
43 Years of Actors: A Taxonomy of

Actor Models and Their Key Properties

Joeri De Koster

Vrije Universiteit Brussel

Pleinlaan 2

1050 Elsene, Belgium

jdekoste@vub.ac.be

Tom Van Cutsem

Nokia Bell Labs

Copernicuslaan 50

2018 Antwerp, Belgium

tom.van cutsem@nokia-bell-

labs.com

Wolfgang De Meuter

Vrije Universiteit Brussel

Pleinlaan 2

1050 Elsene, Belgium

wdemeuter@vub.ac.be

Abstract

The Actor Model is a message passing concurrency model

that was originally proposed by Hewitt et al. in 1973. It is

now 43 years later and since then researchers have explored

a plethora of variations on this model. This paper presents

a history of the Actor Model throughout those years. The

goal of this paper is not to provide an exhaustive overview

of every actor system in existence but rather to give an

overview of some of the exemplar languages and libraries

that influenced the design and rationale of other actor sys-

tems throughout those years. This paper therefore shows that

most actor systems can be roughly classified into four fam-

ilies, namely: Classic Actors, Active Objects, Processes and

Communicating Event-Loops. This paper also defines the

Isolated Turn Principle as a unifying principle across those

four families. Additionally this paper lists some of the key

properties along which actor systems can be evaluated and

formulates some general insights about the design and ratio-

nale of the different actor families across those dimensions.

Categories and Subject Descriptors D.3.2 [Language

Classifications]: Concurrent, distributed, and parallel lan-

guages; D.1.3 [Concurrent Programming]: Parallel pro-

gramming

General Terms Languages, Theory

Keywords Actor Model, Concurrency

1. Introduction

The Actor Model is a concurrency model that was originally

proposed by Hewitt et al. in 1973 [13]. Since then it has been

used as the model of concurrency for both academic research

languages as well as industrial strength programming lan-

guages and libraries.

Because actors are often strictly isolated software enti-

ties and because of the asynchronous nature of its communi-

cation mechanism, they avoid common concurrency issues

such as low-level data races and deadlocks by design. Over

the years these properties have made the Actor Model into an

interesting concurrency model to be used both for exploiting

fine-grained concurrency in massively parallel workstations

as well as for exploiting more coarse-grained concurrency in

a distributed setting. More than 40 years later, there now ex-

ist bountiful implementations of the Actor Model in various

programming languages and libraries. Each of these imple-

mentations defines a slightly different flavour of the Actor

Model. This paper has three main contributions.

Firstly, because of all the variations on the Actor Model,

over the years researchers have employed different terms

to describe the different concepts that make up the Actor

Model. One of the contributions of this paper is to define

a common nomenclature for each of the key concepts of

the Actor Model. While a precise definition would require a

formal grounding, for this work, we currently limit ourselves

to an informal definition for each of the terms and concepts.

A list of terms and their definitions can be found under

Section 2.

Secondly, while each of these variations on the Actor

Model builds on top of a common substrate, in this paper

we identify and define four broad families along which each

actor system can be categorised. Namely: Classic Actors,

Active Objects, Processes and Communicating Event-Loops.

We provide an overview of the history of actor systems and

a definition for each of the different families along which

every actor system can be categorised in Section 3.

Thirdly, categorising an actor system along one of these

four families gives some indication of the properties and

structure of that actor system. However, the actual properties

of that system still remain largely dependent on the specific

implementation of the actor system. We present a number

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

AGERE’16, October 30, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4639-9/16/10...$15.00

http://dx.doi.org/10.1145/3001886.3001890

31

of properties along which an actor system can be evaluated

in Section 4 and formulate some general insights about the

design and rationale of the different actor families across

those dimensions.

