
A Frapework for Scalable Dissemination-Based Systems* 
r - 

Michael Franklin 
University of Maryland 

franklinOcs.umd.edu 

* 

Stanley Zdonik 
’ Blown University 

sbzOcs.brown.edu 

Abstract 

The dramatic improvements in global interconnectivity due 
,,’ . 

to intranets, extranets, and the Internet has led to an explo- 

sion in the number and variety of new data-intensive applica- 

tions. Along with the proliferation of these new applications 

have come increased problems of scale. This is demonstrated 

by frequent delays and service, disruptions when accessing 

networked data sources. Recently, push-based techniques 

have been proposed as a solution to, ,scalability problems for 

distributed applications. This paper argues that push in- 

deed has its place, but that it is just one aspect of a much 

larger design space for distributed information systems. We 

propose the notion of a Dissemination-Based Information 

System (DBIS) which integrates a variety of data delivery 

mechanisms and information broker hierarchies. We discuss 

the properties of such systems and provide some insight into 

the architectural imperatives that will influence their design. 

The DBIS framework canserve as the basis’for development 

of a toolkit for constructing distributed information systems 

that better match the technology they employ to the char- 

acteristics of the applications they are intended to support. 

1 Introduction 

1.1 The World-Wide Wait 

The scenario is all too familiar - a major event, such as 

a national election, is underway and the latest, up-to-the 

minute results are being posted on the Web. You want to 

monitor the results for the ixnportant national races and 

for the races in your state, so you fire up your trusty web 

*This work has been partially supported by the NSF under grant 
IRI-9501353, by Rome Labs Agreement Number F30602-97-2-0241 
under ARPA order number F078, by an IBM Cooperative Gradu- 
ate Fellowship, and by research funding and equipment from Intel 
Corporation. 

browser, point it at the election result web site and wait, 

and wait; and wait.. , . ’ What’s the problem? It co&l be 
,‘, 

any number of technical glitches: a congested network, an 

overloaded server, or even a crashed server. In a larger sense, 

however, the problem is, one of scalability; the system cannot 

keep up with the heavy load caused by the (transient) surge 

in activity that occ& in such situations. : i 
Weargue that such scalability problems are the result 

of a misma!ch between the data access characteristics of the 

applicationand the technology (in this case, HTTP) used to 

implement the application. An election result server, such 
), 

as that of the preceding scenario, is an example of a data 

dissemination-oriented application. Data dissemination in- 

volves the ,delivery of data from one or more sources to a 

large set of consumers. ‘Many dissemination-oriented ap- 
‘, 

plications have data‘access characteristics that differ sig- 

nificantly from the traditional notion of client-server apple- 

catipns as ,embodied in navigational web browsing technol- , 
ogy. For example, the election result server has the follow- 

ing characteristics: 1) There is a huge population of users 

(potentially many millions) who want to access the data; 2) 

There is a tremendous degree of overlap among the interests 

of the,user population; 3) Users who are following the event 

closely are interested only in new data and changes to the 

existing data; and, 4) The amount of data that must be sent 

to most users is fairly small. When looking at these char- 

acteristics, it becomes clear that the request-response (i,c,, 

RPC), unicast (i.e., point-to-point) method of data delivery 

used by HTTP is the wrong approach for this application. 

Using request-response, each user sends requests for data 

to the server. The large audience for a popular event can 

generate huge spikes in the load at servers, resulting in long 

delays and server crashes. Compounding the situation is 

94 



that users must continually poll the server to obtain the most 

current data, resulting in multiple requests for the same data 

items from each user. In this example application, where the 

desires of a large part of the population are known a priori, 

most of these requests are unnecessary. 

The use of unicast data delivery likewise causes problems 

in the opposite direction (from servers to clients). With uni- 

cast the server is required to respond individually to each 

request, often transmitting identical data. For an applica- 

tion with many users, the costs of this repetition in terms 

of network bandwidth and server cycles can be devastating. 

1.2 Is “Push” the Answer? 

The above scenario is well-known to web users and, not sur- 

prisingly, an increasing number of products are being intro- 

duced to ‘address it. A number of these products have re- 

ceived tremendous media attention lately because they are 

based on a technology called data Push. Using data push, 

the transmission of data to users is initiated without requir- 

ing the users to explicitly request it. Examples of systems 

that employ some form of push technology include Point- 

cast, Marimba, BackWeb, and AirMedia. Push has Also 

been added to recent versions bf the major Web browsers; 

and the battle for data push standards is welI underway. 

Systems that are truly implemented with data push can 

indeed solve some of the scalability problems attributed above 

to request-response. Since users do not have to poll servers 

for new and updated data, the number of client requests that 

must be handled by a server can be’reduced dramatically. 

Simply changing from a client “Pull” model to a push model, 

however, does not solve all the problems for an application 

such as the election result server. In particular, performing 

push to millions of clients using a unicast communication 

protocol does little to address network bandwidth problems 

and still requires the server to perform substantial work for 

each client it is serving. Compounding the confusion is the 

fact that many systems that provide’a “push” interface to 

users are actually implemented using a programmed polling 

mechanism. These systems simply save the user from hav- 

ing to click, but do nothing to solve the scalability problems 

caused by the request-response approach. 

The election result server is an example of just one type 

of dissemination-oriented application. Other examples in- 

clude news and entertainment. delivery, software distribu- 

tion, traffic information systems, and navigational web brows- 

ing. These applications differ widely in the characteris- 

tics of the data involved (e.g., size, consistency constraints, 

etc.), access patterns; and communication channel proper- 

ties (e.g., symmetric vs. asymmetric, continuously or inter- 

mittently connected, etc.). No one data delivery mechanism 

can provide adequate support for the wide variety of such 

applications. 

