
Formal Techniques for 00 Software Development

(PANEL)

Dennis de Champeaux, HP-,!& Palo Alto, (moderator)

Pierre America, Philips Research Laboratories
Derek Coleman, HP-Lab Bristol

Roger Duke, University of Queensland
Doug Lea, Syracuse University l3 SUNY-Oswego

Gary Leavens, Iowa State University

Co-organizer: Fiona Hayes, HP-Lab Bristol

Background

In this panel, we discuss the relevance of formal

techniques for applying object-orientation.

The object-oriented paaadigm is currently broad-

ened from the programming realm to cover the full

development life cycle, including (domain) analysis

and design.

These extensions are driven by the demands of

large system development. Delivering huge 00

software systems routinely and cost effectively is

a significant challenge. To quote Ed Yourdon: “A

system composed of 100,000 lines of C++ is not to

be sneezed at, but we don’t have that much trou-

ble developing 100,000 lines of COBOL today. The

real test of OOP will come when systems of 1 to 10

million lines of code are developed.”

Scaling up seems to require increasing the preci-

sion of the semantics of the languages/ nota,tions

used by a team.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

@ 1991 ACM 89791-446~6/91/0010/0166...$1.50

Large, mission critical projects may have to

demonstrate that a target system satisfies its spec-

ifications provably. This suggests having, at least,

formal semantics for the specification language.

When a target system contains an abundance

of parallelism, we face the problem of validation.

Errors can be nearly impossible to duplicate in a

concurrent setting. Transformations that preserve

meaning can assist the validation. They require

precise semantics in their domain of operation.

Relational databases are well understood. They

can be accessed out of “any” programming lan-

guage. 00 database vendors wants to offer

the same service. Relational database theory is

soundly grounded in mathematical theories like the

(tuple) relational calculus. Similar formal founda-

tions may be required for objects.

Can formal techniques play a role to solve the

above mentioned issues? The panel will contrast

short term feasibility and relevance against what

to expect in the medium and longer term.

To help focus the discussion, we look at the fol-

lowing specific topics:

l Will using 00 throughout the life cycle in-

crease the level of formality in comparison

to what has been achieved in the structured

paradigm?

OOPSLA’91

166

l Will formal techniques in 00 make the test-

ing/ validation/ verification of a target sys-

tem against its requirements easier by orders

of magnitude in comparison with current prac-

tice?

l Will formal techniques facilitate the develop-

ment of sizable libraries (at the conceptual,

design and code level)? If so, can we expect

massive reuse, and thus a speed up of the de-

velopment process by orders of magnitude?

Pierre America

Object-oriented programming has originally devel-

oped without a strong basis in mathematical for-

malism. For many people it even seemed to offer a

solution to the software crisis without the need for

all that complicated math. However, recently there

is a rapidly increasing interest in applying formal

techniques to object-oriented programming.

There are several ways in which formal tech-

niques could help in object-oriented software de-

velopment :

l Describing the basic concepts of our languages

and systems in a formal, mathematical way

can dramatically enhance our understanding

of them and in such a way lead to better lan-

guages and systems. This applies particularly

to databases, parallelism, typing, and support

for the early phases of development (e.g., re-

quirements specification). Here it is not nec-

essary that the individual programmer has de-

tailed knowledge of all applicable formal tech-

niques, but that the designers of the language

or model take them into account, thus coming

up with a better environment for the program-

mer to work in.

l Formal techniques can support the clevelop-

ment of methods for software development,

which can then be taught to the programmers

in a less formal, but nevertheless rigorous way.

This is what happened to high school mathe-

matics, but also to well-known techniques such

as pre- and postconditions and invariants.

I In order to be able to reuse software compo-

nents, it is necessary to describe what exactly

they do, without referring to the code (which is

often intentionally unavailable). Formal spec-

ifications have definite advantage over natural

language here because they acre unambiguous

(I know about 50 different things that could

each be called a ‘stack’) and because they can

be processed by a machine (which opens per-

spectives for automatic search in component li-

braries, for example). Even if the actual spec-

ifications used are not (completely) formal,

formal techniques could help us to develop a

framework for specifying components indepen-

dently of the code that implements them.

l Finally, there is of course the possibility of full

formal verification of critical softwa,re. It will

certainly still take a long time before this is a

routine ma.tter, but to a limited extent these

techniques can already be used now. However,

I think that this aspect has been overempha-

sized in research on formal techniques.

While the potential is clearly present, a lot of

problems still have to be solved before the above

possibilities can be exploited fully. Some of these

problems are specific for object-oriented program-

ming (for example, the semantic treatment of in-

heritance), but others have been a.round for a long

time and either have been shied away from (e.g.,

formal description of dynamically cha.nging pointer

structures) or have proved to be so difficult tha,t

even after decades of active research there is no fi-

nal solution yet (e.g., specification a,nd verification

of concurrent systems). Therefore there is no hope

that formal techniques will shortly lead to a revolu-

tion in the software development process, but I am

sure that they will make all the difference in the

long run. Nevertheless, experience in my company

shows that even on a short term, the right use of

formal techniques supported by the right tools can

make a substantial contribution to the speed a,nd

accuracy of the development process. And that is

167

what it is all about: formality is not a goal in it-

self, but it is only useful as a means towards more

efficient and more reliable software development.

