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Abstract Languages like Snobol, Prolog, and Icon 
were designed with backtracking facilities from the outset 
and these facilities are deeply intertwined with the 
implementation. Retrofitting a backtracking facility in a 
language that wasn’t designed for it has never been 
achieved. We report on an experiment to retrofit Smalltalk 
with a backtracking facility. The facility is provided 
through a small number of primitives written in the 
language (no modifications to the kernel were made). The 
ability to do this is a direct result of the power provided 
by the objectification of contexts. 

1 Introduction 

Backtracking is a?fmdt to retrofit into a 
language that was not designed to 
support it. 

Backtracking is widely acknowledged to be a powerful 
computational facility. It has existed for some time in 
languages like Snob01 [4], Icon [3], and Prolog [I]. In 
each of theses cases, the facility is integral to the language 
and as a consequence deeply intertwined with the 
implementation. There has never been a successful retrofit 
of backtracking in a language that was not designed for it. 
There are two reasons for this: (1) the facility interacts 
with the existing language making it difficult if not 
impossible to define clear semantics for the combined 
language or (2) the extension affects the entire 
implementation causing a totally different implementation 
to have to be developed. 
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We report on an experiment to add backtracking to 
Smalltalk [2]. The addition is achieved by the introduction 
of 3 methods to the existing library. More important, this 
extension is written in the language and does not require 
kernel support. That it could be done is a testimonial to 
the power of the object-oriented paradigm. More 
specifically, the extension was possible because contexts 
could be manipulated as objects and used for purposes not 
originally conceived by the originators of the system. 

Although we used Smalltalk as the implementation 
vehicle, the ideas are much more general. In particular, the 
same could be done in any language that provides access 
to the underlying contexts (stack frames); e.g., Lisp. It 
can also be done in a language with reflective capabilities 
171 (see [6] for a recent exposition on reflection) or one in 
which the processor source code is available. 

2 The Core Backtracking Facility 

Backtracking provides alternative 
solutions when the initial solutions are 
unacceptable. 

Backtracking is a facility that permits computations 
with multiple solutions and multiple solution techniques. 
Coupled with unification in Prolog, it leads to a powerful 
symbolic processing capability. In Smalltalk, the facility 
can be integrated into a stream-like facility that can be 
used to compute any number of solutions. It can also be 
used for problems with an infinite number of solutions. 

To add the core backtracking facility to Smalltalk, we 
introduce two basic operations: “self succeed: aBlock” 
where aBlock computes a value, say anobject, that is 
meant to be returned as a solution and “self fail” which 
indicates that another solution is required. The succeed 
operation is similar to “TanObject”, which returns 
anobject from the current method but expects that a 
subsequent failure will cause the computation to come 
back to return further solutions. Writing “tanobject” 
explicitly is interpreted as a special case of the succeed 
dictating that no further solutions are available; hence 
computation will not “come back”. The fail operation 
forces the computation to resume after the most recent 
succeed statement: i.e., intuitively, it is as if the return 
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had not been made and computation were simply 
continuing after the succeed. 

Both primitives cause major changes to the semantics 
of methods that use them since backtracking is not a 
standard facility in Smalltalk. Consequently, using 
methods that backtrack is not the same as using methods 
that don’t. The converse, however, is more important. 
Arbitrary Smalltalk code can be integrated into 
backtracking methods without impact as long as it is side- 
effect free. As we will see, backtracking cannot undo 
global side-effects although it does undo all local side- 
effects. 

We begin with a simple example. Suppose the 
following method were added as a class method, say in 
Object. 

examples 

return123 
self succeed: [ 11. 
self succeed: [2]. 
73 
“Transcript print: self returnl23; show: ’ ‘. 
self fail” 

When the contents of the comment at the end of the 
method is executed, 1, then 2, and finally 3 is printed on 
the transcript followed by a notier indicating that no 
more backtracking is possible (we will come back to the 
notifier later). What is happening is that “self succeed: 
[l]” is causing 1 to he retumed to the sender (as the print 
parameter) which in turn is sent to the transcript for 
printing. The show: is then executed followed by the 
fail. At that point. computation is “backed up” to the last 
succeed point where a second answer is computed; i.e., 
“self succeed: [2]” and the process leading to the second 
fail repeated. This second fail causes “?3” to be 
executed (indicating no more answers are forthcoming); 
when the third fail is reached, a notifier indicates that 
there are no more answers. 

The backtracking facility is more flexible than we 
might expect. To illustrate this, we could execute “self 
returnl23” in a workspace or browser. The scenario 
might proceed as shown in Listing 1. To eliminate the 
error notifier at the end, a third block primitive called 
capture is introduced. It serves to limit the range of the 
backtracking and always returns nil. For example, the 
first example above can be redone in the following way 
using capture to ensure that 1, 2, and 3 are printed on 
the transcript followed by a normal return. 

lJ?ansclipt 
print: self returnl23; show: ’ ‘. 
self fail] capture 

A captured block with a fail facility is effectively a 
loop. From the point of view of semantics, however, it is 
quite different. In particular, backtracking causes the state 
of the computation to be undone so that it is in the same 
state it was prior to returning a solution (assuming 
additional solutions are also provided). The backtracking 
facility undoes all the effects of local computation; i.e., 
local variables are nz$ored to their former state. However, 
global effects are not undone. 

Consequently, the standard technique for summing 
elements in a loop (for example) cannot be used naively 
with the backtracking facility. For example, the following 
code does not work. It returns 3 and not the expected 6 
which is 1+2+3. Can you deduce why? 

