary variable “caller” in interior instantiations of
method succeed:. This is most easily understood by
tracing the execution of a sequence of message sends that
involves two succeeds at different places.

Consider Figure 2. Aq and B3 contain succeed:
messages. Before following the sequence of contexts that
would be created with backtracking, it is worth
conqidering the calling sequence without it; e.g., as it
would be if each pair of succeed: messages were replaced
by a standard return statement. Using * to denote a
message send and e= to denote a return, it should be clear
that the following sequence is observed.

With backtracking, A4 can’t return to A3, for
example. It must make a copy and return into the copy.
What does the copy of A3 return to? To a copy of A2.
This process is illustrated in more detail in Figure 3.

Al A2 A3 A4

Send nxssageA3 4 Send message A4 -b self succeed: 1
self succeed: 2

Figure 2: An example calling sequence

116 OOPSLA ‘88 Proceedings September 2540,198

Note: jumps
to the contents
of the succeed:
context’s ‘caller’
instance variable

Figure 3: Tracing the example calling sequence
(A3’ denotes a copy of context A3; A0 is the calling context that is not shown)

When A4 sends a succeed: 1 message, it is clear that
it is returning to A3. So the succeed: context Sl makes
a copy of A3 (denoted A3’), modifies it to return to S 1,
and remembers A2 in local variable ‘caller’, the return
context for A3’. Then a return into A3’ is faked. A3’ in
turn comes back to Sl which “backs up” the return even
further; i.e., the context A2 in caller is duplicated as A2’.
modified to return to Sl, and the new return point AZ
saved in %alIer’. As above, a return into A2’ is faked. A2

calls Bl, which calls B2, which calls B3. Note that
“backtrack simulation” occurs only on returns, not on
calls.

When B3 sends a succeed: 10 message, it is clear
that it is returning to B2. The same process as described
above is at work. We’ll now use a more abbreviated
description. S2 fakes a return to B2’. When it returns, S2
fakes a return into Bl’. When it returns, S2 fakes yet

September 2540.1988 OOPSLA ‘88 Proceedings 117

another return to A2” (a copy of A2’ which is already a
copy of A2). Finally, when it returns, we might expect
S2 to fake a return into Sl’, a succeed: method context.
This is not what happens. Why not! Intuitively,
this is easy to see if we pretend succeeds were normal
returns. In that case, returning from A2 (see Figure 2).
should lead us back to Al. As you can see, Al is quite
some distance in the stack, i.e., it is separated from Sl by
A2, A3, and A4. But note that Al is the value in Sl’s
instance variable ‘caller’. This is no coincidence. It is
the succeed: method contexts like Sl and S2 that keep
track of the real return points. This is why S2 must skip
over interior succeed: method contexts like SI.

Note that a succeed: method context cannot be
removed until a fail is executed; only the fail causes an
alternative answer to be requested. The fail is very simple.
It simply searches for the top succeed: method context in
the stack and pops it. The context below is exactly where
it must return. Additionally, the value to be returned is in
the succeed: method context (in temporary variable
succeedResult); this can easily be extracted before
returning to the context below. Note that other succeed:
method contexts deeper in the stack are never modified nor
is anything else in the stack modified. If they were, we
could never restore them to their initial state upon
backtracking. That’s why the top succeed: method

context jumps over interior ones rather than attempt to
update them in some way.

5 Implementing Backtracking Streams

Backtracking streams need only store a
suitable backtracking context that is
reactivated when an elemenf is needed.

To ensure that elements are computed only on
demand, we keep a cache that is filled only when a query
like atEnd, next, or peek forces it. To permit nil as a
valid stream element, we use a boolean cacheFull to
indicate whether or not something is in the cache. Finally,
the stream maintains a context that can be used for
computing the next stream element; it is called
suspendedContext. A new element is obtained (if there is
one) by faking a return into the suspended context (this is
done by method switchToSuspendedContext). This
context in turn either computes a new element and sets
cacheFull to true or determines that there are no more
elements, in which case it sets cacheFull to false. It then
returns by switching back the context once again (the
return point was temporarily stored in the suspended
context). The standard stream methods are relatively
obvious. They are shown below in Listing 6.

Definition of Backtracking Streams

class BacktmckingStream
superclass SUGUYI
instance variable names cache cacheFuIl suspendcdcontext
comment I represent a finite or infinite set of solutions to some backtracking-based expression. I am

created with ‘on: aBlock’ where aBlock computes values that are returned via ‘self succeed:
aValue’ if more values are pending or ‘?aValue’ is no more are pending. A block with neither
represents an empty stream. I support the usual stream messages atEnd, next, peek,
contents, and do: (the last two only if it’s finite, of course).

class methods

instance creation

ou: aBlock
“Create a new BacktrackingStream with the given block. The block is allowed to backtrack to yield multiple
solutions (each of which must be returned one at a time from the block) until the block tries to fail completely. At
this point the stream is said to be at the end.”