Derek Coleman

Motto: What’s Formal Methods got to do with

Object-oriented Development?

The success of the object-oriented approach has

gained much attention during the last decade.

However the success is at the level of small team

developments. Industry has learned the hard way

that large scale efforts are not straightforward. We

are beginning to remember what we used to know!

The laws of software engineering still hold - soft-

ware development must be a systematic and man-

aged process. Objects are not a panacea.

Yourdon’s test’ is a measure of the problem that

faces the new paradigm. One of the responses is the

upsurge in interest in object-oriented analysis and

design and CASE tools. Currently there is a deluge

of object-oriented analysis and design methods and

CASE tools.

A method is essentially a set of notations to-

gether with a strategy, and heuristics, for deploying

them. The best of the new methods have effective

strategies and contain useful heuristics, but they

are characterized by too much emphasis on natu-

ralness of expression and intuition. When it comes

to notations ad-hoc-ery is the order of the day. Ev-

erybody’s powerful feature is included and every

difficult issue is ignored. Whichever method you

choose, you can be sure that the models that you

develop are built on sand and hence any supporting

tool can be little more than a diagram editor.

In order to measure up to Yourdon’s test, de-

velop safety-critical software, or write large concur-

rent software, the methods must use not&ions that

have a semantics. This is where formal methods

are relevant. Despite the name, formal methods

has relatively little to say about methods - it is all

about formal notations. The notations are wide

and varied. Specification languages like 2, VDM

‘Can we build object-oriented systems that are composed

of millions of lines of code?

and HP-SL provide precise and abstract descrip-

tions of software. Algebraic languages like OBJ

and Axis show how modularity and executability

can be combined to provide design time prototyp-

ing and testing. Higher order logic specification

languages, like HOL, have proved effective in veri-

fying designs.

I believe that if formal notations were incorpo-

rated into object-oriented methods then we could

expect:

l Improved analysis and design methods that

produce coherent models capable of being val-

idated against requirements.

l Rigorous object-oriented methods of develop-

ment for use on safety-critical applications.

l Object-oriented CASE tools which ca.n check

the semantics of models.

The panel statement asks whether using the

object-oriented approach throughout the life cyle

will increase the level of formality? No, it will not.

Structured methods have not led to the introduc-

tion of formal methods. It will require a conscious

effort to combine the naturalness of objects with

the precision of formality in order to improve the

quality of object-oriented techniques. Until such

a fusion takes place I am pessimistic about the

prospects for large-scale object-oriented software

development.

Roger Duke

Object orientation can be viewed as a natural pro-

gression in the trend towards increased forma.lity in

software design. Issues like reusability, inheritance

and subtyping that are integral to object orienta-

tion encourage the sound formal design of systems,

and it can be argued that it is precisely because of

this that object orientation is becoming so impor-

tant.

But are we now in a position where the develop-

ment, production and maintenance of software sys-

tems can be considered an engineering discipline?

168

Is the term Software Engineering an accurate re-

flection of our discipline, or merely some fraudulent

misnomer?

Although system design is central in any formal

development, it is only part of the story: meth-

ods for formal specification and verification need

to be combined with object-oriented design, and

the whole structure integrated within a sound re-

finement theory. At present we have a collection

of somewhat disjoint theoretical results. A major

problem that remains is the weaving of these results

into a unified, cohesive and practical engineering

discipline that is formally based.

There is good evidence that the object-oriented

paradigm can suggest to us how to proceed.

l Object-oriented specification techniques are

being developed. Central to this develop-

ment is the realization that specification can

be strengthened by incorporating a.spects of

object-oriented design, quite contrary to the

conventional wisdom that separation of con-

cerns demands that the issues be divorced.

l Refinement within object-oriented systems

can be related to subtyping and realized by

(restricted) inheritance, i.e. inheritance itself

suggests a possible approach to refinement.

l As object-oriented systems are constructed by

composing underlying objects, this composi-

tional structure strongly suggests how verifi-

cation proofs could also be structured.

Hence the prognosis is good. For those willing to

dream of a future Utopia there is every reason to

believe that object orientation can be combined

with other formal methods to produce techniques

that will dra.matically assist the software engineer

throughout the software-cycle.

For those more concerned with taking stock of

where we are a.t the present time, we already have a

collection of (somewhat incomplete) formal object-

oriented techniques that, even although far from

perfect, can nevertheless help us to construct more

reliable software systems whose behavior can be

predicated and guaranteed with some certainty.