ISlllllI 

sumto. 
[sum t sum + self return123. self fail] capture. 
tsum 

The reason is evident from the backtracking 
semantics. When method return123 is about to return 1, 
sum has value 0. It is true that the 1 returned is added to 0 
and sum updated to 1. However, when the fail is 
executed, backtracking causes the computation to be 
restored to the state it was in when method return123 

“Type self return123 in a workspace, highlight it, and select printIt from the menu.” 
self whtmlZ2 

“The result of execution is the following:” 
self return123 1 

“Type self fail to get an alternative solution, highlight it, and select printIt.” 
self return123 1 &f fi3jj 

“The result of execution is the following:” 
self return123 1 self fail 2 

“Execute another self fail again to get the final solution.” 
self return123 1 self fail 2 self fail 3 

“If we execute self fail one more time, an error notifier appears.” 

Listing 1: An example that uses the backtracking primitives 
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was about to return 1. Hence sum is restored to its 
original state; i.e., to 0. When the 2 is returned, this is 
added to sum (now 0 again) so that sum is updated to 2. 
The same thing happens again for the next fail. However, 
even though sum is restored to 0, “t3” is executed instead 
of a succeed. Hence no further backtracking will be 
possible. After 3 is added to 0 again to update sum to 3, 
the fail determines that no more backtracking is possible 
and the capture causes a normal return. Sum ends up being 
3. 

If we understand the backtracking semantics, it is 
possible to produce the desired effect. The idea is to make 
global modifications. This does not necessarily mean 
modifying global variables although that would work too. 
For instance, we could do the following instead. 

return123 result is obtained by executing “self 
succeed: [I]” which causes 1 to be be obtained and 
subsequently returned to be printed. When the fail is 
encountered, the system backtracks to the last succeed: 
(the “self succeed: [l]) which results in the execution of 
“self succeed: [2]“. Hence the computation is repeated 
with 2 (just as it did with 1). The next fail repeats this 
again with 3 instead of 2. With a subsequent fail , 
however, no more values from return123 are available 
so backtracking backs up even further to the point 
immediately after the first succeed: in method 
returnAValue. Hence the process starts all over again 
with 1, 2, and 3 successively returned. Finally, 
backtracking will occur to compute the third value and 
another 1.2, and 3 wilI be successively returned. 

I sumHolder I 
sumHolder f- Array with: 1. 
sumHolder at: 1 put: 0. 
IsumHolder 

at: 1 

The next example illustrate a similar interaction. In 
this case, it should be clear that “(1 1)” is printed on the 
transcript the first time. What value is printed next? 

returnArray 

fArray 
put: (sumHolder at: 1) + self return123. with: self return 123 
self fail] capture. with: self return123 

TsumHolder at: 1 ” rIYans&pt 

The notion that backtracking restores the state of the 
computation to its former state is crucial. It is what 
makes Prolog such a powerful language. The user, for 
example, doesn’t have to worry about restoring the 
bindings to the logic variables (it’s automatic). What we 
see above is an interface interaction between two systems: 
the standard Smalltalk system and the backtracking 
system. In the next section, we introduce the notion of a 
backtracking stream that provides a more intuitive 
interface between the two systems. It provides less 
knowledgeable users with better control over the 
computation. We don’t expect users to program in the 
manner indicated above. 

print: self returnArray; show: ’ ‘. 
self fail] capture” 

Since the last succeed: executed was “self succeed: 
[ll” in the second call to return123, we should expect 
the fail to cause “(1 2)” to be printed followed next by 
“(1 3)” for the next fail. Another fail should cause 
backtracking to the first call to return123 which causes 
it to return 2 and then invoke the second “self 
returnl23” anew. Hence the next value output is “(2 
l)“, then “(2 2)“, and finally “(2 3)“. Further backtracking 
results in “(3 l)“, then “(3 2)“, and finally “(3 3)“. 

A Minor Extension 

For the moment, we continue with further examples 
that illustrate the backtracking primitives succeed:, fail, 
and capture. Consider the following: 

Because it is relatively inconvenient to write code like 

returnAValue 
self succeed: [self returnl231. “first value” 
self succeed: [self returnl231. “second value” 
tself return123 “third value” 
” rIianscript 

self succeed: [I]. 
self succeed: [2]. 
self succeed: [3]. 

.*. 

print: self returnAValue; show: ’ ‘. 
self fail] capture” 

we extended method succeed: to accept a non-block as a 
parameter. This value is returned unchanged. Now we can 
write the following instead of the above. 

In this case, “1 2 3 1 2 3 1 2 3” is printed on the 
transcript. Why? Method returnAValue is designed to 
return three values. However, each value has itself three 
possibilities: 1,2, and then 3. The initial returnAValue 
message causes the first succeed: to be executed which 
means that the return123 result is returned. The 

self succeed: 1. 
self succeed: 2. 
self succeed: 3. 

. . . 

The modified version has the same semantics as the 
Origin& as long as the succeed parameter is computed 
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without using backtracking methods. In the latter case, an 
unnatural backtracking order results; more specifically, 
backtracking to the succeed: occurs before backtracking 
to the succeed parameter. For example, if method 
returnAValue were rewritten as follows, the output 
wouldbel 11232323. 

returnAValue 
self succeed: self return123. “first value” 
self succeed: self returnl23. “second value” 
?self return123 “third value” 
” [Transcript 

print: self ieturnhvalue; show: ’ ‘. 
self fail] capture” 

For simplicity, we explain only the first two results. 
The first call causes “self returnl23” to be evaluated and 
its result (namely 1) to be returned from the first succeed, 
call it S, in returnAValue. When a subsequent fail 
occurs, the last succeed: is S; hence execution proceeds 
with the second succeed: in returnAValue. In this 
case, the result of the second “self returnl23” (namely 
the second 1) is computed and returned. In essence, the 
difference between the two methods is the execution order; 
e.g., 

self succeedl: [self succeed21 
a order succeed1 succeedz. 

self succeedl: self succeed2 
3 order succeed2 succeed 1. 

