

Copyright is held by the author/owner(s).
OOPSLA’08, October 19-23, 2008, Nashville, Tennessee, USA.
ACM 978-1-60558-220-7/08/10.

Re-Engineering the AlgorithmA Project for Long-Term
Maintenance

Willie James
Defense Services

Environmental Systems
Research Institute

Redlands, CA

(909) 793-2853
wjames@esri.com

Phil Lucas
Department of Computer
Science and Engineering

California State University, San
Bernardino

(619) 750-9482
phlucas@acm.org

John O'Connor
Mission Systems

Northrop Grumman

 Redondo Beach, CA

(310) 813-0120
john.o'connor@ngc.com

Arturo I Concepcion
Department of Computer
Science and Engineering

California State University, San
Bernardino

(909) 537-5330
concep@csci.csusb.edu

Abstract
The AlgorithmA project has been in existence since 1991
and is used as an on-going project in the software
engineering class taught at CSUSB. In 1998, the project was
first implemented on the Internet using Java. In 2007, the
maintenance of the project was a big challenge because of
the size of the project and the complexity of the architectural
design. This paper talks about the decision process of the
software engineering class that led to the re-engineering of
the entire AlgorithmA project, which is a situation that
actually happens in a real software company. The
observations and experiences of the project manager, the
team leader of the maintenance team, and the team leader of
the Java team that implemented the re-design of the project,
are discussed in this paper. In 2008, the project was
continued by forward engineering the original functions of
AlgorithmA. The re-design followed the
Model/View/Controller (MVC) model and using the
Observer and Factory patterns, made the AlgorithmA project
maintainable and extensible for many more years to come.

Categories and Subject Descriptors D.2.9 [Software
Engineering]: Management - software management,
software development, programming teams, software
maintenance, software process. D.2.11 [Software
Engineering]: Software Architectures - information hiding,
patterns.

General Terms Management, Documentation, Design,

Human Factors.

Keywords Software engineering, software process,
software architecture, management.

1. Introduction
AlgorithmA (Algorithm Animation) is a Web-hosted
application to help computer science students learn
algorithms through visual demonstration of the data
structures and step-by-step execution of the corresponding
algorithm written in pseudocode. AlgorithmA is being
developed as an on-going project in the upper-division
software engineering class in the Department of Computer
Science & Engineering, California State University at San
Bernardino (CSUSB). The course has been conducted
annually for 17 years. It is offered in the winter quarter
which consists of 10 weeks of class with one week of finals.
A significant challenge for this project has been the difficulty
in maintaining quality control over many years when the
development team is completely changed with each class
enrollment.

There is a long standing problem of instructors teaching
what software engineering is but lacking the methods of
how to teach it effectively. The AlogrithmA project is used
as the project-centric course whose students maintain the
project written by previous students who have undergone the
course.

Shown in the Appendix is the history of the AlgorithmA
project from 1991 to 2008. From 1991 to 1996, the project
was implemented in the C language, using different graphics
packages such as cursor graphics, XGKS and SPHIGS, and
implemented in a structured approach. In 1997, the first
version in Java was implemented and for the first time
AlgorithmA, although not complete, was accessible from the
Internet. This was also the beginning of the use of the

877

object-oriented approach in the implementation phase. The
first complete Web implementation of AlgorighmA was
done in the following year, 1998.

The AlgorithmA project has been described in four papers
over the past ten years. The first paper [2] describes the
software life-cycle/software process that was used in the
development of the project. The second paper [3] talks about
what is the goal and purpose of the project and the three user
interfaces: animation, walk-through, and the authoring
system. The third paper [4] discusses the use of the object-
oriented paradigm in the project development and the fourth
paper [5] shows how the software engineering course is
taught as a mock software engineering company.

In this paper, we discuss the difficulties of maintaining
the project, which has grown to over 161,000 lines of Java
code, excluding PHP and HTML codes. In 1998, we had the
first implementation of AlgorithmA on the Web and so there
is still Java code in the current project that is as old as 1998!
This is the experience of the software engineering class of
2007 which had to deal with the dilemma: continue the
development of the current project or scrap the current
project and re-engineer the design and its implementation.
This paper discusses the software process and decisions that
led to re-engineering the project and the comparison of the
previous 2007 version to 2008 AlgorithmA in terms of
maintenance. Re-engineering of the AlgorithmA project
happened in 2007 while forward engineering happened in
2008.