2. Terminology and Definitions

Before we further delve into the history of the Actor Model

we must first start by establishing a common terminology by

which we can denominate the different concepts defined by

an actor system. In this section we give an overview of the

different terms used for each of the key concepts found in

every actor system. We also provide an informal definition

for each of these concepts. In the following sections we will

mix these terms depending on the language being discussed.

message, envelope, event, request A message is the unit

of communication between different actors. A message is a

combination of an identifier that defines the type of message

and a payload that contains additional information sent with

that message. If one actor sends a message to another actor,

that message is stored in the latter actor’s inbox, independent

of the recipient actor’s current processing state.

inbox, mailbox, message queue, event queue The inbox

of an actor stores an ordered set of messages received by

that actor. While the inbox defines the order in which the

messages were received, that does not necessarily imply that

those messages are processed by that actor in that order.

turn, epoch, step A turn is defined as the processing of a

single message by an actor. In other words, a turn defines

the process of an actor taking a message from its inbox and

processing that message to completion.

interface At any given point in time, an actor’s interface

defines the list and types of messages it understands. An

actor can only process incoming messages that fit this in-

terface. For some actor systems this interface is fixed while

other actor systems allow an actor to change its interface,

thus allowing it to process different types of messages at dif-

ferent points in time.

state At any given point in time, we define an actor’s state

as all the state that is synchronously accessible by that actor

(i. e. state that can be read or written without blocking its

thread of control). Depending on the implementation, that

state can be mutable or immutable, and isolated or shared

between actors.

behaviour A behaviour is a common term to denote the

combination of an actor’s interface and its state. Some actor

systems enable an actor to modify its entire behaviour in one

single operation.

actor, active object, activity, vat, grain An actor can be

defined as a four-tuple: an execution context, an inbox, an

interface and its state. An actor perpetually takes messages

from its inbox and processes them in a new execution context

with respect to that actor’s interface and state. This continues

until the inbox is empty after which the actor goes to an idle

state until a new message arrives in its inbox.

actor system An actor system is a language or library that

implements the Actor Model as an abstraction for concur-

rency. Every actor system enables the creation and concur-

rent execution of actors.

3. History of Actor Systems

The Actor Model was originally proposed by Hewitt et

al. in 1973 [13] in the context of artificial intelligence re-

search at MIT. The original goal was to have a program-

ming model for safely exploiting concurrency in distributed

workstations. The problem domain was modelling paral-

lel communication based problem solvers. In October of

1975 Hewitt and Smith [12] wrote a primer on a language

called PLASMA, the first language implementation of the

Actor Model. In PLASMA, actors communicate with each

other via message passing which consists of sending a re-

quest from one actor (called the messenger) to another ac-

tor (called the target). The request and a reference to the

messenger are packaged as an envelope and put into the in-

box of the target actor (request: message; reply-to:

messenger). Given that envelope, the behaviour of the tar-

get actor then specifies how the computation continues with

respect to the request. The messenger is typically used as the

reply address to which a reply to the request should be sent.

The simplest control structure that uses this request-reply

pattern in most programming languages is the procedure call

and return. A recursive implementation of factorial written

in PLASMA is given in Listing 1.

(factorial ≡

(≡> [=n]

(rules n

(≡> 1

1)

(≡> (> 1)

(n * (factorial <= (n - 1)))))))

Listing 1. Factorial function written in PLASMA.

In this example factorial is defined to be an actor of which

the behaviour matches the requests of incoming envelopes

with one element which will be called n. The rules for

n are, if it is 1, then we send back 1 to the messenger

of the envelope. Note that this is done implicitly. If it is

greater than 1, we send a message to the factorial actor to

recursively compute the factorial of (n - 1). The Actor

Model only became more widely regarded as a general-

purpose concurrency model when it was recast in terms of

three simple primitives by Gul Agha [1, 2] in 1986. Agha

redefined the Actor Model in terms of three basic actor

primitives: create, send and become. His vision of the Actor

Model laid the foundations for a host of different other

actor systems and these three primitives can still be found

in various modern actor languages and libraries today.

32

This section gives an overview of a small but representa-

tive selection of the ancestry of actor systems from 1973 un-

til today. We classify the different actor languages into four

major paradigms: Classic Actors, Active Objects, Processes

and Communicating Event-Loop actors.