3 Backtracking Streams 

BackrTacking strtmns can be designed to 
provide a moreflm’ble and more nutwal 
facility. 

The backtracking facility provided above is difficult to 
control and use because it affects the normal execution of 
well-understood objects. In particular, providing a solution 
in any method that uses a backtracking method causes the 
current execution state to be retained for later resumption 
when a failure occurs. This failure can occur arbitrarily far 
in the future. If a suitable solution is obtained and 
alternative solutions are no longer desired, it is impossible 
to deactivate the backtracking facility. After all, 
backtracking could occur in any method at any point in 
time. Even if we could deactivate the facility, it is 
impossible to selectively deactivate specific parts. 

To provide better control of the backtracking facility, 
we introduce the notion of a backtracking stream, a 
read stream that provides objects on demand via the 
standard stream operations atEnd, peek , next, 
contents, and do:. The latter two operations only apply 
when the stream is finite. 

Except for the fact that stream elements are only 
obtained when needed, the above operations have the usual 
stream semantics. At the moment, we don’t permit the 
stream to be reset although it is a simple task to extend it. 
To use a backtracking stream, it is sufficient to understand 
how to create one. We create a backtracking stream by 
executing 

BacktrackingStream on: aBlock 

where aBlock computes and returns the successive stream 
elements via “self succeed: anobject” or “?anObject”, 
the latter indicating that no more answers are forthcoming. 
The stream itself takes care of executing “self fail” 
eliminating the need for it in the block. The block result 
itself is discarded. Thus a block that contains neither a 
succeed: nor an ? will be guaranteed to be an empty 
stream. For example, the following stream will return the 
successive elements 1 through 10. 

BacktrackingStream on: 
[l to: 10 do: [:count I self succeed: count]] 

In addition, to prevent backtracking streams from 
affecting the contexts in which the block parameters are 
defined, the stream executes the blocks in a copy of their 
defining context. Thus a method fragment such as the 
following is prevented from interacting. 

. . . 
count c 5. 
stream1 t BacktrackingStream on: 

[l to: 10 do: [:count I self succeed: count]]. 
count t count + 5. “count is 10 
stream2 c BacktrackingStream on: 

[lOO to: 104 do: [:count I self succeed: count]]. 
count t count + 5. “count is 15” 
result t stream1 contents, stream2 contents. 
count t count + 5. “count is 20 
. . . 

Each stream has its own copy of the method’s Iocal 
variables. Thus executing “stream1 next” twice and 
“stream2 next” once at the point where count is indicated 
to be 15 (for example, using the debugger) would have the 
effect of changing the count variable for stream1 to 2 and 
the count variable for stream2 to 100; they don’t affect 
each other since they are distinct variables. Neither would 
the count in the method fragment be modified. If the 
method fragment were executed as is, result would end up 
with “(12 3 4 5 6 7 8 9 10 100 101 102 103 104)“. 

Recall the example of the previous section where the 
successive values computed by method return123 were 
to be summed. With backtracking streams, the sum could 
be computed as follows: 
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IaStreamI 
aStream c BacktrackingStream on: 

[self succeed: [self returnl2311. 
sum c 0. 
aStream do: [:element I sum t sum + element]. 
tsum 

The following solution would also work just as well. 
Why? The answer is simple. After the first succeed: 
above, there is neither a second succeed: nor an 7 to 
indicate another solution. Hence it is equivalent to a 
standard t. Of course, the solution returned itself 
backtracks so that the return occurs 3 times. 

A Prime Number Generator 

Backtracking streams are not restricted to a finite 
number of solutions. For example, an infinite stream of 
primes is generated in the example of Listing 2. A more 
interesting example that uses backtracking (and failure) to 
a greater degree is shown in Listing 3. The example 
comes from LaLonde ES]. The task is to assign unique 
digit values to variables b,i,g,o,y,m,a, and n so that the 
equation big+boy=man is solved. An obvious 
restriction is for b and m to be non-zero. Two snpport 
methods are used: method digits which successively 
returns the digits 0 through 9 (as characters) and method 
“digitsDifferentFrom: astring” which successively 
returns only those digits not in aString. 

IaStreamI 
aStream t BacktrackingStream on: 

[tself returnl231. 
sum c 0. 
aStream do: [:element I sum c sum + element]. 

tsum 

Numberclaasmethods 

allPrimes 
“Construct an infinite stream that generates primes.” 

I sieve candidate limit subcollection I 
~Backtrack.ingStream on: [ 

sieve t OrderedCollection with: 2. 
self succeed: 2. “The first prime is a special case.” 
candidate+ 1. 
[true] whileTrue: [ 

candidate c candidate + 2. “3, then 5.7,9, etc.” 
“Is it prime?” 
limit t candidate sqrt truncated. 
subcollection t sieve select: [:element I element c= limit]. 
subcollection 

detect: [:pmviousFVime I (candidate 1 previousprime) = 0] 
ifNone: [ 

self succeed: candidate. “found one” sieve add: candidate]]]. 

BacktrackingStream class methods 

primeExample 
I stream first50Primes I 
fifst50Primes c OrderedCollection new. stream c Number allPrimes. 
50 timesRepeat: [fustSOPrimes add: stream next]. 
tfirst50Primes 
“BacktrackingStream primeExample” 

Listing 2: An example that uses backtracking streams 
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A Puzzle Solver 

BacktrackingStream class methods 

digits 
‘012345678’ do: [:aCharacter I self succeed: acharacter]. ‘&9 

digitsDifferentFrom: aString 
I aDigit I 
aDigit c- self digits. (&ring includes: aDigit) ifl’rue: [self fail). ?aDigit 

The actual method for computing solutions is shown below. Of interest is the fact that there are 64 solutions. 

puzzIeExample 
“Solve the BIG + BOY = MAN puzzle.” 