2. Project Organization
The AlgorithmA 2007 project was organized into three main
functional groups, with the management team serving a
supporting role to all of the other teams. The teams were as
follows:

• The Quality Assurance Team
• The Java Implementation and Design Team
• Supporting teams

All teams in the software engineering class, including the

management team, are composed of students playing a
specific role in the software development process. The
management team, specifically, is composed of a project
manager and several staffs that support the role of the project
manager. The instructor plays the role of the CEO.

Each of these teams had a specific role in the
development and maintenance of the project. However, that
role was not completely realized until the middle of the first
iteration of the project. The separation of the project into
two iterations made possible a re-allocation of resources.
The software engineering class follows the iterative approach
in the development of the project.

2.1 The Quality Assurance Team

The QA team was originally created to implement and
design functional and unit tests for the software being
developed by the Java implementation and development
(JID) team. However, as the first iteration of the project
commenced, the role of the team was modified to focus on
legacy system maintenance. This allowed the continued use
of the previous system while the new implementation was
being designed and developed. The QA team was also
tasked with becoming familiar with the legacy system in
order to aid in the documentation effort.

2.2 The Java Implementation & Design Team

The JID team originally started as a coding and development
team, however their role in the project transformed during
the first iteration of the project into research and
development (R&D). The JID team was given the task of
implementing a new system using the functional
requirements defined by the CEO (professor) and an
architecture designed by the Software Architect and his
assistant. The Software Architect and Assistant Software
Architect were tasked with creating a scalable and
maintainable design that met all of the requirements of the
project.

The decision to have the JID team begin re-engineering
the AlgorithmA project was reached after collaboration with
members of the QA team who had performed an analysis of
the existing AlgorithmA software. It was decided that the
complexity and redundancy of the existing code was
incompatible with achieving the goals of the management
team. The re-engineering would be based on a strict
adherence to the MVC architecture using well known design
patterns. This serves the function of ensuring that the new
system stays maintainable and scalable. The MVC design
was completed by the Software Architect and Assistant
Software Architect, and the implementation was started by
the JID team. The MVC architecture was fully implemented
in the second iteration of the project, and the final version is
the one that future software engineering classes will use as a
development base.

2.3 Support Teams

There were several support teams that were created as a way
of meeting the project requirements. One of these
requirements was to create a better documented system and
to attain a Capability Maturity Model (CMM) level of 3.
The Documentation Team was created to oversee the
documentation of each facet of the project and to provide a
means of accessing that documentation. The final versions
of all documentation were distributed and published by the
Documentation Team.

Since the project required complex servers to be
available, with programs such as Subversion (SVN), Apache,

878

and other Web software installed, a Server Team was created
to oversee all server-related issues. In addition to its
principal role, the server team created a Wiki and migrated
the previous versioning system to SVN. The Wiki turned out
to be a valuable project-wide communication tool and was
used for both inter- and intra-team communications, as well
as the project-wide publishing of documentation.

The external interface of the project consists of a Web-
based Java application. A Web Team was created to re-
design and improve the external user interface. Additionally,
as part of the re-factoring and re-engineering of the system,
the Web team had to discover different methods of
implementing the completed Java class files into the external
interface. As a non-functional requirement and to ensure
accessibility, the team had to design Web interfaces that
were XHTML and CSS compliant.

3. Software Maintenance
The original organization had a quality assurance team,
responsible for designing and implementing a QA plan.
Once the idea to re-engineer the product was implemented,
we knew it would take quite a bit of time before the final
architecture was approved and implemented. The software
requirements specification (SRS) only included modules that
needed repair or completion (no new modules) and the QA
team became the software maintenance team.

