
Reimagining Literate Programming

James Dean Palmer

Northern Arizona University

James.Palmer@nau.edu

Eddie Hillenbrand

Northern Arizona University

eh88@nau.edu

Abstract
In this paper we describe Ginger, a new language with
first class support for literate programming. Literate pro-
gramming is a philosophy that argues computer programs
should be written as literature with human readability and
understanding of paramount importance. While the intent
of literate programming is to make understanding computer
programs simpler, most literate programming systems are
quite complex and consist of three different languages corre-
sponding to 1) an implementation language, 2) a documenta-
tion language, and 3) a literate programming glue language.
In Knuth’s original implementation these were Pascal, TEX,
and WEB respectively. Antithetical to the goals that literate
programming espouses, this three language paradigm creates
a truly challenging environment for new programmers. In
this paper we reimagine literate programming as a core
programming language feature and describe a novel system
for literate programming based on G-expression transforma-
tions. We show that Ginger code can be used to naturally
represent code, prose, and literate connections, which in
turn unifies, simplifies and significantly extends the literate
programming experience.

Categories and Subject Descriptors D.3.1 [Programming
Languages]: Formal Definitions and Theory—Syntax;
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Documentation

General Terms Design, Documentation, Languages

Keywords Ginger, Literate Programming, Program Com-
prehension

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA 2009, October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-768-4/09/10. . . $10.00

1. Introduction
Literate programming is a programming paradigm that em-
phasizes human comprehension and readability by adopting
the mantra that programs should be read and written as lit-
erature. While literate programming systems do support the
development of documentation, literate programming is not
a documentation system. Literate programming’s intent is to
support distinctly human cognitive abstractions for breaking
up problems into tractable parts and communicating the
relationships between these parts and their neighbors. In
the same way that object oriented programming represents
a paradigm or way of thinking and not a specific set of
object oriented languages, literate programming intends to
transform the way we think about software development in
terms of cognitively rooted abstractions.

Literate programming systems describe these cognitive
abstractions between implementation and description with
a cognitive unit called a chunk. Chunks are not limited to
the abstractions and forms of either the implementation or
documentation language. Code and documentation chunks
can be connected or nested to form a literate web that
describes a program. Most literate programming systems
act as heavy handed preprocessors that recognize very little
about the underlying documentation and implementation
languages they act on. While workable and perhaps even
pragmatic, we believe current literate programming systems
obscure and limit the true power of the paradigm by treating
literate programming as simply a macro driven preprocess-
ing step fundamentally divorced and different from both the
documentation and implementation languages.

In this paper we describe Ginger, a language that is
specifically designed to support literate programming. Un-
like existing literate programming systems, Ginger uses
homoiconic G-expressions to represent code, prose, and
literate connections. The result is that code and documen-
tation are represented both internally and externally in ex-
actly the same form. Thus, a uniform interface exists for
implementation and documentation chunks to manipulate,
transform and inspect each other to such an extent that the
boundary between implementation and cognitive description
is blurred.

1007

1.1 A Brief Overview of Literate Programming

Literate programming was conceived by Donald Knuth in
the early 1980s as an alternative to structured programming.
In Knuth’s original vision, literate programs were essentially
essays or exposition that describe software in ordinary prose
while interleaving traditional source code. Literate program-
ming tools can be used to weave literate programs into
formatted human readable documentation with rich cross-
referencing, indexing and bibliographies or tangle them into
a format suitable for a compiler while preserving mean-
ingful compiler warnings and errors and debugging tool
support. The literate programming glue language that Knuth
developed is called WEB and has given rise to a number
of other systems that have improved or simplified various
aspects of WEB. As Knuth worked with WEB, he realized
early on that literate programming was changing how he
wrote software and enabling him to write software of much
greater complexity, quality, and sophistication [2]. Over
the years literate programming practitioners have identified
three distinguishing characteristics of literate programs:

Psychological arrangement: Literate programs intend to
communicate complex ideas and algorithms using plot,
narrative, rhythm, and distinctly human story telling
conventions instead of the restrictive and rigid structure
of a programming language.

Enhanced readability: Literate programs present programs
in a form that maximizes readability and understanding
by providing cross-references, indicies, bibliographies
and syntax markup.