To address this need, we are developing a general frame- 

work for describmg and ultimately constructing Dissemination- 

Based Information Systems (DBIS). In this framework, push 

vs. pull is a choice along just one of several dimensions of 

the design space for data delivery mechanisms. In this pa- 

per, we outline a number of, data delivery mechanisms and 

investigate the tradeoffs among them. The goal is to de- 

velop a flexible architecture that is capable of supporting 

a wide range of applications across many varied environ- 

ments, such as mobile networks, satellite-based systems, and 

wide-area networks. By combing the various data deliv- 

ery techniques in a way that matches the characteristics of 

the application and achieves the most efficient use of the 

available server and communication resources,’ the scalabil- 

ity and performance of dissemination-oriented applications 

can be greatly enhanced. /_. 

1.3 Overview of the Approach 

We view an integrated DBIS as a distributed system in 

which the links between the computing elements vary in 

character: from standard pull-based unicast connections to 

periodic push over a broadcast channel. A key point is that 

the character of alink should be of concern only to the nodes 

on either end. For example, the fact that an information 

provider receives its data from a broadcast link as opposed 

to a request-response protocol should make no difference to 

clients of that provider. 

In our approach, we distinguish between three types of 

nodes: (1) data sources provide the base data for the ap- 

plication; (2) clients consume this information; ana (3) in- 

formation brokers add value to information and redistribute 

it. By creating hierarchies of these nodes connected by var- 

ious data delivery mechanisms, the information flow can be’ 

tailored to the needs of many different applications. 

We aim to provide a tool!& of architectural components 

that can be used to construct a DBIS. A builder of an in- 

95 



formation reso’in-ce would make use of these components to 

construct the interfaces to their service. Example compo- 

nents include a broadcast generator, a set of dissemina- 

tion services, a client cache manager, a client prefetcher, 

a backchannel monitor, etc. 
. 

In the remainder of the paper we outline our ‘current 

ideas on the development of such a toolkit. Section 2 de- 

scribes several options for data delivery mechanisms (i.e., 

the %&s”) and discussesthe tradeoffs among them. Sec- 

tion 3 addresses the various types of nodes in a DBIS. Sec- 

tion 4 uses the DBIS model to describe several existing 

dissemination-oriented systems. Section 5 outlines issues in 

the development of a DBIS toolkit. Section 6 lists related 

work. Finally, Section 7 presents our conclusions. 

2 Options for Data Delivery 

As stated in the Introduction, a key aspect of the DBIS 

framework is that it supports a wide variety of links for data 

delivery between sources and clients. Support for different 

styles of data delivery allows a DBIS to be optimized for 

various server, client, network, data, and application prop- 

erties. 

2.1 Three Characteristics 

We identify three main characteristics that can be used to 

compare data delivery mechanisms: (1) push vs. pull; (2) 

periodic vs. aperiodic; and (3)‘unicast vs. l-to-N. Figure 1 

shows these characteristics and how several common mech- 

anisms relate to them. 

! 

2.1.1 ‘Client Pull ‘vs. Server Push 

The first distinction we make among data delivery styles is 

that of ‘Lpush vs. pull”. Current database servers and object 

repositories manage data for clients that explicitly request 

data when they require it. When a request is received at 

a server, the server locates the information of interest and 

returns it to the client, This request-responsestyle of opera- 

tion is pull-basecl- the transfer of information from servers 

to clients is initiated by a client pull. In contrast,;push-based 

data delivery involves sending information to a client popu- 

lation in advance of any specific request. With push-based 

delivery, the server initiates the transfer. 

2.1.2 Aperiodic vs. Periodic 

Both push and pull can be performed in either an ape& 

odic or periodic fashion. Aperiodic delivery is event-driven 

- a data request (for pull) or transmission (for push) is 

triggered by an event such as a user action (for pull) or 

data update (for push). In contrast, periodic delivery is 

performed according to some pre-arranged schedule. This 

schedule may be fixed, ,or may be generated with some de- 

gree of randomness.’ An application that sends out stock 

prices on a regular basis is an example of periodic push, 

whereas one that sends out stock prices only when they 

change is an example of aperiodic push. 

2.1.3 Unicast vs. l-to-N 

The third characteristic of data delivery mechanisms we 

identify is whether they are based on nnicast or l-to-N com- 

munication. With unicast communication, data items are 

sent from a data source (e.g., a single server) to one other 

machine, while l-to-N communication allows multiple ma- 

chines to receive the data sent by a data source, TWO types 

of l-to-N data delivery can be distinguished: multicast and 

broadcast. With multicast, data is sent to a specific sub- 

set of clients. In some systems mult;icast js implemented by 

sending a message to a router that, maintains the list of re- 

cipients. The router reroutes the message to each member 

of the list. Since the list of recipients is known, is pos- 

sible to make multicast reliable; that is, network protocols 

can be developed ,that guarantee the eventual delivery of 

the message to alI clients that should receive it. In contrast, 

broadcasting sends information over a medium on which an 

unidentified and unbounded set of clients can listen. This 

differs from multicast in that the clients who may receive 

the data ,are not known a priori. 

2.2 Classification of Delivery Mechanisms 

It is possible to classify some existing, data delivery mech- 

anisms using the characteristics, described above‘ Such a 

classification is shown in Figure 1. We discuss several of the 

leaves in this diagram below. /I 

‘For the purposes of this discussion, we do not distinguish botweon 
fixed and randomized schedules. Such a distinction is importnnt in 
certain applications. For example, algorithms for conserving energy 
in mobileenvironments proposed by Imielinski ot al. [ImieSlb] dopend 
on a strict schedule to allow mobile clients to “doze” during periods 
when no data of interest to them will be brondcast. 