3.1 The Classic Actor Model

Agha [1, 2] recasts the Actor Model as a concurrent object-

oriented programming model. The main focus was to pro-

duce a platform for distributed problem solving in networked

workstations. In his model concurrent objects, i. e. actors, are

self-contained, independent components that interact with

each other by asynchronous message passing. In his work

he presents three basic actor primitives. create creates an

actor from a behaviour description. Returns the address of

the newly created actor. send asynchronously sends a mes-

sage from one actor to another by using the address of the

receiver. Immediately returns and returns nothing. become

replaces the behaviour of an actor. The next message that

will be received by that actor is processed by the new be-

haviour.

The example in Listing 2 is written in the Rosette actor

language [19] which was based on this model.

(define Cell

(mutable [content]

[put [newcontent]

(become Cell newcontent)]

[get

(return ’got-content content)]))

(define my-cell (create Cell 0))

(get my-cell)

Listing 2. An actor in Rosette.

The mutable form is used to create an actor generator

that is bound to Cell. That generator can be used with the

create form to create an instance of that actor. Each actor

instance has its own inbox and behaviour. Following the

keyword mutable is a sequence of identifiers that specify

the mutable fields of that actor. In our example, any Cell

actor will have one mutable field, namely the content of

that cell. After that is a specification of all the methods

that are understood by the actor. A method is specified by

a keyword followed by a table of arguments. In this case the

put method expects a value for the new content. Afterwards

follows the body that specifies how each method should be

processed. If one wishes to modify the state of a mutable

field one can use the become form to replace the behaviour

of an actor using the actor generator. The return form is

used to implicitly send back the result of a computation to

the sender of the original message.

These three primitives are the basic building blocks for

a lot of actor systems today and have been very influential

in the development of any actor language that follows this

work. A modern implementation of the Actor Model based

on Agha’s work[2] is the Akka [4] actor library for Scala.

Classic Actor Model

The Classic Actor Model formalises the Actor Model in

terms of three primitives: create, send and become.

The sequential subset of actor systems that implement

this model is typically functional. Changes to the state

of an actor are aggregated in a single become statement.

Actors have a flexible interface that can similarly be

changed by switching the behaviour of that actor.

However, there are many other library implementations of

this model for different languages.

The sequential subset of an actor model is the subset of

instructions out of which a behaviour can be composed. In

the case of the Classic Actor Model this sequential subset

is mostly functional. Any state changes are specified by re-

placing the behaviour of an actor. This has an important

advantage over conventional assignment statements as this

severely coarsens the granularity of side-effecting operations

that need to be considered when analysing a system. On the

one hand, an actor can only change its own behaviour, mean-

ing that the state of each actor is fully isolated. On the other

hand, changing the behaviour of an actor only comes into

effect when processing the next message. This means that

the processing of a single message can be regarded as a sin-

gle isolated operation. Throughout the rest of this paper we

refer to this principle as the Isolated Turn Principle. This

mechanism allows state updates to be aggregated into a sin-

gle become statement and significantly reduces the amount

of control flow dependencies between statements.

3.1.1 The Isolated Turn Principle

The semantics of the Classic Actor Model enable a macro-

step semantics [3]. With the macro-step semantics, the Actor

Model provides an important property for formal reasoning

about program semantics, which also provides additional

guarantees to facilitate application development. The macro-

step semantics says that in an Actor Model, the granularity

of reasoning is at the level of a turn, i. e., an actor processing

a message from its inbox. This means that a single turn can

be regarded as being processed in a single isolated step.

The Isolated Turn Principle leads to a convenient reduction

of the overall state-space that has to be considered in the

process of formal reasoning. Furthermore, this principle is

directly beneficial to application programmers, because the

amount of processing done within a single turn can be made

as large or as small as necessary, which reduces the potential

for problematic interactions. In other words, this principle

guarantees that, during a single turn, an actor has a consistent

view over its state and its environment.

To satisfy this principle, an actor system must satisfy both

safety and liveness properties:

Safety. To satisfy safety the state of an actor must be fully

isolated. This property is mainly guaranteed by adopting

33

a no-shared-state policy between actors. Any object that

is transmitted across actor boundaries is either copied,

proxied or immutable. This property ensures that the

processing of a single message in the Actor Model is

free of low-level data races. In addition, the processing

of a message cannot be interleaved with the processing

of other messages of the same actor unless the execution

of those different messages is also fully isolated. For

example, an actor for which the behaviour was modified

can already act on other incoming messages before fully

processing the current message. Or implementations of

the actor model can enable parallel execution of read only

messages [17] without impacting safety guarantees.