I stream b m bString first i bmString o bmistring a bmiostring g bmioaString y bmioagSt.ring n 
bmioagyString big boy man bigInteger boyInteger manInteger answer I 
stream c BacktrackingStream on: [ 

b c self digitsDifferentFrom: I’. 
b = $0 ifTrue: [self fail]. 

m c self digitsDifferentFrom: @String t (Suing with: b)). 
m = $0 ifTrue: [self fail]. 
(m digitvalue between: (first t- 2*b digitvalue) and: first+l) 

ifFalse: [self fail]. 

i t self digitsDifferentFrom: (bmString t bString, (String with: m)). 
o e- self digitsDifferentFrom: (bmistring t bmString, (String with: i)). 
a c self digitsDifferentFrom: (bmio!Mng c bmistring, (String with: 0)). 

(a digitvalue between: (first +- i digitvalue + o digitvalue) and: first+l) 
ifFalse: [self fail]. 

g c- self digitsDifferentFrom: (bmioaSuing c bmiostring, (String with: a)). 
y c self digitsDifferentFrom: (bmioagstring t- bmioasaing, (String with: g)). 
n t self digitsDifferentFrom: (bmioagyString t bmioagstring, (String with: y)). 

(n digitvalue between: (first c g digitvalue + y digitvalue) and: first+l) 
ifFalse: [self fail]. 

big t String with: b with: i with: g. 
boy t String with: b with: o with: y. 
man t String with: m with: a with: n. 
bigInteger t big inject: 0 into: [:sum :character I IO*sum + character digitvalue]. 
boyInteger c boy inject: 0 into: [:sum :character I lO*sum + character digitvalue]. 
manInteger c man inject: 0 into: [:sum :character I lO*sum + character digitvalue]. 

answer e big, ‘+I, boy, I=‘, man. Transcript cr; show: answer. “For debugging only.” 
bigInteger + boyInteger = manInteger ifFalse: [self fail]. Transcript show: ’ ***I. “For debugging only.” 
self succeed: answer]. 

Tstream contents 
“BacktrackingStream exampIeS 
“The 64 solutions begin with 213+265=478’ ‘215+263=478’ ‘213+276=489’ . ..‘I 

Listing 3: Another example that uses backtracking streams 
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4 Implementing The Backtracking 
Primitives 

Backtracking can be implemented easily 
in Smalltalk because contexts are 
objects. Well!!! if you canjigure it out. 

The backtracking facility is based on a suitable 
implementation of the succeed: primitive. Intuitively, 
the implementation of the primitive is easy to describe. 
When succeed: is encountered, a normal return is 
prohibited because some later backtracking might need to 
resume at a point after the succeed:. Instead of returning 
to the sender, the primitive must instead cause a copy of 
the sender context to be “called”. This is equivalent to the 
notion of a success continuation as used in typical 
implementations of Prolog. The copied context can be 
executed as normal except that returns from it must be 
modified to repeat the above process; i.e., to continue in 
this success continuation mode. New message sends are 
unaffected. Unless interrupted by a fail operation, this 
success continuation mode will eventually lead to 
executing the last message in the process that contains it. 
The fail operation deactivates the success continuation 
mode and causes a normal return to be executed, this is 
done by “backing up” execution to the point immediately 
after the most recent succeed: if there is one, just as 
though the succeed had simply returned its evaluated 
parameter. Thus “(self succeed: 12) + 5” results in the 
value 17 being computed after the fail returns execution. 
A series of snapshots illustrating this notion is shown 
later. 

I Method Context Ml 
for message example1 

The implementation relies on a small number of 
operations that manipulate contexts, the SmalltaIk 
terminology for stack frames. Two kinds of contexts are 
available: method contexts (the usual kind) and block 
contexts (contexts for blocks). When a method such as 
example1 below executes, the to:do: message is sent to 
1 which in turn sends a value: message to the block as 
indicated in Figure 1. Three contexts are constructed: a 
method context for message examplel, a method context 
for message to:do:. and a block context for executing the 
block containing the code “sum t sum + index. sum > 
1000 ifTrue: [tindex]“. 

Number class method 

example1 
“How many consecutive inte, g’ 
added to get a value larger than 11 
1SUllll 

sumto. 
1 to: IO00 do: [:index I 

sum c sum + index. 
sum > 1000 ifTrue: [%nd le 

“We never get to this point.” 

Number instance method 

to: aLimit do: aBlock 

ers must be 
Ooo?” 

XII. 

\ 

“A while loop is used to successively invoke 
aBlock with a changing index. Only the 

3lock value: message is shown.” 

. . . aBlock value: aLoopIndexValue . . . 

Method Context M2 
for message to:do: 

sum tsum + index. 
sum > 1000 

iff rue: [T index] 

Figure 1: An example calling sequence 
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A context M’s home is defined to be M if M is a 
method context and the defining method context if it is a 
block context. In the above example, M3k home is MI. 
This notion is particularly important because the return 
statement Tindex in Figure 1 returns not from the context 
it is in but from the home context; i.e., it returns from 
the method context for exam pl e 1. It is just a 
convenience that the home context for M2 is M2 and the 
home context for Ml is Ml. Note that M3 would return 
to M2 only if no explicit return statement were 
encountered; i.e., if the end of the block were reached (in 
that case, the last value computed by the block is 
returned). 