96 



Pull ‘Push 

Aperiodic 

U nicast 1 -to-N 

Periodic 

Figure 1: Data Delivery Options 

Request/Response - Traditional request/response mech- 

anisms use aperiodic pull over a unicast connection. If in- 

stead, a l-to-N connection is used, then clients can “snoop” 

on the requests made by other clients, and obtain data that 

they haven’t explicitly asked for. 

Polling - In some applications, such as remote sensing, 

a system may periodically send requests to other sites to ob- 

tain status information or to detect changed values. If the 

information is returned over a l-to-N link, then as with re- 

quest/response, other clients can snoop to obtain data items 

as they go by., 

Publish/Subscribe - Publish/subscribe protocols are 

becoming a popular way to disseminate information in a 

network [Oki93, Yan95, Glan96]. Publish/subscribe is push- 

based; data flow is initiated by the data sources, and is ape- 

riodic, as there is no predefined schedule for sending data. 

Such protocols are typically performed in a l-to-N fashion, 

but a similar protocol can be used over a unicast channel, 

as is done for triggers in active database systems. 

Broadcast Disks - Periodic push,has been used for data 

dissemination in many systems such as TeleText [Amma85, 

Wong88], DataCycle [Herm87, Bowe92], Broadcast Disks 

[Acha95a, Acha95b] and mobile databases [Imie94a]. Clients 

needing access to a data item that is pushed periodically can 

wait until the item appears. As with aperiodic push, peri- 

odic push can also be used with both unicast and l-to-N 

channels, but we believe that l-to-N is likely to be much 

more prevalent. 

2.3 Some Example Tradeoffs 

As can be seen from the preceding discussion, the design 

space for data delivery mechanisms is quite large. Choos- 

ing the proper mechanism (or combination of them) to use 

for a given link requires an understanding of the tradeoffs 

among them. In a recent paper, we studied one such set 

of tradeoffs; namely, those between broadcasting data using 

periodic push (Broadcast Disks) and aperiodic pull (request- 

response with snooping) [Acha97]. Here, we briefly discuss 

some observations from that study. 

The tradeoffs between push and pull in general revolve 

around the costs of initiating the transfer of data. A pull- 

based approach requires the use of a backchannel for each 

request. Furthermore, as described in the Introduction, the 

server must be interrupted continuously to deal with such 

requests and has limited flexibility in scheduling the order of 

data delivery. Also, the information that clients can obtain 

from a server is limited to that which the clients know to 

ask for. Thus, new data items or updates to existing data 

items may go unnoticed at clients unless they periodically 

poll the server. 

Push-based approaches, in contrast, avoid the issues iden- 

tified for client-pull, but have the problem of deciding which 

data to send to clients in the absence of specific requests. 

Clearly, sending irrelevant data to clients is a waste of re- 

sources. A more serious problem, however, is that in the 

absence of requests it is possible that the servers will not 

deliver the specifii: data needed by clients in a timely fashion 

(if ever). Thus, the usefulness of server push is dependent 

on the ability of a server to accurately predict the needs of 

clients. One solution to this problem is to allow the ilients 

to provide a profile of their interests to the servers. As men: 

tioned above, Publish/subscribe protocols are one popular 

mechanism for providing such profiles. . 

In [Acha97] we studied a hybrid push/pull broadcast sys- 

tem. In this system, a broadcast server is responsible for 

allocating a fixed broadcast bandwidth between data’items 

(pages) that are broadcast according to a fixed schedule (i.e., 

periodic push) and pages that are broadcast in response to 

97 



client requests sent over a backchannel (i.e., aperiodic pull). 
-- 

The fundamental performance’ tradeoff between these two 

approaches can be seen in in Figure 2, which shows results 

from [Acha97]‘. The x-axis in the figure models the number 

of clients (all having identical access rates and distributions) 

that are accessing data from the broadcast. -Thus, at a value 

of 250, the broadcast is serving 25 times as many clients th% 

at a value of 10. The y-axis indicates the average number 

of items that a client must watch go by on the broadcast 

before the item it wants appears. 

600 

25 50 100 250 
Think Time Ratio 

Figure 2: Push vs. Pull for Broadcast 

The flat line in the figure (marked by diamonds) indi- 

cates the performance of a pure push approach, in which all 

data, is broadcast repeatedly with no requests sent by the 

clients. This figure was generated using a skewed (Zipfian) 

access pattern over 1000 items. The broadcast schedule,used 

by the push approach was tailored to support a skewed ac- 

cess pattern through the use of Broadcast Disks which allow 

the frequency of broadcast for an item to be based on that 

item’s popularity [Achaglia, Acha95b]. As can be seen in 

the figure, the performance of pure push is independent of 

the number of clients listening’to the broadcast here. This 

is a fundamental property of data broadcast using periodic 

Pus! T if there is a large overlap in the interests of clients, 

it provides tremendous scalability in terms of client popula- 

tion. 

The other curve in the figure (marked by boxes) shows 

the performance of a pull-based approach, in which clients 

submit requests to the server via the backchannel, and the 

server broadcasts the requested pages in FIFO order.’ As 

can be seen in the figure, the pull-based approach exhibits 

an S-shaped behavior - it provides extremely fast response 

time for a lightly loaded server, but as the server becomes 

loaded, its performance degrades, until it ultimately stabi- 

lizes (in this case, at a value of 500 items, or half the size of 

the database being broadcast here). 

The behavior of aperiodic pull in this case can be ex- 

plained as follows. With a lightly loaded system, the server 

is typically idle so it can respond immediately when a re- 

quest is received. As the load increases, however, the server 

saturates and becomes less responsive. Compared to peri- 

odic push, it is clear that aperiodic pull demonstrates less 

scalability in this case. It is, however, important to note 

that aperiodic pull over a unicast channel would be far less 

s&able - wait time would increase in an unbounded fash- 

ion as the server approached saturation. In contrast US- 

ing broadcast, the performance of aperiodic pull eventually 

flattens out in this case, because of the overlap in the in- 

terests of the client population. Once the server reaches the 

state where all data items are in the FIFO queue, additional 

clients receive all of their data by simply “snooping” on the 

broadcast. In this case the performance of aperiodic pull 

at saturation is worse than that of periodic push, because 

the broadcast schedule generated by the FIFO discipline is 

less well suited to the access pattern than the pre-computed 

schedule used by periodic push. As discussed in [Acba9’i’], 

the problems of pull can be exacerbated if the server drops 

client requests when it becomes overloaded. 