Versimilitude: Code and documentation are written to-
gether in the same document such that both documen-
tation and code are active and evolve together.

At its core, literate programming is a philosophy that
forces a fundamental shift in thinking and problem solv-
ing that focuses on communication. Literate programming
changes the perspective of the programmer - emphasiz-
ing human communication over language dictated program
structure. The paradigm forces programmers to consciously
and continuously evaluate the presentation and readability
of their code. This mentality fundamentally changes the
way programmers approach software development. When it
becomes difficult to explain the logic of a particular piece
of code, it is often easier to rewrite the code than explain
why the code is difficult to understand [1]. Writing software
that better communicates its message tends to make software
simpler, more flexible, and easier to maintain [20, 5, 16, 1].

1.2 The Need for Literate Software

A common attitude among software developers is that doc-
umentation is of little use [13]. At the same time, roughly
50% of the time spent on software maintenance is related to
simply understanding the function of program code and may
contribute anywhere from 30-90% of the total cost of the

software over its entire life [4, 21]. The disconnect between
an obvious need to improve communication and problem
understanding and a disdain for software documentation
may stem from a genuine inadequacy in traditional software
documentation.

The large investment and poor returns associated with
traditional program documentation has, in part, fueled ag-
ile methodology that deemphasizes artifacts that do not
contribute to working code. Many believe that with its
deemphasis of formal written artifacts, agile methodology is
incompatible with literate programming. In a position paper
by Pieterse, Kourie and Boake a case is made that, to the
contrary, literate programming is fundamentally compatible
with agile processes and goals [14]. They point out the
positive role literate programming has in supporting com-
munication between developers and other stake holders and
the positive association between literate programming and
high-quality low-defect software. One of their principle ar-
guments is that literate programming documentation should
simply not be considered a separate artifact and instead
should be considered an intrinsic part of the deliverable and
programming process.

1.3 Related Work

Knuth’s seminal work on literate programming [8, 9] laid
the foundation for a host of different literate programming
systems including WEB, CWEB, Noweb [15, 7], Nuweb
[10], Funnelweb [22], and others. Many of these efforts
have sought to make literate programming more portable
(supporting more target languages) and simpler to use.
While the syntax used by literate programming systems may
differ considerably they all define a cognitive unit called
a chunk. Chunks are not limited to the abstractions and
forms of the underlying programming language and provide
a mechanism for supporting conceptual abstractions. Code
and documentation chunks can be connected or nested to
form a literate web that describes a program.

Many people often confuse embedded documentation
systems, which include Perl’s POD, Java’s JavaDoc and
Python’s pydoc, with literate programming systems. These
tools enable documenting interfaces at the actual function
prototype definitions. The advantage to documenting in this
way is that it becomes easier to keep the documentation
closely aligned to the actual interface. This kind of docu-
mentation process has little to nothing in common with the
literate programming process and embedded documentation
tools generally lack necessary literate capabilities [3].

Somewhere between embedded documentation and true
literate programming lives semi-literate programming.
Semi-literate programming systems generally make sweep-
ing simplifications that compromise what most literate
programmers would call a truly literate system in order to
simplify the literate programming process. The most com-
mon simplification is to disable arbitrary code reordering,
thus fixing the direction of the narrative to the actual flow

1008

of the program. Examples of semi-literate systems include
Haskell [6] and PyLit [11].

A few literate programming systems have taken a much
different tack based on novel user interfaces. Edward Ream’s
literate editor, Leo, uses visual outlines that allow users to
attach metadata and descriptions to program descriptions
and data [17]. Unfortunately, truly literate programs may
break Leo’s hierarchical outline based paradigm. Stritzinger
and Sametinger have developed a hypertext flavored browser
for navigating literate documentation specifically for object
oriented programming [19, 18]. In the same way that Leo
has a bias toward heirarchical structures, Stritzinger and
Sametinger’s work has a bias toward object oriented rela-
tionships.