Liveness. To guarantee liveness, the processing of a mes-

sage cannot contain any blocking operations. Any mes-

sage is always entirely processed from start to finish. Be-

cause of this property, processing a single message is free

of deadlocks.

The Isolated Turn Principle guarantees that the Actor

Model is free of low-level data races and deadlocks. How-

ever, these properties only apply for the processing of a sin-

gle message, once you broaden that boundary to the pro-

cessing of several messages, these properties no longer hold.

On the one hand, as the actor model only guarantees isola-

tion within a single turn, high-level race conditions can still

occur with bad interleaving of different messages. The gen-

eral consensus when programming in an actor system is that

when an operation spans several messages the programmer

must provide a custom synchronisation mechanism to pre-

vent potential bad interleavings and ensure correct execu-

tion. On the other hand, high-level deadlocks can still occur

when actors are waiting on each other to send a message be-

fore progress can be made.

3.2 Active Objects

Around the same time that Agha reformulated Hewitt’s ac-

tors in terms of OOP, Yonezawa [23] worked on a object-

oriented concurrent programming language called ABCL/1.

In this language, each object has its own thread of control

and may have its own local persistent memory. In this model

state changes are not specified in terms of behaviour updates

(become) but rather by individual assignment statements. To

maintain actor isolation, the state of each active object is

only accessible by the object’s own thread of control. This

means that state updates are also isolated and because mes-

sages are processed entirely sequentially the Isolated Turn

Principle also holds for active objects1.

There are three types of messages in ABCL/1: past, now

and future. Past type messages are sent to the receiver and

immediately return. The sender does not wait for the receiver

to process the message before continuing its current compu-

1 Barring the use of ABCL’s express messages, which can potentially inter-

rupt the processing of a message and thus violate this principle [23].

tation. This message type corresponds to the standard way of

message passing in Classic Actors. Now type messages are

very similar to procedure call and return. When an object O

sends a now type message to another object T, O will wait for

T to process that message and send back a result before con-

tinuing with its current computation. Future type messages

are used when the sender of a message does not need the re-

sult of the message immediately. In other actor models, the

sender of a request has to finish its computation before be-

ing able to receive the response from the receiver. If sending

this request and processing the result is part of the sender’s

task, this often leads to an unnatural breakdown of that task

in different execution steps. ABCL/1’s futures was the first

attempt to solve that issue.

[object Cell

(state [contents := nil])

(script

(=> [:put newContent]

contents := newContent)

(=> [:get] @ From

From <= contents))]

Cell <= [:get]

Listing 3. An active object in ABCL/1.

ASP In ABCL/1 every object is an active object. This

makes it very suitable for exploiting fine-grained concur-

rency. Asynchronous Sequential Processes (ASP)[8] is a

programming model similar to ABCL/1 that enables a more

coarse-grained use of active objects. Contrary to ABCL/1,

not every object in this model is an active object. Rather,

actors in this model are represented by an activity. Each ac-

tivity has a single root object called the active object. Every

other object that is encapsulated by that activity is called

a passive object. Different activities do not share memory,

the active objects’ whole object graph is deep-copied into

the activity. The copied objects are called passive objects.

Any method call on an active object will result in an asyn-

chronous request being sent to the activity and returns a

future. The request is stored in a request-queue and is called

pending. Later this request will be served and when it is

finished the request is calculated and the future is replaced

with a (deep) copy of the return value. Similarly to AB-

CL/1’s futures, execution will block if any attempt is made

to perform a strict operation (e. g., a method call) on such a

future. Execution resumes when the corresponding request is

calculated. Isolation of the different activities is guaranteed

by passing passive objects by copy between the different ac-

tivities. All references to passive objects are always local to

an activity and any method call on a passive object is syn-

chronously executed. An implementation of this model can

be found in ProActive [6], which is a framework for Java.