A summary of the operations used for implementing 
backtracking is given below with a short explanation. 
Although these operations are Smalltalk specific, 
corresponding operations in other suitably powerful 
languages could be used. 

thiscontext A pseudo variable containing 
the context that is currently 
executing. 

acontext home Returns the home as defined 
above; e.g., M3’s home is Ml, 
MI’s home is Ml. 

acontext sender Returns the sending context; 
e.g., M3s sender is M2, M2’s 
senderisMI. 

aContext method Returns the compiled method 
for the context; e.g., MI and 
M3’s method is the compiled 
version of examplel. 

acontext copy Returns a copy of the context. 

acontext swapSender: anotherContext 

Changes the receiver’s sender to 
anotherContext; also, returns 
the old sender (which we ignore 
most of the time); 
anotherContext could be nil 
instead of a context object. 

aContext ternpAt: i Returns the value of the ith 
temporary variable defined in 
the context;. counting starts 
with the parameters and then 
proceeds to the local variables: 
e.g., if a method h a s 
parameters pI and p;! and local 

variables 11,12, . . . . the third 
temporary is II. 

acontext releaseTo: oldcontext 

Release (by setting the 
temporaries in the context 
stack to nil) all contexts from 
the receiver, its sender, its 
sender’s sender, etc. up to but 
excluding oldcontext. It is a 
superfluous method that helps 
the garbage collector. 

aRlockContext fixTemps 

Changes the receiver’s home 
context to a copy and sets the 
copy’s sender to nil. 

A final crucial point is that contexts keep track of 
where they should resume executing when control returns 
to them. For example, if we can (somehow) return from 
M3 above to Ml, execution would resume at the point 
where message to:do: was initially sent. This is of course 
what happens when Tindex is executed in M3. 

For tutorial purposes, consider how we might 
simulate Tindex from within the block without using a 
retnrn statement. More specifically, consider executing 

thisContext 
swapsender: 

thisContext sender sender 

in M3. Observe that thisContext is M3. Since M3’s 
sender is M2 and M2’s sender is Ml, it should be clear 
that M3’s sender is changed to MI. Hence when control 
reaches the end of the block, it automatically returns to 
MI bypassing M2. We could have alternatively had it 
return to MI’s sender by having executed the following 
instead: 

thiscontext 
swapSender: 

thisContext sender sender sender 

We now present our three primitives. Method 
capture is trivial but methods succeed: and fail are 
quite complex. Without comments, the three methods 
easily fit on a page (as shown in Listing 4). However, the 
comments are crucial. Without them, only extremely 
knowledgeable Smalltalk experts would successfully 
decipher them; perhaps some of you might consider it a 
challenge to work from Listing 4. For the others (myself 
included), the detailed comments and the additional 
explanation provided by Listing 5 will help substantially. 
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The Uncommented Code 

BlockContext instance methods 

backtracking 

capture 
“If you change this method you must run the following code to make it work: 

CaptureMethod t BlockContext CompiledMethodAt: #capture” 
self value “The real work is done by fail.” 

Object instance methods 

backnacking 

succeed: aBlockOrPreviouslyEvaluatedExpression 
“If you change this method you must run the following code to make it work: 

SucceedMethod t Object compiledhlethodht: #succeed:” 

I caller succeedResult callerCopy result I 
caller t thiscontext sender home sender. 

succeedResult c aBlockOrPreviousIyEvaluatedExpression. 
(aBlockOrPreviouslyEvaIuatedExpression isKindOf: BlockContext) 

ifTrue: [succeedResult c aBlockOrPreviouslyEvaluatedExpression value]. 
result t succeedResult. 

[we] whileTrue: [ 
[caller method = SucceedMethod] whileTrue: [caller t caller ternpAt: 21. 
Caller-Copy c caller copy. 
callerCopy swapSender: thisContext. 
caller t caller sender. “Remember who should get the result.” 
result t [thiscontext swapSender: CallerCopy. result] value]. 

fail 

I oldcontext method succeedOrCaptureContext I 
oldcontext t thisContext sender. 

[((method t oldContext method) == SucceedMethod) I (method == CaptureMethod)] 
whileFalse: [ 

oldcontext t oldcontext sender. 
oldcontext isNil iffrue: [self notify: ‘backtracking failure (off end of process)‘]]. 

succeedOrCaptureContext t oldContext home. 
oldContext c succeedOrCaptureContext sender. 
thisContext sender releaseTo: oldContext. 
thiscontext swapsender: oldcontext. 

method= SucceedMethod 
ifTrue: [TsucceedOrCaptureContext ternpAt: 3 “succeedResult”] 
ifFalse: [tnil] 

Listing 4: Uncommented primitives 
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The Commented Code 

Two glob& are used: CaptureMethod and SucceedMethod (see methods capture and succeed: for their initialization). 

BlockContext instance methods 

baaracking 

capture 
“[exprl] capture evaluates expression1 and returns nil. If backtracking occurs, it is prevented from backtracking past 
this capture point.” 

“If you change this method you must run the following code to make it work: 
CaptureMethod t BlockContext CompiledMethodAt: #capture” 

self value “The real work is done by fail.” 

Object instance methods 

backli-acking 

succeed: aE%ckOr~viouslyEvaluatedExpression 
“If you change this method you must run the following code to make it work: 

SucceedMethod t Object compiIedMethodAt: #succeed:” 

“Pretend to return the evaluated parameter to the caller, the sender of the sender’s home context, exactly like the ‘7 
instruction does in the sender. This is achieved by copying the caller, m&ing the copy return to this context, and 
faking a return into the copy. If a fail later occurs, back up to the actual sender of this message with the evaluated 
parameter as the result. If the copy returns (to here), fake the return to that copy’s original sender, skipping over 
sections currently being traced by other succeed: contexts (a brief discussion explains why below; a slightly more 
detailed discussion is in the paper).” 