2. Literate Ginger
Unlike other literate programming systems which mix sev-
eral, often incompatible, syntaxes together, literate Ginger
programs are completely made up of G-expressions. A
G-expression is made up of symbols, numbers, strings,
literals, S-expression based lists, indented blocks and other
G-expressions. A detailed description of G-expressions is
given in [12]. One of the keys to literate programming in
Ginger is a feature called colon-quoting, which begins a
special kind of quote which ends at the end of the corre-
sponding command, line or block. Unescaped parenthesis in
a colon-quoted string break out of the block and their result
is appended to the string. Consider this example,

1 define x 3.14
2 :println The value of x is (x).

which is semantically identical to

1 define x 3.14
2 println "The value of x is " (x) "."

and would output:

1 The value of x is 3.14.

Colon quotes don’t require a function to act on. An
alternate rendering of our last example using colon-quotes
without a default function call would be:

1 define x 3.14
2 println (: The value of x is (x).)

Another colon-quote form is the block colon-quote which
acts on blocks of text at the same indentation level:

1 :println
2 This is a much longer colon-quote and
3 shows the value of x is (x), but the
4 value of y is (y).

Simple literate statements like,

1 :title Koch Snowflakes in Ginger

do not represent a special documentation language; they are
simply calls to normal Ginger functions. We feel this syntax
is easily on par with LATEX in terms of simplicity, readability
and ease of use.

2.1 A Simple Example

In the remainder of this section we will describe how literate
programs are constructed in Ginger. We shall motivate this
discussion with a simple but complete example of literate
programming in Ginger. Please note that this example has
been designed for brevity while at the same time illustrating
key literate programming features.

1 :title Koch Snowflakes in Ginger
2

3 :section Introduction
4

5 :doc
6 The following program demonstrates
7 literate programming in Ginger in much
8 the same spirit as the primes programs
9 that appears in (:cite knuth:literate).

10 This program will generate a Koch
11 snowflake using turtle-style graphics.
12 We shall begin as Knuth did, by reducing
13 the entire program to its top-level
14 description.
15

16 chunk *
17 :$ program to display a Koch snowflake
18

19 :section Implementation Plan
20

21 :doc
22 Sometimes the best beginning is the end.
23 What we would like to do in this program
24 is generate a fractal snowflake with
25 "sides" of length 100 which we will store
26 in a file called
27 (:code koch-snowflake.png).
28

29 chunk (: create a snowflake)
30 Koch-snowflake 100
31 save-canvas "koch-snowflake.png"
32

33 :doc
34 While (:code save-canvas) is implemented
35 by the graphics library, we will need to
36 define functions that implement the
37 snowflake. These include the
38 (:code Koch-snowflake) function we have
39 already alluded to in the previous chunk
40 and the (:code Koch-curve) function on

1009

41 which it is based.
42

43 chunk (: program functions)
44 :$ Koch snowflake function
45 :$ Koch curve function
46

47 :doc
48 The program structure is then a simple
49 matter of providing the function
50 implementation and using that
51 implementation to create the desired
52 output.
53

54 chunk (: program to display a Koch snowflake)
55 :$ program functions
56 :$ create a snowflake
57

58 :doc
59 In the remaining sections we will delve
60 into the process of creating fractal
61 curves and snowflakes.
62

63 :section Koch Curves and Bump Fractals
64

65 :doc
66 A Koch curve is a "bump fractal." The
67 general recipe for generating a bump
68 fractal is to draw the fractal at one
69 level of recursion and then replace each
70 (:code forward) call with a recursive
71 call. The Koch curve is based on a
72 single triangular bump illustrated here:
73

74 image "bump.png" width: 1.8
75

76 :doc
77 By thinking like a turtle we can easily
78 come up with the corresponding drawing
79 code which is relative to the horizontal
80 measure or extent, (:code x).
81

82 :code
83 forward x
84 left-turn 60
85 forward x
86 right-turn 120
87 forward x
88 left-turn 60
89 forward x
90

91 :doc
92 We generate the recursive case by using
93 the bump fractal recipe and replacing the
94 (:code forward \(/ x 3\)) calls with

95 (:code Koch-curve \(/ x 3\)) calls.
96

97 chunk (: recursive case)
98 Koch-curve (/ x 3)
99 left-turn 60

100 Koch-curve (/ x 3)
101 right-turn 120
102 Koch-curve (/ x 3)
103 left-turn 60
104 Koch-curve (/ x 3)
105

106 :doc
107 A Koch curve has infinite length since
108 each recursive step generates four new
109 segments one-third the length of the
110 original segment. The total length of
111 the curve becomes one-third longer with
112 each recursive step (:cite koch:curve).
113 Stated more formally, the length of
114 the curve at step (:math n) is
115 (:math \(4/3\)^n). A related measure,
116 the fractal dimension, describes how
117 how the complexity of the fractal
118 increases as it scales. The fractal
119 dimension of a Koch curve is
120 (:math log 4 / log 3) or approximately
121 1.26.
122