3.1 Team Organization

It was decided by the management team that there would be
two iterations, one 6 weeks in length and the other 4 weeks.
The first iteration was slightly longer because it included the
prerequisites of building the company and staffing the
various teams. Before the maintenance team could begin
work on the system, the server team had to be established to
give secure access to the source code for the programmers.
Additionally, it was decided to convert the current CVS
system to SVN to gain additional functionality. Finally, the
first SRS needed to be developed before any programming
could be started. During this time, most of the class worked
independently simply running the existing system and
cataloguing bugs or discrepancies they thought should be
addressed. Advice from former students suggested we
ignore any existing bug reports. Their argument was that
with their constrained time limits, most students put their
emphasis on the SRS and few gave the bug reports much
notice. Also, due to different descriptions or different ways
to invoke the same bug, there were many bug reports that
were redundant. Finally, the SRS enhancements often
required changes that fixed existing bugs without the
programmer realizing it, so many of the bug reports were
obsolete. We took the former students advice and started
with an empty Bugzilla database. It seems likely that this
logic has been used in previous classes as well, which

eliminate the ability to do any analysis on the historical
trends of bugs.

3.2 Issues Faced During Maintenance

Each student filled out a checklist of software skills, and the
few students who categorized themselves as knowledgeable
about Java were put on the development or design teams,
leaving the maintenance team with few Java skills. For this
reason, we chose to implement Extreme Programming (XP)
pairs in which two programmers shared a module; while one
typed the other gave suggestions. Pairing students like this
allowed them to bounce ideas off each other while avoiding
most of the roadblocks that can arise when working alone.
Eighteen people on the team meant 9 XP pairs.
Coincidentally, the SRS chosen for the first iteration had 9
modules. Each team chose a module and was expected to
make whatever enhancements were required by the SRS as
well as correct the catalogued bugs.
The perfect division of labor of 9 modules between 9 XP
pairs worked well on paper. However, it left only the team
leader to do anything beyond the programming. This
became a problem when two issues needed resolving
simultaneously, and at the end of the iteration when the team
leader was responsible for 18 individual software
engineering student performance evaluations. For the
second iteration, the entire team was divided into 3 sub-
teams, each with its own lead. However, the XP concept
proved to be so popular, that the sub-team leaders still
divided their teams into XP pairs and work on iteration 2
continued as in iteration 1.

Unlike a real company, our mock company was
completely new. With the exception of some advice from
former students, there was nobody with a complete
understanding of the existing system - the original architects
graduated years ago. Each team had to discover
independently how best to proceed. When confronted with
building a new module, most chose to copy code from an
existing module and modify it appropriately. This resulted in
an “inheritance via cut and paste” system. While modules
such as the Queue, Dequeue and Linked List were practically
clones of each other, they actually shared no code, so the
lines of code count (LOC) climbed excessively with each
new module. The previous system is approximately 161,000
lines of Java code. There are 66 modules, and not
surprisingly, many modules contain very similar LOC
counts. For example, of the 66 modules, 40 have between
1000 and 2500 lines of Java code.

Like a real company, the pressure in the class was real.
To get a decent grade, the team needed to meet the
requirements of the SRS by the deadline, and with so much
time spent upfront building the company, the pressure on the
teams was to complete the 6-week iteration in 2 weeks. The
second iteration, while 4 weeks on the calendar, also needed

879

an SRS before programming could begin, so was also about
2 weeks in length. Standard coding practices and proper
methodologies were often overlooked if there were faster
ways of doing things. While it might have been possible
(and desirable) to modify an existing class to serve a new
module, fear of breaking the existing use of the class meant it
was often faster to create a new class than debug the old,
increasing the existing code in order to meet the deadline.
Additionally, the programming style of the original program
was often ignored and new enhancements were written in the
style of the new programmers. A single module could
contain several different styles. A program that was
originally written in an MVC format could have “view”
methods added to the “container” module, for example. This
latter issue was most likely the result of the time pressure,
but it was exacerbated by the limited Java experience of
many of the programmers.

It should be completely expected for programmers to
make “rookie” mistakes when programming Java (or any
language) for the first time. While a good QA team should
catch these types of errors, the team leader succumbed to the
same pressure as the programmers - produce or die (in this
case, have something presentable or get a bad grade). The
QA was left to the individual teams who were responsible
for the error in the first place. Therefore, these types of bugs
have been accumulating in the product for almost 10 years!
To make matters worse, Java continued to develop and
evolve, with new features added and old features deprecated.
The current release of AlgorithmA has so much deprecated
code that it will not compile with a Java compiler newer than
version 1.4.