I caller succeedResult callerCopy result I 
caller t thisContext sender home sender. 
“Note: (1) the sender is tbe method containing ‘self succeed: something’. (2) the home of the sender is the context 
that ‘Tsomething would return from had it been used instead of ‘self succeed: something’. (3) the send= of the home 
of the sender is where ‘tsomething’ would return to. ” 

succeedResult e aBlockOrF%eviouslyEval~tedExpression. 
(aBlockOrPreviouslyEval~tedExpression isKindOfz BlockContext) 

ifTrue: [succeedResult t aBlockOrPreviouslyEvaluatedExpression value]. 
result t succeedResult. 

“This method acts as a gate; i.e., when control returns to this method after the block parameter is evaluated, it copies 
existing methods from the call stack and invokes them after modifying them to return to the gate. More specifically, 
if the calling code is of the form cl, c2, c3, . . . . cn, gate when control returns, it is replaced by (n) cl, c2, c3, . . . . 
gate, cn’ (notation ci’ denotes a copy of ci); once the gate method is reached again, the code is replaced by (...) . . . . 
then (3) cl, c2, c3, . . . . gate, 0, then (2) cl, c2, c3, . . . . gate, c2’, and finally by (1) cl, c2, c3, . . . . gate, cl’. Only a 
fail message will deactivate and pop the gate. Note that gates interior to the call stack; i.e., those between cl and . . . . 
must be carefully skipped over (they don’t get used until the current gate is deactivated with a fail). See the more 
detailed explanation later in this section.” 
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[true] whileTrue: [ 
“Skip interior gates by skipping to the context immediately prior to the copied context. Fortunately, this 
context is still in instance variable ‘caller’ which happens to be the second temporary variable (local 
variables come after the parameters which must also be counted). Note that the following works even if the 
context is a block context instead of a method context because both have access to the home context’s 
temporary variables.” 
[caller method = SucceedMethod] whileTrue: [caller c caller ternpAt: 23. 

“The following is tricky and works as follows: the copy is changed to return to this context; since contexts 
keep track of their own resume point, it will in this case return from the last call, the message value 
below. When message value is executed, a new block context is created to execute it (thii block context, for 
example, would be listed as n Object >> succeed: in the debugger). This block context’s sender is changed 
to the callerCopy by the swapSender: message. When the end of block is reached, result is returned to the 
CallerCopy. It in turn will use this result, compute some new result, and return it to this method’s last call 
point, the value message, which gets stored in result.” 

callerCopy + caller copy. 
callerCopy swapSender: thisContext. 
caller c caller sender. “Remember who should get the result.” 
result c [thisContext swapsender: callerCopy. result] value. 

“When the new result comes back from the copy, we go back around the loop and repeat the process with 
the copy’s sender, caller.“] 

fail 
“Causes a return to the context containing the last ‘succeed? message send.” 

I oldcontext method succeedOrCaptureContext I 

“Find the previous succeed: gate and cancel it (it is an emlr if none exists).” 
oldcontext c- thiscontext sender. 
[((method c oldContext method) == SucceedMethod) I (method == CaptnreMethod)] 

whileFalse: [ 
oldContext c oldcontext sender. 
oldContext isNil iffrue: [self notify: ‘backtracking failure (off end of process)‘]]. 

“Since the succeed: parameter is sometimes evaluated with a value message, oldContext might not be the home 
context for the succeed: method’s context; if it is, asking for the home gets us the original context; otherwise, we 
get the same context back. The same applies to the capture method’s context since it sends a value message.” 
oldcontext t oldcontext home. 
succ&~aptu&ontext t oldContext. 

“Back up one more step to the sender of the succeed: or capture message.” 
oIdContext c succeedOrCaptureContext sender. 

“Release intermediate contexts and fudge this context so that we return to the old context” 
thiscontext sender releaseTo: oIdContext. 
thisContext swapsender: oldContext. 

“For a succeed: message, return the SucceedResult; for the, capture, return nil.” 
method== SUcceedMethod 

iflrue: [TsucceedOrCaptureContext ternpAt: 3 “succeedResult”] 
ifFalse: [tnil] 

Listing 5: Commented primitives 
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Although several points in Listing 5 are tricky, they 
are accompanied with a hopefully sufficient explanation to 
make it understandable. However, there is one aspect that 
has not been fully explained: why we need to access 
temporary variable “caller” in interior instantiations of 
method succeed:. This is most easily understood by 
tracing the execution of a sequence of message sends that 
involves two succeeds at different places. 

Consider Figure 2. Aq and B3 contain succeed: 
messages. Before following the sequence of contexts that 
would be created with backtracking, it is worth 
conqidering the calling sequence without it; e.g., as it 
would be if each pair of succeed: messages were replaced 
by a standard return statement. Using * to denote a 
message send and e= to denote a return, it should be clear 
that the following sequence is observed. 

With backtracking, A4 can’t return to A3, for 
example. It must make a copy and return into the copy. 
What does the copy of A3 return to? To a copy of A2. 
This process is illustrated in more detail in Figure 3. 

Al A2 A3 A4 

Send nxssageA3 4 Send message A4 -b self succeed: 1 
self succeed: 2 

Figure 2: An example calling sequence 
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Note: jumps 
to the contents 
of the succeed: 
context’s ‘caller’ 
instance variable 

Figure 3: Tracing the example calling sequence 
(A3’ denotes a copy of context A3; A0 is the calling context that is not shown) 

When A4 sends a succeed: 1 message, it is clear that 
it is returning to A3. So the succeed: context Sl makes 
a copy of A3 (denoted A3’), modifies it to return to S 1, 
and remembers A2 in local variable ‘caller’, the return 
context for A3’. Then a return into A3’ is faked. A3’ in 
turn comes back to Sl which “backs up” the return even 
further; i.e., the context A2 in caller is duplicated as A2’. 
modified to return to Sl, and the new return point AZ 
saved in %alIer’. As above, a return into A2’ is faked. A2 

calls Bl, which calls B2, which calls B3. Note that 
“backtrack simulation” occurs only on returns, not on 
calls. 