123 Though the fractal has infinite
124 length and is composed of an infinite
125 number or segments, the resolution of
126 our display is finite. It is convenient
127 to end the recursion at the smallest
128 representable length - a pixel. Our base
129 case is then to simply draw a line of
130 length (:code x), where (:code x < 1).
131

132 chunk (: base case)
133 forward x
134

135 :doc
136 We combine the base case and the
137 recursive cases to form our Koch-curve
138 function that generates a single Koch
139 curve whose horizontal measure is
140 (:code x):
141

142 chunk (: Koch curve function)
143 define Koch-curve (x)
144 if (< x 1)
145 :$ base case
146 else:
147 :$ recursive case
148

1010

149 :section Koch Snowflakes
150

151 :doc
152 The (:code Koch-snowflake) function is
153 trivially implemented by repeating three
154 Koch curves to form an equilateral
155 triangle.
156

157 chunk (: Koch snowflake function)
158 define Koch-snowflake (x)
159 repeat 3
160 Koch-curve x
161 right-turn 120
162

163 :section Results
164

165 :doc
166 After the program is executed, the
167 following image is generated.
168

169 image "koch-snowflake.png" width: 1.25
170

171 :bibliography koch.bib

2.2 The Tangled Program

The code from Section 2.1 can be compiled with the Ginger
compiler to create an executable program or to create high
quality documentation. The executable code extracted from
this example follows.

1 define Koch-curve (x)
2 if (< x 1)
3 forward x
4 else:
5 Koch-curve (/ x 3)
6 left-turn 60
7 Koch-curve (/ x 3)
8 right-turn 120
9 Koch-curve (/ x 3)

10 left-turn 60
11 Koch-curve (/ x 3)
12

13 define Koch-snowflake (x)
14 repeat 3
15 Koch-curve x
16 right-turn 120
17

18 Koch-snowflake 100
19 save-canvas "koch-snowflake.png"

2.3 The Literate Result

While the executable code is far simpler, the literate render-
ing that follows is full of subtle detail and mental process
completely missing in the bare implementation.

Koch Snowflakes in Ginger

1. Introduction
The following program demonstrates literate programming
in Ginger in much the same spirit as the primes program that
appears in [1]. This program will generate a Koch snowflake
using turtle-style graphics. We shall begin as Knuth did by
reducing the entire program to its top-level description.

〈* 1〉 ≡
〈program to display a Koch snowflake 2〉

2. Implementation Plan
Sometimes the best beginning is the end. What we would
like to do in this program is generate a fractal snowflake
with “sides” of length 100 which we will store in a file called
koch-snowflake.png.

〈create a snowflake 2〉 ≡
Koch-snowflake 100
save-canvas "koch-snowflake.png"

While save-canvas is implemented by the graphics
library, we will need to define functions that implement
the snowflake. These include the Koch-snowflake function
we have already alluded to in the previous chunk and the
Koch-curve function on which it is based.

〈program functions 3〉 ≡
〈Koch snowflake function 7〉
〈Koch curve function 8〉

The program structure is then a simple matter of provid-
ing the function implementation and using that implementa-
tion to create the desired output.

〈program to display a Koch snowflake 2〉 ≡
〈program functions 3〉
〈create a snowflake 2〉

In the remaining sections we will delve into the process
of creating fractal curves and snowflakes.

3. Koch Curves and Bump Fractals
A Koch curve is a “bump fractal.” The general recipe for
generating a bump fractal is to draw the fractal at one level
of recursion and then replace each forward call with a
recursive call. The Koch curve is based on a single triangular
bump illustrated here:

1011

x

x/3 x/3 x/3

By thinking like a turtle we can easily come up with
the corresponding drawing code which is relative to the
horizontal measure or extent, x.

forward (/ x 3)
left-turn 60
forward (/ x 3)
right-turn 120
forward (/ x 3)
left-turn 60
forward (/ x 3)

We generate the recursive case by using the bump frac-
tal recipe and replacing the forward (/ x 3) calls with
Koch-curve (/ x 3) calls.