3.3 The Decision to Re-Engineer

From the beginning, it was obvious that the current system
was at a breaking point. Almost all of the causes of software
aging that David Parnas identified [7] applied to
AlgorithmA. The lack of movement (deprecated code),
rookie programmers with a lack of proper QA, no access to
the original system architect and limited time constraints all
contributed to a system that only “mostly” worked. New
modules would continue to be cut and paste clones of other
modules, propagating known bugs (as well as the unknown
bugs) into each new module. Focusing on bug fixes would
not solve the problem of the lack of proper inheritance,
multiple programming styles or lack of documentation.
Refactoring was considered and has been shown to improve
source code [9], but with so many different program styles
implemented, each program would need to be refactored
independently. Maintaining consistency, then, would still be
a daunting task.

It was therefore decided that a completely new
architecture was required. An architecture that considered
not only the SRS, but allowed for future maintenance and

growth while considering the lack of experience of future
programmers.

4. Re-Engineering
What is software re-engineering? According to Linda
Rosberg [8], Engineering Section head at the Software
Assurance Technology Center for Unisys Federal Systems,
“Re-engineering is the examination, analysis, and alteration
of an existing software system to reconstitute it in a new
form. It involves re-design and re-implementation of the
software but keeping the original functions for which the
software was developed.” The job of re-engineering the
AlgorithmA Project for 2007 was to be the job of the
software architect and his assistant along with the Java team.

4.1 Team Organization

The architect and his assistant were in charge of creating the
base classes and interfaces that would be the groundwork for
implementing the MVC pattern along with the Observer and
Factory patterns. They would then pass along the results of
their work to the Java team. The Java team would design
classes and write code that would implement the higher level
interfaces. The architect would review the work of the Java
team and make sure that the coding adhered to the
appropriate design pattern. The Java team consisted of a
team leader and eight developers.

The Java team leader was responsible for assigning work
to each team member. He was to consider the experience and
skill level of each team member as he assigned the various
tasks that needed to be performed. The team leader was also
available to assist the team members via email, phone calls, a
“Java code camp”, and regular class lab time. Most of the
time assignments were handed out to individual team
members but it was not unusual for team members to work in
tandem in carrying out a particular task. The team members
would submit their code and both the Java team leader and
the software architect would review it and suggest changes if
they felt it was required.

The Java team leader at two intervals during the quarter
would do a performance evaluation on each team member.
Likewise each team member on two occasions during the
quarter would also evaluate the work of the team leader. All
evaluations were passed on to the professor in charge of the
class. He would then meet individually with each team
member, including the team leader, and discuss the results of
the evaluations.

4.2 Training the Java Team

While all the members of the Java team had previously taken
courses in C++, only a couple of team members had
experience with Java. It was decided that to help the team
members become more productive, a Java code camp would
be setup. The camp would assist team members in

880

transferring their C++ coding skills to Java. Some of the
topics that were to be covered were: Java's Single Inheritance
Structure, Implementing Java Interfaces, Applets vs.
Applications, Java Event Dispatching, and Java's Error
Handling Mechanism. In addition to these general topics, the
camp would be a place, outside of class, where team
members could ask questions and get answers regarding any
development issues they were facing.
The code camp would be held Monday thru Thursday for
five consecutive weeks. The daily sessions ranged from one
to two hours. The student developers met in the computer
labs during open lab sessions. Attendance was on a strictly
voluntary basis and it ranged from one to five team members
per session. Even though topics were pre-planned the
structure was quite informal. Different team members were
free to ask questions about specific topics that were of
interest to them. While the team leader was primarily
responsible for instruction, team members also worked
together to help one another with issues they might be
having.

4.3 Implementing the MVC Design Pattern

MVC is concerned with the separation of software
components so that they may be changed, altered, or
improved more easily. Components are grouped into the
three categories based on how they function in the
application.

Steve Burbeck notes that “the view manages the graphical
and/or textual, the controller interprets the mouse and
keyboard inputs from the user, commanding the model
and/or the view to change as appropriate, finally, the model
manages the behavior and data of the application domain,
responds to requests for information about its state (usually
from the view), and responds to instructions to change state
(usually from the controller).” [1]

As noted above the AlgorithmA project had evolved into
hundreds of classes and tens of thousands of lines of code. A
single class could be dealing with both drawing animations
to the screen and also be responsible for creating and
manipulating data. Moving the architecture to the MVC
pattern would be a giant step to organizing the code. All
classes that dealt with the view that the user would see would
be logically and physically grouped together, the same with
the classes handling the data. Then all the interaction
between the data and the view would be managed by the
controller classes and they too would be grouped together.