When B3 sends a succeed: 10 message, it is clear 
that it is returning to B2. The same process as described 
above is at work. We’ll now use a more abbreviated 
description. S2 fakes a return to B2’. When it returns, S2 
fakes a return into Bl’. When it returns, S2 fakes yet 
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another return to A2” (a copy of A2’ which is already a 
copy of A2). Finally, when it returns, we might expect 
S2 to fake a return into Sl’, a succeed: method context. 
This is not what happens. Why not! Intuitively, 
this is easy to see if we pretend succeeds were normal 
returns. In that case, returning from A2 (see Figure 2). 
should lead us back to Al. As you can see, Al is quite 
some distance in the stack, i.e., it is separated from Sl by 
A2, A3, and A4. But note that Al is the value in Sl’s 
instance variable ‘caller’. This is no coincidence. It is 
the succeed: method contexts like Sl and S2 that keep 
track of the real return points. This is why S2 must skip 
over interior succeed: method contexts like SI. 

Note that a succeed: method context cannot be 
removed until a fail is executed; only the fail causes an 
alternative answer to be requested. The fail is very simple. 
It simply searches for the top succeed: method context in 
the stack and pops it. The context below is exactly where 
it must return. Additionally, the value to be returned is in 
the succeed: method context (in temporary variable 
succeedResult); this can easily be extracted before 
returning to the context below. Note that other succeed: 
method contexts deeper in the stack are never modified nor 
is anything else in the stack modified. If they were, we 
could never restore them to their initial state upon 
backtracking. That’s why the top succeed: method 

context jumps over interior ones rather than attempt to 
update them in some way. 

5 Implementing Backtracking Streams 

Backtracking streams need only store a 
suitable backtracking context that is 
reactivated when an elemenf is needed. 

To ensure that elements are computed only on 
demand, we keep a cache that is filled only when a query 
like atEnd, next, or peek forces it. To permit nil as a 
valid stream element, we use a boolean cacheFull to 
indicate whether or not something is in the cache. Finally, 
the stream maintains a context that can be used for 
computing the next stream element; it is called 
suspendedContext. A new element is obtained (if there is 
one) by faking a return into the suspended context (this is 
done by method switchToSuspendedContext). This 
context in turn either computes a new element and sets 
cacheFull to true or determines that there are no more 
elements, in which case it sets cacheFull to false. It then 
returns by switching back the context once again (the 
return point was temporarily stored in the suspended 
context). The standard stream methods are relatively 
obvious. They are shown below in Listing 6. 

Definition of Backtracking Streams 

class BacktmckingStream 
superclass SUGUYI 
instance variable names cache cacheFuIl suspendcdcontext 
comment I represent a finite or infinite set of solutions to some backtracking-based expression. I am 

created with ‘on: aBlock’ where aBlock computes values that are returned via ‘self succeed: 
aValue’ if more values are pending or ‘?aValue’ is no more are pending. A block with neither 
represents an empty stream. I support the usual stream messages atEnd, next, peek, 
contents, and do: (the last two only if it’s finite, of course). 

class methods 

instance creation 

ou: aBlock 
“Create a new BacktrackingStream with the given block. The block is allowed to backtrack to yield multiple 
solutions (each of which must be returned one at a time from the block) until the block tries to fail completely. At 
this point the stream is said to be at the end.” 

“(BacktrackingStream on: [1 to: 10 do: [:count I self succeed: count]l’) contents” 

?self basicNew on: aBlock 
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private instance initialization 

on: &lock 
“Discussed later.” 

accessing 

atEnd 
“Check if there are any alternative solutions left. Note: if necessary, this will force the next solution to be computed 
and stoned for the subsequent ‘next’ operation.” 

cacheFull ifTrue: [ffalse]. 
self switchToSuspendedContext. “To obtain the next stream element” 
TcacheFull not “Check again, it will be true if one was obtained; false, otherwise.” 

next 
“Force the cache to have the next value, by using ‘atEnd’. If there are no values available, generate an error.” 

I result I 
self atEnd ifTrue: [self error: ‘Attempted to read past end of stream’]. 
“If necessary. the atEnd operation forces a stream element to be computed and cached.” 
result t cache. cache c nil. cacheFull t false. “Invalidate cache to force a subsequent element to be obtained” 
tresult 

peek 
“Answer what would be returned with a self next, without moving past the element. If the receiver is at the end, 
answer nil.” 

self atEnd ifTrue: [?nil] ifFalse: [Tcache] 

contents 
“Return the rest of the solutions of the receiver.” 

I collection I 
collection c OrderedCollection new. 
self do: [:each I collection add: each]. 
Tcollection 

private 

switchToSuspendedContext 
“I am responsible for installing and running the suspended context, The sender is saved so that re-executing this 
method again from within the suspended context will restore the previous state; i.e., to begin executing the 
suspended context, we perform one switch; to get back, we perform a second switch.” 

“The following changes the sender to the suspended context so that we return to it at the end of this method. The 
original sender of this context is returned and stored into the suspended context. A subsequent switch will undo this.” 
suspendedContext c thiscontext swapsender: suspendedContext 

Listing 6: Definition of backtracking streams 
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Note that method switchToSuspendedContext context. In this block context, thiscontext is the block 
in Listing 6 is not really needed because the switch could 
have been done inline. However, it is more understandable 

context. The assignment however does not care whether 
the executing context is a block context or a method 

this way. For example, we could have replaced the code 
‘self switchToSuspendedContext’ in atEnd by 

context. A return from the context always returns to the 
sender which the code changed to the suspended context, 

[suspendedContext c- (thiscontext The only complicated operation is the private on: 
swapSender: suspendedContext)] value operation that sets up the suspended context and controls 

the computation that obtains the successive values 
Can you see why? The answer is simple. Sending a through backtracking. We have attempted to document 

value message creates a block context instead of a method how it works with extensive comments. 

instance methods 
The Missing Operation 

privare 

on: aBlock 
“This code never returns explicitly. Instead, it makes a copy of the block’s home context and sets it t.o return to an 
appropriate point in the block context initiated by the capture below. This same context is saved as a suspended 
context and a return to the on: sender is faked. See comments below for more details.” 