〈recursive case 5〉 ≡
Koch-curve (/ x 3)
left-turn 60
Koch-curve (/ x 3)
right-turn 120
Koch-curve (/ x 3)
left-turn 60
Koch-curve (/ x 3)

A Koch curve has infinite length since each recursive
step generates four new segments one-third the length of
the original segment. The total length of the curve becomes
one-third longer with each recursive step [2]. Stated more
formally, the length of the curve at step n is (4/3)n.
A related measure, the fractal dimension, describes how
how the complexity of the fractal increases as it scales.
The fractal dimension of a Koch curve is log 4/ log 3 or
approximately 1.26.

Though the fractal has infinite length and is composed of
an infinite number or segments, the resolution of our display
is finite. It is convenient to end the recursion at the smallest
representable length - a pixel. Our base case is then to simply
draw a line of length x, where x < 1.

〈base case 6〉 ≡
forward x

We combine the base case and the recursive cases to form
our Koch-curve function that generates a single Koch curve
whose horizontal measure is x:

〈Koch curve function 7〉 ≡
define Koch-curve (x)
if (< x 1)
〈base case 5〉

else:
〈recursive case 6〉

4. Koch Snowflake
The Koch-snowflake function is trivially implemented by
repeating three Koch curves to form an equilateral triangle.

〈Koch snowflake function 8〉 ≡
define Koch-snowflake (x)
repeat 3
Koch-curve x
right-turn 120

5. Results
After the program is executed, the following image is gener-
ated.

References
[1] Donald E. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.
[2] H. von Koch, “Sur une courbe continue sans tangente,
obtenue par une construction géométrique élémentaire,”
Arkiv för Matematik, vol. 1, pp. 681-704, 1904.

1012

2.4 Code Chunks

The base unit for most literate programming systems is
the chunk. In Ginger, a code chunk is a labeled piece of
code that may include ordinary Ginger code or references
to other chunks. The chunk function is used to implement
code chunks and takes two arguments: the chunk name (a
string) and the code itself (a G-expression that may include
chunk references). Chunk references are formed with the
$ function, which takes the chunk’s name as its single
argument.

Section 2.1 contains several different examples of code
chunks and chunk references. Lines 16-17 illustrate a code
chunk that simply references another code chunk. In this
case the * denotes a special code chunk that serves as the root
of the program. The chunk on lines 142-147 mixes reference
to other chunks with ordinary Ginger code.

2.5 Documentation Chunks

Documentation chunks need not be explicitly defined like
code chunks. They are simply the blocks of codes that
surround code chunks and develop the documentation. One
of the most common documentation chunks is defined with
the doc function, which takes a single G-expression argu-
ment. Other functions like title and section also produce
documentation chunks.

Superficially, many of the documentation commands look
and act like TEX or LATEX commands but often the syntax
is slightly different and Ginger’s document model has been
deeply influenced by docbook and HTML.

Code Chunk
Extractor

Source Document

Executable Code

Ginger Compiler

Documentation

Ginger Compiler

Editor

Executable

Figure 1. Source documents are transformed into docu-
mentation or code by manipulating how G-expressions are
evaluated.

2.6 Untangling programs and documentation

The code and documentation chunks described in the pre-
vious two sections connect to each other forming a web
of connections and content that ultimately defines both
the program and the description of the program. As with
other literate programming systems, Ginger must weave and
tangle this literate web to extract the usable program and
documentation. While the process illustrated in Figure 1
is similar to other literate systems its implementation is
quite different. All of the subprocesses in the middle box
happen within the Ginger compiler; each transition save
the last to either documentation or executable works on
in-memory G-expressions. G-expressions are manipulated
such that their evaluation forms one or more programs or
documentation. End users need only know that the Ginger
compiler can target executables or documentation and each
can be generated with a single invocation of the ginger
compiler command.

3. Implementation Details
Ginger’s simplifying assumptions that unify a single syntax
used for code, documentation and literate glue also simplify
the actual implementation. Since G-expressions implement
every aspect of the literate program, we can simply manip-
ulate these hierarchical data structures to generate a set of
G-expressions that generate code or a set of G-expressions
that generate documentation.