Figure 1 is the class diagram that became the basis for
development in the new re-engineered AlgorithmA. The
diagram shows the class structure and how the classes fit
together in the context of the MVC, the Observer, and the
Factory patterns. In Figure 1 there are five classes that
comprise the view. MasterView is the superclass and the
other four are its subclasses.

4.4 Implementing the Observer Pattern

The purpose of implementing the Observer pattern was to
ensure that the classes were loosely coupled. From the
implementation of the MVC pattern there were classes that
represented the view, the model or data, and classes that
controlled the interaction between the view and data classes.
To make the controller more efficient the Observer pattern
was used as a bridge between the data and the view. The
view classes could subscribe to be notified if the data
changed. The data or model would create a notify event if it
changed, there was no concern from the perspective of the
data classes about how change would affect the other classes.
When data changed, the view would be alerted because it
was an observer of the data's notify events. The view could
then take whatever action was deemed necessary to react to
the change in the data. This action could range from updating
the graphical user interface components, speeding up the
animations, or take no action. The key classes comprising the
observer pattern are designated in Figure 2 with the label
Observer Pattern Classes. The interfaces, Subscriber and
Publisher, are the super-classes for the classes that are
observers of events or those that publish events.

4.5 Implementing the Factory Method Pattern

The factory method pattern is a design pattern that allows for
an unknown class to be created from a superclass [6]. This
creation process happens similar to the “abstract factory”
pattern but instead of relying on a separate factory class the
existing object of a substantiated class is able to use one of
its existing methods to return a new class that implements
one of its own interfaces [6]. Users of the application would
interact with Java applets embedded in Web pages. The
Factory pattern enabled the use of a single Web page entry
point and a single Java applet. The controlling applet would
be passed parameters from the Web page. Based on those
parameters, at runtime, the applet would call the appropriate
method to create the classes needed to carry out the request.
In Figure 1 in the section labeled View Classes we see the
class MasterView. This is the class that contains the methods
needed to do the dynamic class creation at runtime. This was
a remarkable improvement over the previous approach that
used multiple Web pages and distinct separate applets to
handle each user request.

881

Fi
gu

re
 1

.
M

V
C

 a
nd

 F
ac

to
ry

 P
at

te
rn

 C
la

ss
es

882

4.6. MVC Benefits

Figure 3 shows differences in the number of lines of code
(LOC) and the number of files used for many of the
algorithms for the 2007 and 2008 versions. 2007 introduced
the new architecture, but the class of 2008 was the first to
actually implement it. In most cases, the changes in
complexity were marked. Many algorithms, such as the
Dequeue, Linked List, Queue and Stack dropped to a size 1/3
of the original, in both lines of code and number of files.
Comparing the quality of the new code to that of the old is
difficult to judge, and it is entirely possible that the new code
is more complicated to understand than the previous. While
this may be true (quality is a very subjective concept), the
new system architecture is fully documented and the same
architecture has been successively applied across several
types of algorithms. Anyone understanding one algorithm
should be able to assist others. It will be up to future
managers to ensure individual teams do not deviate but
remain committed to the current architecture. Unfortunately,
historical perspective suggests that deviations will occur and
the system will eventually grow in complexity, requiring
another reengineering iteration.

5. Lessons Learned
The students gained a better appreciation of what it means to
work together as a team. Teams were put together by the
students who were assigned roles as managers. As a result,
students found themselves having to work closely with
students that they did not know very well. They then had a
team leader appointed over them and they had no voice in
that decision. Hence there were personality conflicts between
team members and team leaders, yet the work had to be

done. There was one opportunity granted to change teams
but surprisingly only a couple of students took advantage of
the opportunity. Communication is the key to working
together and they realized this when working within their
teams, working with other teams, or working with the
management team.