“(BacktrackingStream on: [1 to: 10 do: [:count I self succeed: count]l’) contents”

?self basicNew on: aBlock

118 OOPSLA ‘88 Proceedings September 2!5-30,1!398

private instance initialization

on: &lock
“Discussed later.”

accessing

atEnd
“Check if there are any alternative solutions left. Note: if necessary, this will force the next solution to be computed
and stoned for the subsequent ‘next’ operation.”

cacheFull ifTrue: [ffalse].
self switchToSuspendedContext. “To obtain the next stream element”
TcacheFull not “Check again, it will be true if one was obtained; false, otherwise.”

next
“Force the cache to have the next value, by using ‘atEnd’. If there are no values available, generate an error.”

I result I
self atEnd ifTrue: [self error: ‘Attempted to read past end of stream’].
“If necessary. the atEnd operation forces a stream element to be computed and cached.”
result t cache. cache c nil. cacheFull t false. “Invalidate cache to force a subsequent element to be obtained”
tresult

peek
“Answer what would be returned with a self next, without moving past the element. If the receiver is at the end,
answer nil.”

self atEnd ifTrue: [?nil] ifFalse: [Tcache]

contents
“Return the rest of the solutions of the receiver.”

I collection I
collection c OrderedCollection new.
self do: [:each I collection add: each].
Tcollection

private

switchToSuspendedContext
“I am responsible for installing and running the suspended context, The sender is saved so that re-executing this
method again from within the suspended context will restore the previous state; i.e., to begin executing the
suspended context, we perform one switch; to get back, we perform a second switch.”

“The following changes the sender to the suspended context so that we return to it at the end of this method. The
original sender of this context is returned and stored into the suspended context. A subsequent switch will undo this.”
suspendedContext c thiscontext swapsender: suspendedContext

Listing 6: Definition of backtracking streams

September 25-3C41988 OOPSIA ‘88 Proceedings 119

Note that method switchToSuspendedContext context. In this block context, thiscontext is the block
in Listing 6 is not really needed because the switch could
have been done inline. However, it is more understandable

context. The assignment however does not care whether
the executing context is a block context or a method

this way. For example, we could have replaced the code
‘self switchToSuspendedContext’ in atEnd by

context. A return from the context always returns to the
sender which the code changed to the suspended context,

[suspendedContext c- (thiscontext The only complicated operation is the private on:
swapSender: suspendedContext)] value operation that sets up the suspended context and controls

the computation that obtains the successive values
Can you see why? The answer is simple. Sending a through backtracking. We have attempted to document

value message creates a block context instead of a method how it works with extensive comments.

instance methods
The Missing Operation

privare

on: aBlock
“This code never returns explicitly. Instead, it makes a copy of the block’s home context and sets it t.o return to an
appropriate point in the block context initiated by the capture below. This same context is saved as a suspended
context and a return to the on: sender is faked. See comments below for more details.”

[
cacheFull t false. “Initialize.”

“Make a copy of the block’s home context and modify it to return here. Note: ‘here’ is the block context initiated
by the value message sent by the capture that surrounds this code”
aBlock fixTemps. aBlock home swapsender: thisContext.

suspendedContext +- thiscontext. “Save for subsequent suspensions after each stream element is obtained.”

“Fake a return to the sender (a real return will release the context and destroy its contents).”
[thiscontext swapsender: thiscontext “here” home “on: context” sender “on: context sender”. selfI value.

“The first time the suspended context is resumed, execution will return to this point because the value message
above is the last thing executed in this method.”

“The next part is tricky. To get things going, we need to execute ‘aBlock value’. Since succeed: and ? causes
‘returns’ to the sender of the home context (to here since we modified it above) and since ‘aBlock value’ will also
ultimately return when no more of these answers are available, we need some way to differentiate between the
two. Why? Because the former implies that a new stream element is available and the latter implies that there
are no more. The solution? Execute ‘aBlock value’ inside another block (see the assignment to cache below).
Since the value message to this containing block is the last message sent in this context, this is where values
computed by succeed: and 7 in the block will be returned. Actually, it returns here for t and to a copy of here
for succeed:. Thus cache will receive the stream element. If a fail is executed some time later, backtracking will
occur to cause subsequent elements to be computed. Backtracking in the case of 7 jumps right out of the
capture. It is only when no more elements are available that a return from ‘aBlock value’ will occur. Note that
‘aBlock value’ is not executed in this context but in the context reached by executing the outer value message.
Since no further backtracking is impossible, another fail will cause execution to backup past the capture that
surrounds the whole thing. A more pictorial explanation is provided in Figure 4.”
cache c [@lock value. self fail “Cause backup out of the capture.“] value.
cacheFull c true. “Got a element indicate that we did.”
self switchToSuspendedContext. “Return to atEnd”
self fail “Backtrack to get another value.”