[ 
cacheFull t false. “Initialize.” 

“Make a copy of the block’s home context and modify it to return here. Note: ‘here’ is the block context initiated 
by the value message sent by the capture that surrounds this code” 
aBlock fixTemps. aBlock home swapsender: thisContext. 

suspendedContext +- thiscontext. “Save for subsequent suspensions after each stream element is obtained.” 

“Fake a return to the sender (a real return will release the context and destroy its contents).” 
[thiscontext swapsender: thiscontext “here” home “on: context” sender “on: context sender”. selfI value. 

“The first time the suspended context is resumed, execution will return to this point because the value message 
above is the last thing executed in this method.” 

“The next part is tricky. To get things going, we need to execute ‘aBlock value’. Since succeed: and ? causes 
‘returns’ to the sender of the home context (to here since we modified it above) and since ‘aBlock value’ will also 
ultimately return when no more of these answers are available, we need some way to differentiate between the 
two. Why? Because the former implies that a new stream element is available and the latter implies that there 
are no more. The solution? Execute ‘aBlock value’ inside another block (see the assignment to cache below). 
Since the value message to this containing block is the last message sent in this context, this is where values 
computed by succeed: and 7 in the block will be returned. Actually, it returns here for t and to a copy of here 
for succeed:. Thus cache will receive the stream element. If a fail is executed some time later, backtracking will 
occur to cause subsequent elements to be computed. Backtracking in the case of 7 jumps right out of the 
capture. It is only when no more elements are available that a return from ‘aBlock value’ will occur. Note that 
‘aBlock value’ is not executed in this context but in the context reached by executing the outer value message. 
Since no further backtracking is impossible, another fail will cause execution to backup past the capture that 
surrounds the whole thing. A more pictorial explanation is provided in Figure 4.” 
cache c [@lock value. self fail “Cause backup out of the capture.“] value. 
cacheFull c true. “Got a element indicate that we did.” 
self switchToSuspendedContext. “Return to atEnd” 
self fail “Backtrack to get another value.” 

] capture. 
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“Control retums here only when there are no more stream elements left.” 
(true] whileTrue: [ 

“atEnd was written to switch context even when there are no more answers; so from now on, we indicate 
that there are no more solutions.” 
cacheFull t false. “Indicate there are no more elements.” 
self SwitchToSuspendedContext] “Return to atEnd.” 

Listing 7: The missing backtracking streams initialization operation 

Figure 4 is intended to clarify the tricky code initiated by namely, executing “self succeed: anobject”, “7anObject”, 
“cache t [aBlock value. self fail] value”. Context C4 and falling off the end of the block are discussed as three 
executes the code in aBlock. The three possibilities; separate&. 

Cl 

c2 

c4 

value 
‘Execulcs tlKs code in eBlc& 3 &uxibilitic.s” 
_.. 
“cesc 1:” . . . self alccocd: mobjoct 
. . . 
“Case2” . ..tllclfsacltr&t 
. . . 
“Casc3:...andnmoffthtaxloftheMock” 

VSIUC VSIUC 

Th-cutathcMockcodc” Th-cutathcMockcodc” 
sBlcck vhc. sBlcck vhc. 7-J sdffailj sdffailj 

on: aBlock 

. . . 
‘Replaces aBlock’s home 

byacopyandsetsthe 
cop$b sender to Ct’ 

. . . 

[...I capture. 
*Code to handle and 

of stream processing’ 

bu~rnobjtct 
1. Simtir Leum into 

CJ; i.e., the unda of 
aBlockkhomcby 
makingacopyc3’of 
c3andlrznmbgirlo 
a. 

2 U’ stores anObject 
intolllcseean. 
switcha itself with 
thcslqmdcdcaacxt 
mxircmmstotk 
~colrvxs 
v--w*- 

3. Gitzzaa elcmau 
isrquutcddthc 
stral&Q’isrcrumoP 
mdlclffail is 
nerraed2 

4.-flxfaili6nWckd 
wilb4lissaccatdmxi 
excaaim-a 
&UCrelinC4. 

lmobja4 
vcsyfinliklocmc1 
but.;QI.IP1an%afn 
imoC1dinctlyra&er 
ulmimoacopylikcC1’. 
Assruuk.rAastcring 
rhcobjcuillrcp2# 
~onupadtd.~ 
nsuivaaihswp3 
thcfailp instCp4is 
lllSt&dWiIbdlC~ 
mdexamiatrenmsto 
thCC4ldCaftathCCJptlUC 

Returns to C3 which 
CXCCULCS self fail, 
tichis nwddrdove 
with the capture snd 
cxccution ruurns to 
thecodcaftcxtbccz&ymuc. 
Note that no value was 
storcdiothestrcmn. 

Figure 4: A partial explanation of executing private instance method “on: aBlockl’ 
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6 Conclusions References 

Providing backtracking at the kernel 
level would not increase the power of 
the facility although it would make it 
slightly more e&ient. 

We have shown how backtracking can be retrofitted 
into an existing object-oriented language like Smalltalk. 
This was possible only because Smalltalk permits 
contexts to be manipulated as first-class objects. The 
facility could be used for experimentation with knowledge- 
based programming. It could also be used for designing 
Prolog-like engines. 

Note that the basic approach is not programming 
language dependent. Translating our implementation to 
some other suitably powerful language should be easy if 
the Smalbalk details am well-understood. 
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