 2007 2008
 LOC # Files LOC # Files
Data Structures
 Dequeue 3408 31 1109 3
 Heap 1902 15 385 5
 Linked List 3604 31 1115 3
 Priority Queue 1715 12 748 3
 Queue 3076 31 672 3
 Stack 3880 33 1200 6
Recursion
 Factorial 1690 22 337 3
 Fibonacci 1624 22 353 3
 Inorder 2002 22 524 3
 Maze 1427 10 627 4
 Post-order 1657 24 541 3
 Pre-order 2050 24 519 3
 Rule 2708 24 341 3
 Star Fractal 1490 21 497 4
 Tow. of Hanoi 1205 18 1061 5
Search
 Binary Search 2934 22 529 3
 Breadth First 2048 23 631 4
 Depth First 1946 23 535 3
 Sequential 550 3
Tree
 2-3-4 3821 26 927 5
 AVL 4025 23 1344 9
 B-Tree 4668 21 767 5
 M-Way 1542 16 1961 10
 Red-Black 2125 5 956 4

Figure 3. Comparison Between Versions

The students learned the importance of maintenance in
software engineering. They were given a code base that was
very difficult to locate and isolate bugs and quite difficult to
add new functionality. In the first week, all students were
assigned to bug patrol. There was a lot of frustration in trying
to understand the code. During the course, the students
learned that software maintenance is a large part of the
expense of a software product. This point was driven home
by working with the AlgorithmA code base, which has over
161,000 lines of code.
 Peer pressure is often times a bad influence, but this could
be one of the reasons why many of the students did over and
beyond their assigned tasks in the project. The majority of
students spent more hours in the software engineering class

Figure 2. Observer Pattern Classes

883

than in other classes they were currently taking that quarter
term.

The complexity of the task and the short time constraint
helped the students learn how to work under pressure. One
team leader would later say that this was by far the most
difficult and pressure filled quarter in his academic career.
He said it felt like a real job except there was no paycheck.
He stated that he learned to work under pressure, learned to
delegate responsibilities by evaluating skills in others and
assigning work accordingly. “When my team was feeling
overwhelmed I’d try and lift their spirits, assuring them that
we can do this. I learned that sometimes you do more than is
expected, you do what needs to be done even though it was
assigned to someone else, because in the end you’re
responsible for it being done”, he admitted.

The management team would learn lessons about
leadership along with software engineering. They had been
hand picked by the professor based upon their submitted
resumes and personal interviews. This meant that they would
have to lead other students that had tried to obtain these
positions but were turned down. There was some resentment.
Some felt that they should have been placed in management
positions How the managers would garner the support
of these students was a question each team leader had to
ask as well as answer on their own. They pulled it off. There
were no mutinies and very few complaints were launched
about their leadership style. In the end each student engineer
provided to the professor a private evaluation of the
management team members. Their leadership was rated
outstanding.

The students working on AlgorithmA 2007 understood
the importance of design and architecture. Without this step
in software engineering, large software projects cannot be
carried out in terms of implementation and maintenance. The
MVC design pattern was a good architecture to use. After
arriving at the new architecture, there was little time left
except to produce some prototypes for the sorting
algorithms. The following year, 2008, the students followed
this design in re-implementing about half of the original
functions of AlgorithmA. In other words, the students
experienced forward engineering. And now it is expected
that maintenance will be easier for the students who will
work on AlgorithmA 2009.

For instructors wishing to duplicate these experiences in
their own classrooms, we suggest the following: First, make
sure that the project is large enough and complex enough that
it cannot be done by a small team of students -- it needs the
whole class to undertake the project. Second, since the
project will take a lot of time from the students, the instructor
must find ways to motivate the students to work beyond the
hours required by the class. Third, emphasize the design and
architecture step of the software development process. This
will ensure that the project can be maintained for a long
period of time.

Peer pressure, mentioned earlier as an explanation as to
why students did above and beyond their required hours for
this class, was brought about by the competition among
teams – nobody wanted to be the only one who did not finish
their assigned module or task. In XP programming, the
students did not want to let their partner down or their team
down. But the most compelling motivation for making the
students work more is the ownership of the project. Each
software engineering class creates their own unique
interface, improves or adds more functions, or fixes major
problems or bugs. For example, it was the 2007 class that re-
engineered the project and the 2008 class that performed the
forward engineering. See the Appendix for the major
achievement of each class in software engineering.