The tradeoffs described above give an indication of the 

kinds of concerns that must be balanced when choosing the 

proper data delivery mechanism for a given situation. An- 

other set of options arises in the organiiation of the nodes 

for a DBIS, as described in the following section. 

3 Design Options for Nodes 

While the discussion so far has focused on the ways in which 

data is communicated between computing devices, the nodes 

in a Dissemination-Based Information System play a crucial 

role as well: the nodes provide the glue that pastes var- 

ious data distribution schemes together. A DBIS toolkit 

should contain classes that model some of the basic features 

2We briefly summarize these results here, interested readers are 
referred to [Acha97jfor more details 

3Because a single broadcast of an item satisfies all clients wniting 
fok that item, we do not enqueue a request for an item that IS already 
in the FIFO queue. 

98 



of nodes. This section outlines some of those features. 

3.1 Classification 

In an integrated DBIS;there will be three types of nodes: 

(1) data sources, which provide the base data that is to be I 
disseminated; (2) clients, which are net consumers of infor- 

mation; and (3) f in ormation brokers, that acquire informa- 

tion from other sources, add value to that information (e.g., 

some additional computation or organizational structure) 

and then distribute this information to other consumers. By 

creating hierarchies of brokers, information delivery can be 

tailored to the needs of many different users. 

Information brokers perform many important functions 

in our architecture. While the previous discussion focused 

primarily on different modes of data delivery, the brokers 

provide the glue that binds these modes together. It is typ- 

ically the expected usage patterns of the brokers that will 

drive the selection of which mode of delivery to use. For 

example, a broker that typically is very heavily loaded with 

requests could be an excellent candidate for a push-based 

delivery mechanism to its clients. 

As we move upstream in the data delivery chain, brokers 

look like data sources to their clients. Receivers of informa- 

tion cannot detect the details of interconnections any further 

upstream than their immediate predecessor. This principle 

of network transparencyallows data delivery mechanisms to 

change without having global impact. Suppose that node B 

is pulling data values from node A on demand. Further, sup- 

pose that node C is listening to a cyclic broadcast from node 

B which includes values that B has pulled from A. Node 

C will not have to change its data gathering strategy if A 

begins to push values to B; changes in links are negotiated 

purely between the two nodes involved. 

Of course, nothing is ever simple. In some cases, brokers 

can also be sources by maintaining their own databases. In 

this case, the hybrid broker can add data of its own to what 

it receives from its upstream counterparts. The principle 

of network transparency also protects clients from having 

to depend on this situation. A data source, be it a pure 

source, a broker, or a hybrid source, only guarantees that it 

can provide specific data - independently of where it comes 

from. 

3.2 Caching 

While nodes can perform many functions, the most ubiqui- 

tous data management facility is caching. Unlike caching in 

client-server systems, the path fron’i data sources to a client 

can be of length greater than two. Thus, items might be 

cached at any of many points along the data path in the 

network. Thus, caching in this context reseinbles the kind 

of proxy caching that one might find in a wide-area network 

(e.g., the Internet). 

While the pioblems here are very similar to those of 

any proxy caching scheme, the broad view of data move- 

ment available in a DBIS makes the potential solutions much 

richer. For example, if there are copies of a particular data 

item in multiple caches, there will always be an issue of 

how those copies are refreshed when the primary copy is 

updated. One solution is to send invalidations to each client 

cache manager. An invalidation message results in the purge 

of the item from the cache. ‘Alternatively,’ the new value 

could be propagated to the’client cache managers. For typ- 

ical client/server systems, invalidation is usually preferable. 

However, in our broadcast disk studies [Acha96b] we showed 

that for periodic ~broadcast, performance can often be im- 

proved using propagation. 

The decision about how current to keep the cached copies 

is the same as in other caching mechanisms. ’ Once that has 

been decided, the means by which it is achieved can vary. 

In a DBIS, we could propagate (i.e., push) the changes to 

the clients or wait for the client to request the item again 

(i.e., pull). In the latter case, if a cache manager cares about 

keeping items very’current, it will have to poll the state of 

the object often. It is interesting to note that if the data 

delivery mechanism in a DBIS changes, the means by which 

updates are propa,gated (or not) may also need to change. 

Deciding which object to evict from the ‘cache when a 

new candidate arrives is another issue that must be ad- 

dressed by any cache manager. Many systems use some 

form of LRU for this purpose. We have shown in previous 

work [Achagga] ‘that for some styles of data delivery (e.g., 

broadcast disks), LRU is not the most.effective choice. For 

cyclic data delivery, in which different, items can have dif- 

ferent arrival frequencies, a cost-based caching scheme per- 

forms significantly better. 

In a DBIS, the modes of data delivery might change. 

In such an environment, the caching policy could change 

99 



to match the prevailing conditions. We will need heuristics 

for deciding the appropriate caching policies for a particular 

configuration of distributed components. As an example, if 

node B initially pulls data from node ,A, B might reasonably 

use LRU as its caching policy. When A creates a broadcast , 

disk which is read ,by ?, B might then change its caching 

policy to a cost based scheme similar to the one that we 

propose in [AchagEia]. , 

3.3 Value-Added Nodes 
/ 

Some nodes may also add value to data as it passes through, 

by performing specific computations on that data. The com- 

putations can be simple or complex, or they can act on single 

values or sets of values. Other nodes may simply pass values 

on to other nodes. 