Ginger’s read function plays triple duty; parsing literate
documentation, code and chunks in a single step. Evaluating
the resulting tree directly yields to the literate result. To
extract the actual program we add each chunk definition to
a dictionary keyed with the chunk’s name. We then begin
substituting chunk references in top level nodes with their
respective definitions. We continue this substitution process
until no more substitutions can be made. The resulting tree
can then either be evaluated or compiled.

While our current work focuses on Ginger as the base
programming language, the base language can be any G-
expression based language. In other work we have exper-
imented with the development of non-functional and non-
homoiconic languages based on G-expressions. The literate
programming system described here could be used almost
transparently with such languages.

4. Challenges and Future Work
In this paper we have describe the literate programming
system used in the Ginger language. While literate pro-
gramming in Ginger shares many commonalities with other
literate programming systems it unifies the literate pro-
gramming experience with a single language, which is
based on a powerful homoiconic G-expressions syntax.
Literate programs written in Ginger use a single parser that
constructs a G-expression based tree that can be trivially
transformed such that evaluation generates either human

1013

readable documentation or computer executable code. While
this has the effect of simplifying the programming ex-
perience for users it also makes powerful inspection and
manipulation of both documentation and code possible.

Both the Ginger language and information about this
evolving work are available at http://ging3r.org.

References
[1] K. Beck. A theory of programming. Dr. Dobb’s Journal, Nov.

2007.

[2] A. Binstock. Interview with Donald Knuth. InformIT, Apr.
2008.

[3] M.-J. Dominus. POD is not literate programming.
http://www.perl.com/pub/a/tchrist/litprog.html,
Mar. 2000.

[4] R. Fjeldstad and W. Hamlen. Application program mainte-
nance study: Report to our respondents. Tutorial on Software
Maintenance, 1982.

[5] P. Grubb and A. A. Takang. Software Maintenance: Concepts
and Practice. World Scientific Publishing Company, Sept.
2003.

[6] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history of
Haskell: being lazy with class. In Proceedings of the third
ACM SIGPLAN conference on the history of programming
languages. ACM, 2007.

[7] A. L. Johnson and B. C. Johnson. Literate programming using
noweb. The Linux Journal, Oct. 1997.

[8] D. E. Knuth. Literate programming. The Computer Journal,
27(2):97–111, 1984.

[9] D. E. Knuth. Literate programming. Center for the Study of
Language and Information, Stanford, CA, USA, 1992.

[10] M. W. Mengel and P. Briggs. Nuweb home page. http:

//nuweb.sourceforge.net/.

[11] G. Milde. PyLit home page. http://pylit.berlios.de/.

[12] J. D. Palmer. Ginger: Implementing a new lisp family
syntax. In Proceedings of the 47th Annual Southeast Regional
Conference. ACM, Mar. 2009.

[13] D. L. Parnas and P. C. Clements. A rational design process:
How and why to fake it. IEEE Transactions on Software
Engineering, 12(2):251–257, 1986.

[14] V. Pieterse, D. G. Kourie, and A. Boake. Literate
programming to enhance agile methods. In J. Eckstein and
H. Baumeister, editors, XP, volume 3092 of Lecture Notes in
Computer Science, pages 250–253. Springer, 2004.

[15] N. Ramsey. Literate programming simplified. IEEE Software,
11(5):97–105, 1994.

[16] J. Raskin. Comments are more important than code. ACM
Queue, 3(2):64–ff, 2005.

[17] E. Ream. Leo home page. http://webpages.charter.

net/edreamleo/front.html.

[18] J. Sametinger. Object-oriented documentation. ACM SIG-
DOC Asterisk Journal of Computer Documentation, 18(1):3–
14, 1994.

[19] J. Sametinger and A. Stritzinger. A documentation scheme
for object-oriented software systems. ACM SIGPLAN OOPS
Messenger, 4(3):6–17, 1993.

[20] D. D. Smith. Designing Maintainable Software. Springer,
May 1999.

[21] T. A. Standish. An essay on software reuse. IEEE Trans-
actions on Software Engineering, 10(5):494–497, September
1984. Special Issue on Software Reusability.

[22] R. Williams. FunnelWeb home page. http://www.ross.

net/funnelweb/.

1014