Regarding project team organization, the basic
organization is one management team, several programming
teams, and support teams (server, Web, architectural design,
documentation, quality assurance. etc.). Care must be taken
in selecting the members of the management team. This
consists of the project manager and two to three management
staff (depending on the size of the class). The management
team must be good in both management and technologies,
and most important is that the members must be able to work
closely together and spend longer hours working on the
project than any other students. This is where ownership
comes into play – responsibility for the success or failure of
the project lies with the management team and all the rest of
the teams, most especially the project manager. The students
learn from their mistakes of what works and what does not
work. The project is implemented in two iterations and so
most mistakes are done in iteration one and corrections and
adjustments done in iteration two.

As the CEO of the mock software company, the instructor
meets the management team and some selected team leaders
after every laboratory period. This simulates the executive
meetings done to report the progress of the project to the
CEO. This meeting also discusses problems and issues
generated from the development of the project, such as
personnel, architectural design, and implementation. The
CEO holds the management team, in particular the project
manager, responsible for fulfilling the milestones specified in
the Software Project Management Plan (SPMP) document
and adhering to the software quality processes specified in
the Software Quality Assurance Plan (SQAP) document.

At the end of the class, there is a formal presentation by
all the students. This simulates the activity where they
become salespeople and try to sell the project. Each team and
each team member are given the opportunity to present the
component they did and why the project is better. To add
realism to the formal presentation, representatives from two
local software companies (ESRI and Optivus) are invited to
the occasion.

The class size varies from year to year, from 30 – 50
students. The minimum prerequisite for the software

884

engineering class is data structures, which means the
students have completed their first two courses in C++
programming. Other students may also have completed
upper-division courses such as, Web programming, server
programming, compilers, database, and programming
languages. The AlgorithmA project is written mostly in Java
and so a majority of the students coming to this class may
not know Java beforehand. Therefore a real life situation is
simulated here, learning new programming languages and
technologies when one joins a software company.

A survey was given to the class to determine their level of
skills at the beginning and end of the quarter. The survey is a
list of different programming languages, technologies, and
tools that may be used in the project. Among the important
skills are: Java proficiency, UML Rational Rose or DIA,
CVS/SVN, and Bugzilla. The survey is filled out by the
student with a 0 (if the student does not have any skill in this
item) up to 5 (if the student is at the expert level for this
item). At the beginning of the 2008 class, the survey shows a
majority of 0s and 1s on the above skills. Figure 4 shows the
average proficiencies at the end of the class.

Java Proficiency 2.85
UML/ Rational Rose or DIA 2.47
CVS/SVN 2.73
Bugzilla 2.04

Figure 4. End Proficiencies

For software engineering skills, the class was surveyed to

determine if they have learned software engineering concepts
and principles. The survey consists of the key process areas
(KPA) of the Capability Maturity Model (CMM). The
students were asked if they have used the particular KPA or
they have observed it being used by a team member or
another team. The following KPAs were selected by the
2008 class as either used or observed by 60% or more of the
class:

• Peer reviews
• Intergroup Coordination
• Software Product Engineering
• Software Process Definition
• Software project Tracking and Oversight
• Software Project Planning
• Requirements Management

6. Conclusion and Future Directions
AlgorithmA 2007 was re-engineered using the MVC model,
the observer and factory patterns. Using these design patterns
most of the sorting algorithms feature was re-implemented.
The result was amazing. The resulting source code is very
clean and completely separated the three major components

of a Java applet: the model, the view, and the controller.
Now the animation of a sorting algorithm can have any
implementation of animation, such as scatter graph or bar
graph without affecting the model or the controller
components. We can add any other sorting algorithm without
affecting the view or the controller components. And we can
change the events that trigger animation without affecting the
model or the view components.
 The experiences and decision-making process that the
software engineering class underwent are important
experiences that can only be gained by working on a real live
project, such as AlgorithmA. The students realized that more
work will be required in maintaining the project than re-
engineering the entire project.
 In AlgorithmA 2008, we re-implemented several of the
other algorithms, such as several Data Structure, Recursion,
Search and Tree algorithms using the new architecture. It
was shown that maintenance was easier because of the
adherence to the MVC design and keeping all components in
this design pattern. We plan on researching the feasibility of
using Ruby or Python to implement the authoring feature of
AlgorithmA. It is expected that the current implementation
will be more maintainable and extensible for many more
years to come. The URL for the most current version of
AlgortithmA is https://algo.ias.csusb.edu.