As an example, suppose node, A pushes stock prices for 

Fortune 500 companies that are picked up by node B. Node 

B~keeps a database of previous stock prices and when a new 

price for the day is picked up from node A, it calculates the 

difference between the most current price and yesterday’s 

close, and pushes this value out to yet another community. 

Node B is a push-based, value-added server.,-,:Of course, it 

need not be based on push. Other clients could pull stock 

deviations from B as well. 

Another kind of value-added service that a node can per- 

form is merging of values from multiple sources. Merging can 

occur in several, ways. The first involves multiple sources 

that maintain similar information. The merge node can 

make the most reliable or most current version of a value 

available, 1 .Altematively, multiple sources may maintain a 

set, of values which, the merge node, combines to a single 

value. An example of this.might involve nod.es that maintain 

demographic information for towns including their current 

population. Another node may read these values and con- 

solidate them into a single population figure for the state. 

Nodes can also perform the service of filtering. A filtering 

node will receive a large volume of. data from another node, 

only; some fraction of which it makes available to its clients. 

For example, a node, could receive all stock prices from the 

NYSE and provide information about only the Fortune 500 

stocks to its clients. 

3.4 Recoverable Nodes 

Often it will be useful to make guarantees about the reliabil- 

ity of some node. Thus, nodes that implement some degree 

of recoverability will be a useful component in a DBIS. Con- 

sider a node that must guarantee the delivery of the latest 

version’of IBM’s stock price. Such a node must not lose its 

information in the event of a failure. That is, if the informa- 

tion was received, then the node must be able to guarantee 

that it will eventually be made available to its clients. ’ 

Of course, ‘having recoverable brokers is not enough on 

its own to guarantee that nodes will not miss disseminated 

information while they are down. In order to address this 

issue, a scheme like reliable multicasting would have to be 

‘used. Reliable multicasting will eventually deliver all mes- 

sages, but it cannot make real-time guarantees about when 

an object will arrive. 

3.5 The Burden of Push . 

As mentioned in Section 2.3, any node that provides a push 

service must do so on the basis of some knowledge of the 

access patterns of its client base. If the node pushes data 

that few clients care about, then bandwidth is wasted. The 

trick is to broadcast items that are of interest to a large 

segment of the user‘ community. This, of course, is only 

possible if there is high commonality of interest for at least 

some data items. 

In order to optimize its push schedule, the server must 

rely on profiles of user needs. Profiles could be learned by 

servers if clients provide feedback about the effectiveness of 

the push schedule. Alternatively, a client could communi- 

cate a profile to the server at appropriate times, such as 

when it begins to listen to the push, at regularly scheduled 

intervals, or whenever the client notices that the current 

schedule deviates significantly from what it would like to 

see. 

What would such a profile look like? A profile is very 

much like a continuously executing query [Terr92]. In other 

words, ‘it is a predicate that indicates the items that the 

client would like to see. It is continuously executing because 

the server will push items as long as there are currently valid 

profiles that match the items. 

Pro&s can be interpreted to mean that whenever a new 

item is added to the database that matches a profile, the 

owner of that profile will receive the new data. On the 

100 



other hand, the profile could be treated more as a hint to 

the server indicating interest with no requirement on the 

server’s part to send matching items. In this case, the server 

may choose to conserve bandwidth and not send a matching 

item in order to best serve the client community as a whole. 

4 Systems Viewed as DBIS 

In this section, we describe some existing systems using the 

concepts of our DBIS framework. 

4.1 Pointcast 

Pointcast is a dissemination service that has attracted a 

large population of users. It obtains profiles from users 

that describe their interests, and then uses these profiles 

to assemble and update customized “newspapers” from a 

database of current stories. 

The Pointcast system has been touted as one of the first 

push-based systems. This is not exactly true. Other sys- 

tems such as Teletex [Amma35], BCS at MIT [Gifl90], and 

Datacycle Berm871 used push long before Pointcast. How- 

ever, Pointcast was one of the first push-based systems to 

achieve wide-spread use. It is instructive, therefore, to see 

exactly how push is used in Pointcast 1.0 4. 

From the point of view of a DBIS, the use of push within 

Pointcast is extremely limited. In fact, in terms of the net- 

work architecture, push is non-existent; that is, the flow 

of requests and responses within the global’architecture is 

pull-based. The Pointcast client on a user’s workstation 

generates requests for news stories that match the user’s 

profile. For example, if the user indicates an interest in’ the 

computer industry, the Pointcast client polls the Pointcast 

server for news stories with the keyword “computer indus- 

try” whenever the Pointcast screen saver is enabled. All of 

these requests can generate lots of network traffic. 

So, where’s the push? If we look at Figure 3, we see 

that there are essentially two processes in the client ma- 

chine. One of these processes is responsible for pulling the 

latest news stories down to the user’s machine, and the 

other is responsible for displaying these stories on the user’s 

screen. The push really occurs between these two compo- 

nents. When the pull-based story acquisition module gets 

a new story, it pushes it to the screen manager. From the 

4 Hereafter, referred to as Pointcast. 

user’s point of view, this is push because things are happen- 

ing to the screen without any intervention. The use of push 

as a technique for managing heavy network loads, however, 

is not part of the design. 

4.2 Broadcast Disks 

Our own work on broadcast disks is based on a model of 

data delivery that is virtually the direct opposite of that 

described above for Pointcast (see Figure 4). 

- In our model, an application process on the client work- 

station behaves exactly as it would in a traditional pull- 

based environment. It generates pull requests as it needs 

data and blocks until that data is received. 

The server, however, proactively sends data to the client 

community in advance of any request (i.e., push). A process 

on the client listens to the broadcast stream and picks up 

data items for which the application might be waiting. Thus, 

the places where pushes and pulls happen have been inverted 

over the Pointcast case. 