Should we be using these formal techniques? Given

the increasing importance of software correctness

and reliability we’re damn fools if we don’t.

Doug Lea

People have grounds to be naively optimistic about

the prospects for coupling formal methods with 00

design and programming.

Many everyday aspects of OOD/OOP represent

“informal formal methods”, that are analogous to

those found in various formal specification systems.

These include the use of abstract classes to declare

behavior in an implementa.tion-independent fash-

ion, the use of inheritance to indicate subtype rela-

tions, and reliance on well-understood abstractions

like Sets, Sequences, and Maps.

The effects of such practices may be enhanced

by the creation of formal methods that extend the

semantic power of these aspects of OOD/OOP, by

supporting the expression of predicate-based con-

straints, axioms, and invariants that allow fuller

specification of behavior than is now possible in

most common 00 languages. Languages and sup-

port tools need to evolve to accommoda.te behav-

ioral specification constructs that a.re, ideally, as

natural and successful as the 00 constructs ancl

practices they extend and modify.

Use of formal methods need not be sepa.ratecl

from ordina.ry successful 00 software development

activities. Efforts to integrate stronger specifica-

tion methods into 00 la.nguages themselves, even

when this results in loss of expressiveness and/or

verifiability are more likely to be tised in everyday

development tha.n are isolated formalisms.

While verification is an important a.spect of for-

mal a.pproa.ches to software development: auto-

mated verification of 00 softwa,re consisting of the

kinds of mutable, alia.sed, a.nd/or concurrent ob-

jects commonly found in 00 programs remains a

distant goa,l. However, researchers and practition-

ers in non-00 contexts ha.ve found that the use

of formal methods by designers and programmers

improves reliability, testability, a,nd productivity,

because of the precision a.nd completeness of re-

169

quirement and design specifications formal meth-

ods encourage. It does not seem farfetched to be-

lieve that the same will hold true for 00 formal

methods, which already tend to outperform struc-

tured methods on these qualities.

While formal methods themselves will not auto-

matically cause greater reuse, their pragmatic role

in increasing “consumer confidence” is an impor-

tant ingredient in making good on the promise

of 00 methods to result in massive reuse and

productivity improvements. In order to use off-

the-shelf components with confidence, clients re-

quire detailed semantic specifications of the com-

ponents, optimally along with evidence that im-

plementations meet those specifications. This, in

turn has the positive effect of enhancing the well-

specifiedness of large systems that use many such

components.

Gary Leavens

Formal techniques can aid in the development of

high quality application frameworks and libraries

of reusable modules (such as classes). It is a mis-

take to concentrate on getting more code faster,

because poorly designed, bug-ridden code will not

be reused. If you accept the premise that quality is

essential for reuse, then you are led inexorably to

formal techniques. Quality software is well docu-

mented, easy to understand, etc. The more careful

you try to be a.bout such aspects of software, the

more you will use formal techniques.

For example, to develop a reusable application

framework, you should reuse it yourself. Hence you

are constantly playing both developer and client.

Specifications that say what properties of software

a client can rely on are crucial for keeping these

roles straight. You must be sure to program client

code from these specifications, so that you do not

use your developer’s knowledge as a client. A for-

mal verification can guarantee, for example, that

client code only relies on a method’s specification,

not its implementation details. Informal techniques

are too easily supplemented by your intuition as a

developer.

Object-oriented design makes consistent use of

abstraction. Data abstraction helps you separate

implementation from observable behavior. Super-

type abstraction, letting supertypes stand for their

subtypes, helps you separate interesting behavior

from non-interesting behavior. These kinds of ab-

straction by specification are useful not only in pro-

grams but also in formal specification, verification,

design, and testing. For example, you can verify

the effect of a message send, based on the specifica-

tion of the receiving expression’s static type, with-

out knowing the receiving object’s dynamic type

or what class implements it. That is, you use data

abstraction to ignore implementation detail, and

supertype abstraction to ignore some of the observ-

able behavior of subtypes.

In design, you can use subtyping as a more gen-

eral version of data type refinement. You can create

a subtype to embody a design decision, and to limit

the parts of a design that depend on that decision.

You can also use subtype relationships to organize

the types in a framework or library in a way that

is suited to verifiers and clients, since subtype rela-

tionships are based on observable behavior. Tests

can also be organized in layers based on subtype

relationships, since tests for a subtype can inherit

tests from a supertype’s test suite.

The real problem in validating software against

requirements is finding the “right” requirements,

since one cannot formally validate software against

informal requirements. Exploratory programming

has been useful when requirements are fuzzy, but

it can be expensive to construct a prototype and

throw it away. A better way to find the right re-

quirements would be exploratory specification. In

exploratory specification, you would formally spec-

ify fuzzy aspects of the system as many times as

needed to firm up the requirements. Then you

could prototype just those aspects of the system.

170