Appendix
Year Features and Environments

1991 Software design was completed but no
implementation.

1992 The first version was completed on two
environments: DOS and Unix on 386 machines. It
was written in C and using cursor graphics.

1993 The second version was completed on IBM
RS/6000, AIX, and using C and XGKS graphics.

1994 The third version was completed on SGI Indigo
workstations, Irix, and using SPHIGS graphics.
First implementation of the authoring system,
which includes a C source code generator.

1995 The fourth version still runs in the same
environment as previous with the added features of
hypertext interface and multimedia. An R&D team
was formed to explore OO paradigm and C++.

1996 The fifth version still runs in the same environment
as previous with more sorting algorithms and
doubly linked lists and more multimedia added.
The R&D team was successful in implementing a
prototype entirely written in C++ and using OO
approach.

1997 The first version in Java and OO approach was

885

implemented using Java 1.0 and awt. For the first
time the project was accessible on the Web. Only
the BubbleSort walkthrough and animation were
completed.

1998 AlgorithmA 98 was implemented using Java 1.0
and awt to be browsed on Netscape 4.0 or newer.

1999 AlgorithmA 99 was implemented using Java 1.2
and plug-ins for Windows 98/NT running on
Netscape 4.0 and Internet Explorer 4.01 and Solaris
appletviewer.

2000 AlgorithmA 2000 was implemented using Java 1.2,
Swing library, and plug-ins for Linux.

2001 AlgorithmA 2001 still runs in the previous
environment. Additional features include: pattern
matching algorithms, network flow algorithm,
AVL tree, B-tree, and authoring system now
includes pointer variables.

2002 AlgorithmA 2002 was implemented to run in both
Windows and Linux environments. Re-engineered
the authoring system for extensibility. It can
walkthrough an algorithm and show it's animation.

2003 The authoring system was re-engineered again to
allow for extensibility and better animation of the
user-defined pseudo-code algorithms

2004 The feature on design patterns was initiated.

2005 Mathematical algorithms were included for the first
time and included more design patterns.

2006 Introduced Alma as the cartoon character for
exploring the data structures and algorithms.

2007 Re-engineered the entire project in MVC design
pattern and started a new version of AlgorithmA.

2008 Forward engineering of project re-implementing
about half of original functions.

References
[1] Steve Burbeck, “Applications Programming in Smalltalk-

80(TM): How to use Model-View-Controller (MVC)”
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html,
1992.

[2] A.I. Concepcion, “Using an Object-Oriented Software Life-
Cycle Model in the Software Engineering Course,” In
Proceedings of the 29th ACM SIGCSE Symposium, Atlanta,
GA, Feb 1998.

[3] A.I. Concepcion, L. Cummins, E. Moran, and M. Do,
“AlgorithmA 98: An Algorithm Animation Project,” In
Proceedings of the 30th ACM SIGCSE Symposium, New
Orleans, Louisiana, Mar 1999.

[4] A.I. Concepcion, N. Leach, and A. Knight, “AlgorithmA 99:
An Experiment in Reusability and Component-Based Software
Engineering,” In Proceedings of the 31st ACM SIGCSE
Symposium, Austin, TX, Mar 2000.

[5] A.I. Concepcion, M. Bernstein, K. Fitzgerald, and J.
Macdonell, “ AlgorihmA Project: A Ten-Week Mock Software
Company,” In Proceedings of the 36th ACM SIGCSE
Symposium, St. Louis, MO, Mar 2005.

[6] Brina Ellis, Brad Myers, and Jeffrey Stylos, “The Factory
Pattern in API Design: A Usability Evaluation”,
Carnegie Mellon University,
http://www.cs.cmu.edu/~NatProg/papers/Ellis2007FactoryUsa
bility.pdf2007

[7] David L. Parnas, “Software Aging,” International Conference
on Software Engineering, Sorrento, Italy, 1994.

[8] Linda Rosenberg, “Software Re-engineering”,
http://satc.gsfc.nasa.gov/support/reengrpt.PDF

[9] Tom Mens and Tom Tourwe, “A Survey of
SoftwareLRefactoring”, IEEE Transactions on Software
Engineering, Vol 30 No 2, Feb 2004.

886

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