It should be noted that in the broadcast disk case, the 

push is periodic and is scheduled by the server. In the Point- 

cast case, the pull is also periodic, but the interval is set by 

the user. 

4.3 SIFT 

The SIFT pan951 system was developed at Stanford Univer- 

sity as a way to disseminate documents to a user community. 

SIFT combines data management ideas from information 

retrieval with a publish/subscribe model for dissemination. 

We describe the way the publish/subscribe model works in 

terms of our DBIS architecture. 

Looking at Figure 5, we see three active components: the 

document source, the SIPT server, and a SIFT client (one of 

potentially many). The connection between the document 

source and the SIFT server’(on the left side of the figure) is 

push-based, ‘in&cast, and aperiodic. The document .sonrce 

could alternatively deliver new documents through a I-to- 

n broadcast medium, sUch as a satellite feed, if there were 

multiple interested recipients (SIFT servers or otherwise). 

A backchannel (not shown in the figure), is used only to set 

up the,initiaI connection. Thereafter, the document source 

forwards all new documents to the SIFT server. There is no 

filtering. that happens on this link. We could think of the 

profile held at the document source for the SIFT server as 

101 



Pointcast 1 .O 

Figure 3: Poiutcsst 1.0 

,,,-. 
. Figure.4 Broadcast Disks 

being send everything. 

. 

The connection between the SIFT server and a given 

SIFT client (shown on the right side of the figure) is also 

push-based, unicast, and aperiodic, In this case,, though, the 

client profile that is held at the SIFT server is customized for 

each client. It consists,of a series of keywords and weights 

that describe documents of interest to that’client. The SIFT 

server provides novel technology for indexing client profiles. 

Such an index is used for matching profiles against newly ar- 

riving documents. This indexing technique allows the server 

to accommodate a large client population with reasonable 

performance. The original, SIFT prototype disseminated en- 

tire articles to clients. With the existence of the web, it 

becomes possible to send short’ article descriptions plus the 

corresponding URLs to conserve, bandwidth. 

It should be noted that clients get exactly what their 

profiles specify and nothing more. This is in contrast to a l- 

to+ (broadcast) style of delivery in which all clients see the 

same information stream. It is the server’s responsibility to 

optimize this stream to suit the needs of the largest number 

of users, It is unlikely that such a stream will be optimal 

for any one user. , 

5 Putting it All Together 

In the preceding discussion, we described a vision of how dis- 

tributed information systems should be built in the future. 

Our framework focused on techniques for delivering data in 

’ wide-area ‘network settings in which nodes and links reflect 

extreme variation in their operating parameters. By adjust- 

ing the delivery mechanism to match these characteristics, 

we believe that we can achieve high performance and scala- 

bility without the need to invest in additional hardware. In 

this section, we briefly discuss our approach to this problem 

and outline some of the open research questions. 

5.1 Toolkit Approach 

We intend to realize our solutions to the problems of designn- 

ing a DBIS through a toolkit that provides the proper com- 

ponents from which any DBIS could be built. This toolkit 

can be thought of as a set of object classes that support 
,’ 

concepts such as network connections and local caches. 

A key part of the toolkit will be a set of classes to allow 

distributed nodes to negotiate in order to establish a proper 

connection. This is required at several levels. At the highest 

level, the nodes must agree on how data is to be transferred, 

A client node that is relying on data from some server must 

know whether that server will be using push .or accepting 

requests. There are also handshaking protocols that must 

occur at lower levels. For example, if a push-based broadcast 

connection is to be established in an Ethernet, the nodes 

must agree on which Ethernet address will be used for that 

broadcast. The parties must also agree on the parameters 

that will be used to configure that broadcast. For example, 

if it is a broadcast disk, the frequency of broadcast of each 

item is of interest to the clients. 

The r.&efuhiess of a toolkit will rely on the precise defi- 

nition of the DBIS classes. These classes must be of general 

utility. Also, as indicated in Section 2.3, the defmition of 

102 



Figure 5: High-Level SIFT Architecture 

these classes must be based on a substantial body of exper- 

imental results that help to delineate the sometimes subtle 

tradeoffs. 

5.2 Dynamic Reconfiguration 

A network can be characterized by prevailing loads on the 

nodes and the connections. This characterization changes 

rapidly, and a reiponsive DBIS must be able to adapt to 

these changes. Thus, our vision of a fully functional DBIS 

includes facilities to support the dynamic recon@uration of 

the data delivery mechanisms. 

A key element of a reconfiguration facility is a statis- 

tics gathering component that collects the right performance 

numbers and that can intelligently- select among the avail- 

able delivery options. This is not a simple matter. Our pre- 

vious experiments in the area of broadcast disks has shown 

that the design space here is very complex with many places 

in which intuitions from more traditional distributed system 

design often produces poor results. 

5.3 Some Design Issues 

In addition to the plumbing issues that we have discussed 

so far, there he some higher-level issues that must be ad- 

dressed in developing an integrated DBIS. In the folIowing, 

we briefly outline some of these issues: 

l Bandwidth Allocation - For a given link, policies are 

needed for allocating bandwidth among the various 

data delivery mechanisms. 

b Push Scheduling - For the push-based approaches, in- 

telligent scheduling is necessary in order to obtain the 

maximal benefit from the available bandwidth. Schedul- 

ing must also take into account the likelihood and 

distribution of transmission errors. Also, for periodic 

push, the broadcast should include index and/or sched- 

ule information that describes the objects that are to 

appear in the upcoming broadcast. Such information 

flows clients to minimize the amount of time and/or 

processing they devote to mor&&ing the broadcast 

and can aid in storage management decisions. 