] capture.

120 OOPSLA ‘88 Proceedings September 25-30,1988

“Control retums here only when there are no more stream elements left.”
(true] whileTrue: [

“atEnd was written to switch context even when there are no more answers; so from now on, we indicate
that there are no more solutions.”
cacheFull t false. “Indicate there are no more elements.”
self SwitchToSuspendedContext] “Return to atEnd.”

Listing 7: The missing backtracking streams initialization operation

Figure 4 is intended to clarify the tricky code initiated by namely, executing “self succeed: anobject”, “7anObject”,
“cache t [aBlock value. self fail] value”. Context C4 and falling off the end of the block are discussed as three
executes the code in aBlock. The three possibilities; separate&.

Cl

c2

c4

value
‘Execulcs tlKs code in eBlc& 3 &uxibilitic.s”
_..
“cesc 1:” . . . self alccocd: mobjoct
. . .
“Case2” . ..tllclfsacltr&t
. . .
“Casc3:...andnmoffthtaxloftheMock”

VSIUC VSIUC

Th-cutathcMockcodc” Th-cutathcMockcodc”
sBlcck vhc. sBlcck vhc. 7-J sdffailj sdffailj

on: aBlock

. . .
‘Replaces aBlock’s home

byacopyandsetsthe
cop$b sender to Ct’

. . .

[...I capture.
*Code to handle and

of stream processing’

bu~rnobjtct
1. Simtir Leum into

CJ; i.e., the unda of
aBlockkhomcby
makingacopyc3’of
c3andlrznmbgirlo
a.

2 U’ stores anObject
intolllcseean.
switcha itself with
thcslqmdcdcaacxt
mxircmmstotk
~colrvxs
v--w*-

3. Gitzzaa elcmau
isrquutcddthc
stral&Q’isrcrumoP
mdlclffail is
nerraed2

4.-flxfaili6nWckd
wilb4lissaccatdmxi
excaaim-a
&UCrelinC4.

lmobja4
vcsyfinliklocmc1
but.;QI.IP1an%afn
imoC1dinctlyra&er
ulmimoacopylikcC1’.
Assruuk.rAastcring
rhcobjcuillrcp2#
~onupadtd.~
nsuivaaihswp3
thcfailp instCp4is
lllSt&dWiIbdlC~
mdexamiatrenmsto
thCC4ldCaftathCCJptlUC

Returns to C3 which
CXCCULCS self fail,
tichis nwddrdove
with the capture snd
cxccution ruurns to
thecodcaftcxtbccz&ymuc.
Note that no value was
storcdiothestrcmn.

Figure 4: A partial explanation of executing private instance method “on: aBlockl’

September 25SO,1988 OOPSLA ‘88 Proceedings 121

6 Conclusions References

Providing backtracking at the kernel
level would not increase the power of
the facility although it would make it
slightly more e&ient.

We have shown how backtracking can be retrofitted
into an existing object-oriented language like Smalltalk.
This was possible only because Smalltalk permits
contexts to be manipulated as first-class objects. The
facility could be used for experimentation with knowledge-
based programming. It could also be used for designing
Prolog-like engines.

Note that the basic approach is not programming
language dependent. Translating our implementation to
some other suitably powerful language should be easy if
the Smalbalk details am well-understood.

122

1. Clocksin, W.F. and Mellish, C.S. Programming in
Prolog. Springer-Verlag. 198 1.

2. Goldberg, A. and Robson, D. Smalltalk-80: The
language and its implementation. Addison-Wesley.
1983.

3. Griswold, R.E. and Griswold, M.T. The Icon
programming language. Prentice-Hall. 1983.

4. Griswold, R.E., Poage, J.F., and Polonsky, 1-P. The
SnoboM programming language. Prentice-Hall. 1971.

5. LaLonde, W.R. A novel rule-based facility for
SmalltaIk. ECOOP ‘87, Paris, France, June, 1987, pp.
193-198.

6. Ma=, P. Concepts and Experiments in Computational
Reflection. Proceedings of OOPSLA ‘87, Orlando,
Florida, October 1987, pp. 147-155.

7. Smith, B. Reflections and semantics in a procedural
language. M.I.T. Laboratory for Computer Science
Report MIT-TR-272,1982.

OOPSLA ‘88 Proceedings septembM 2!30,1988