b Uient Storage ,Management - Clients must allocate 

their storage resources among the data obtained through 

the various delivery mechanisms. Furthermore, as stated 

earlier, different methods of data delivery impose dif- 

~ fering demands on the policies for client ,c+ing and 

prefetching. Furthermore, in some cases (e.g., mobil- 

ity), storage Tanagement must also take into account 

the likelihood of disconnection and of data becoming 

stale due to updates or, expiration. 

l User Profiles and Feedback - Profiles of client needs are 

key for making allocati’on, scheduling and other policy 

decisions ‘at both clients and servers. The form of the 

profiles will be important to achieve the most effective 

use of the medium. For example, access probabilities 

are one specific representation of the client needs. The 

server must also have effective models for combining 

client prbflks. The integration of a backchannelfiom 

clients to servers is needed to allow for updating pro- 

files &nd making additional requests. 

l Security Issues - Another set of important issues that 

must be addressed revolves around the security and 

privacy concerns that arise in any distributed infor- 

mation system. The emphasis on one-to-N .communi- 

cation in a DBIS, however, increases the significance 

of such issues. 

l Consistency Issues - The final issue we list here is the 

maintenance of data consistency, partic&& in the 

face of possibly intermittent connection. Two types of 

consistency must be considered. First, guarantees on 

the timeliness of individual data items must be pro- 

vided if required by the clients. Second, mutual con- 

sistency across multiple items will be required in some 

103 



instances. All types of consistency must be provided 

in a flexible manner; so that tradeoffs between consis- 

tency and responsiveness can be made on a case-by- 

case basis. 

6 Related Work 

Work on distributed object computing has generated many 

important standards and systems. CORBA [OMG91] and 

DCE [OSF94], for example, are two important approaches 

to system interoperability. This work is not incompatible 

with the notion of a DBIS. A DBIS can be thought of as 

infrastructure for such object-oriented middleware. 

There is much previous work that relates to the archi- 

tectural issues of a DBIS. The brief discussion that follows 

samples some of the work that is most related to the issues 

presented in this paper. ’ 

The management of data in distributed settings has a 

long history. The preponderance of previous work assumes 

that data is requested when needed (i.e., pull) and that 

servers respond to these requests in an orderly fashion. Some 

of this work has occurred in a clientlserver database setting 

Fan96a] while other work has been done in the distributed 

file system context [LevySO]. There has been,a lot of work 

on caching in these environments, much of which has fo- 

cused on the maintenance of cache consistency in the face 

of updates. 

More recently, there has been work#on data management 

issues for wireless environments P<atz94]. Some .of work 

in this area has focused on satellite-based systems [Dao96, 

Dire961 in which the downstream bandwidth is quite high. 

The idea of the publish/subscribe model as a dissemina- 

tion mechanism has been used in many contexts including 

SIFT Cyan951 and the Information Bus[Oki93]. 

There has also been work on broadcasting in Teletex sys- 

tems [Amma85, WongSS]. [Wong88] presents an overview 

of some of the analytical studies on one-way, two-way and 

hybrid broadcast in this framework. 

The Datacycle Project [Bowe92, Her-m871 at Bellcore in- 

vestigated the notion of using arepetitive broadcast medium 

for database storage and query processing. An early ef- 

fort in information broadcasting, the Boston Community 

Information System (BCIS) is described in [Gi690]. BCIS 

broadcast news articles and information over an FM chan- 

nel to clients with personal computers specially equipped 

with radio receivers. Both Datacycle and BCIS used a flat 

broadcast (i.e., all items have the same frequency). The mo- 

bility group at Rutgers [Imie94a, Imie94b] has done sign%- 

cant work on data broadcasting in mobile environments. A 

main focus of their work has been to investigate novel ways 

of indexing in order to reduce power consumption at the 

mobile clients. Some recent applications of dissemination- 

based systems include information dissemination on the In- 

ternet van95, Best96], and Advanced Traveler Information 

Systems [Shek96]. 

Our work on Broadcast Disks differs from these in that 

we consider multi-level disks and their relationship to cache 

management. In [Acha95a], we proposed an algorithm to 

generate Broadcast Disk programs and demonstrated the 

need for cost-based caching in this environment Recently, 

[Bar-u961 gave an algorithm to determine the parameters 

controlling a broadcast program. In [Acha96a], we showed 

how opportunistic prefetching by the client can significantly 

improve performance over demand-driven caching. More re- 

cently, in [AchagGb], we studied the influence of volatile data 

on client performance and showed that the Broadcast Disk 

environment can be made very robust in the presence of UP 

dates. In [Acha97], we explored the tradeoff between cyclic 

broadcast and pull. 

7 Conclusions 

The increasing ability to interconnect computers through 

internetworking, mobile and wireless networks, and high- 

bandwidth content delivery to the home, has resulted in 

a proliferation of dissemination-oriented applications, A 

key attribute of many such applications is their huge scale. 

These applications present new challenges for data mannge 

ment throughout all components of a distributed informa- 

tion system. We have proposed the notion of a disseminotion- 

based information system that integrates many different data 

delivery mechanisms and types of information brokers. We 

described some of the unique aspects of such systems and 

discussed how several existing dissemination-based architec- 

tures fit in to the DBIS &odel. 

The ideas presented in this paper have grown out of our 

previous work on the Broadcast Disks paradigm for data 

delivery. A key lesson from that work was the importance 

of applying a data management perspective to distributed 

systems architecture issues. We are currently completing 

104 



a prototype that combines the push-based Broadcast Disks 

with a pull-based broadcast model. We view that proto- 

type as the first step in the development of a generic DBIS 

toolkit that will support the creation of a variety of large- 

scale dissemination-based applications across several differ- 

ent communication media. 

Acknowledgments 

We would like to thank Swarup Acharya for his contribu- 

tions to these ideas through the development of the Broad- 

cast Disks paradigm and Demet Aksoy who has provided 

us with important insights into the properties of broadcast 

scheduling. 

References 

[Acha95a] S. Acharya, R. Alonso, M. Franklin, S. Zdonik, 
“Broadcast Disks: Data Management for Asymmetric 
Communication Environments”, Proc. ACM SIGMOD 
Conf., San Jose, CA, May, 1995. 

., 
[Acha95b] S. 

Acharya, M. Franklin, S. Zdonik, “Dissemination-based 
Data Delivery Using Broadcast Disks”, IEEE Personal 
Communications, 2(6), December, 1995. 

[Acha96a] S. Acharya, M. Franklin, S. Zdonik, “Prefetching 
from a Broadcast Disk”, 12th International Conference 
on Data Engineering, New Orleans, LA, February, 1996. 

[Acha96b] S. Acharya, M. Franklin, S. Zdonik, ‘LDissemi- 
nating Updates on Broadcast Disks”, Proc. 22”d VLDB 
Conf., Bombay, India, September, 1996. 

[Acha97] S. Acharya, M. l&mklin, S. Zdonik, “Balancing 
Push and Pull for Data Broadcast”, Proc. A CM SIGMOD 
Conf., Tucson, AZ, May, 1997. 

[Amma85] M. Ammar, J. Wong, “The Design of Teletext 
Broadcast Cycles”, Perf. Evaluation, 5 (1985). 

paru96] S. Baruah and A. Bestavros, “Pinwheel Scheduling 
for Fault-tolerant Broadcast Disks in Real-time Database 
Systems”, Technical Report TR-96-023, Boston Univer- 
sity, August, 1996. 

[Best961 A. Bestavros, C. Cullha, ‘Server-initiated Docu- 
ment Dissemination for the WWW”, IEEE Data Engi- 
neering Bulletin, 19(3), September, 1996. 

[Bowe92] T. Bowen, G. Gopal, G. Herman, T. Hickey, I<. 
Lee, W. Mansfield, J. Raitz, A. Weinrib, “The Datacycle 
Architecture”, CACM, 35(12), December, 1992. 

[CareSl] M. Carey, M. Franklin! M. Livny, E. Shekita; 
“Data Caching Tradeoffs in Chent-Server DBMS Archi- 
tectures”, Proc. ACM SIG&fOD Conf., Denver, June, 
1991. 

[Dao96] S. Dao, B. Perry, “Information Dissemination in 
Hybrid Satellite/Terrestrial Networks”, IEEE Data Engi- 
neering Bulletin, 19(3), September, 1996. 

[Dire961 Hughes Network Systems, DirecPC Home Page, 
http://ww.direcpc.com/, Oct,1996. 

prik94] H. Erikson,“‘MBONE: The Multicast Backbone”, 
CACM, 37(8), August, 1994. 

Fran96a] M. Franklin, Client Data Caching: A Foundation 
for High Performance Object Database Systems, Kluwer 
Academic Publishers, Boston, MA, February, 1996. 

man96b] M. Frankhn, S. Zdonik, “Dissemination-Based In- 
formation Systems”, IEEE Data Engineering Bulletin, 
19(3), September, 1996. 

[Gif&?OJ D. Gifford, “Polychannel Systems for Mass Digital 
Communication”, CACM, 33(2), February, 1990. 

[Glan96] D. Glance, “Multicast Support for Data Dissem- 
ination in OrbixTalk”, IEEE Data Engineering Bulletin, 
19(3), September, 1996. 

[Herm87] G.’ Herman, G: Gopal, I<. Lee, A. Weinrib 
“The Datacycle Architecture for Very High Throughput 
Database Systems”, Proc. ACM SIGMOD Conf., San 
Francisco, CA, May, 1987. 

[Imie94a] T. Imielinski, ,B. Badrinath, “Mobile Wireless 
Computing: Challenges in Data Management”, CACM, 
37(10), October, 1994. 3 

[Imie94b] T. Imielinski, S. -Viswanathan, B. Badrinath, 
“Energy Efficient Indexing on &r”, Proc. A CM SIGMOD 
Conj., Minneapolis, ,MN, May, 1994. 

P<atz94] R. Katz, “Adaption and Mobility in Wireless In- 
formation Systems”, IEEE Personnal Comm., 1st Quar- 
ter, 1994. 

[LevySO] Levy; E., Silbershatz, A., “Distributed File Sys- 
tems: Concepts-and Examples”, ACM Computing Sur- 
veys, 22(4), December, 1990. 

[OMG91] Object Management Group and X/Open, “Com- 
mon Object Request Broker: Architecture and Specifica- 
tion”, Reference OMG 91.1&.1,1991. 

[Old931 B. Oki, M. Pfluegl, A. Siegel, D. Skeen, “The Infor- 
mation Bus - An Architecture for Extensible Distributed 
Systems”, Proc. f&h SOSP, Ashville, NC, December, 
1993. (L 

[OSF94] Open Software Foundation, “‘Introduction to 0% 
DCE”, Prentice Hall, Englewood Cliffs, NJ, 1994. 

[Shek96] S. Shekhar, A: Fetterer, D: Liu, “Genesis: An 
Approach to Data Dissemination in’ Advanced Traveller 

. Information Systems”, JEEE Data Engineering Bulletin, 
19(3), September,, 1996. .I 

[Ten921 D= Terry, D: Goldberg, D. Nichols, “Continuous 
Queries Over Append-Only Databases”, Proc. ACM SIG- 
MOD Confi, San Diego, CA, June, 1992. 

[Wong88] J. Wong, “Broadcast Delivery”, Proceedings of the 
IEEE, 76(12), December, 1988. 

pan951 T. Yank H. Garcia-Molina, “%FT - A Tool 
for Wide-area Information Dissemination”, Proc. 1995 
USENIX Technical Conference, 1995. 

105 