SALSA SALSA [21] is another actor language that imple-

ments the Active Objects model on top of Java. The imple-

mentation translates SALSA code into Java code that can

34

Active Objects

Every active object has a single entry point that defines

a fixed interface of messages that are understood. The

sequential subset of actor systems that implement this

model is typically imperative. Changes to the state of

an actor can be done imperatively and isolation is guar-

anteed by sending composite values (passive objects)

between active objects by copy.

be compiled together with the SALSA actor library to Java

byte-code and run on any JVM. SALSA was proposed as

an actor-based language for mobile and internet computing

and has support for mobile actors which enables distributed

systems reconfiguration. A few of the other main contribu-

tions include actor garbage collection and three new lan-

guage mechanisms to help coordinate asynchronous com-

munication between different actors. When an actor sends

an asynchronous message to another actor, that actor may

include an implicit customer to which the result should be

sent after the message has been processed. This can be done

by using one of three kinds of continuations, namely token-

passing continuations, join continuations and first-class con-

tinuations. These continuations enable high-level synchro-

nization patterns to be specified, without the drawback of

futures2 whereby actors can potentially block waiting for

the future to be resolved. These token-passing continuations

can be implemented or specified as “partial” messages [22].

These partial messages are stored in a separate mailbox

which represent continuations that will be processed after

tokens get resolved.

Orleans A more recent industry-strength addition to the

active objects family of actor languages is the Orleans .NET

framework [15]. Orleans is a framework aimed at building

distributed high-scale computing applications. It was created

by Microsoft Research and designed for use in the cloud.

The Orleans runtime schedules execution of a large num-

ber of actors across a custom thread pool with a thread per

physical processor core. This makes Orleans highly suitable

for exploiting fine-grained concurrency. In Orleans, actors

are called grains. The implementation of a grain specifies a

class for which the methods are only asynchronously avail-

able through a proxy object. Calling such an asynchronous

message returns a task and Orleans inherits the await key-

word from C# in order to join with asynchronously execut-

ing tasks.

3.3 Processes

Erlang [5] was the first industry-strength language to adopt

the actor model as its model of concurrency. It was devel-

oped at the Ericsson and Ellemtel Computer Science Lab-

2 This is only a drawback for blocking futures as can be found in ABCL and

ASP. The E programming language has support for non-blocking promises

which do not exhibit this drawback.

oratories as a declarative language for programming large

industrial telecommunications switching systems. While Er-

lang’s programming style is very close to that of Classic Ac-

tors, it uses different mechanics to achieve similar effects.

An actor is not modelled as a named behaviour. Rather ac-

tors are modelled as processes that run from start to comple-

tion. Erlang actors can use the primitive receive to specify

what messages an actor can receive at that moment in time.

When evaluating a receive expression the actor pauses un-

til a message is received. If a message is received, the match-

ing code is evaluated and execution continues until a new

receive block is evaluated. One can use recursion to en-

sure that an actor continuously processes incoming mes-

sages. This is illustrated by Listing 4.

loop(Contents) ->

receive

{put, NewContent} ->

loop(NewContent);

{get, From} ->

From ! Contents,

loop(Contents)

end.

MyCell = spawn(loop, [nil]).

MyCell ! {get, self()}.

Listing 4. An Erlang process.

The spawn primitive creates a new Erlang process. This

will call the provided function, loop, in a new process and

returns that process’ id. The cell uses the primitive receive

to match incoming get- and put-messages. Once the message

body is processed the loop function calls itself recursively to

process the next message, passing along the updated state.

Scala Actor Library The Scala Actor Library [11] offers

a full-fledged implementation of Erlang-style actors on top

of Scala. Scala Actors can use two different primitives to re-

ceive a message. On the one hand, receive suspends the

current actor together with its full stack frame until a mes-

sage is received. Once the message is received the actor can

continue processing that message and the context in which

the receive block was executed is not lost. On the other

hand, react suspends the actor with just a continuation clo-

sure. This closure only contains information on how to pro-

ceed with processing an incoming message. The context in

which the react was called is lost. This type of message

processing has the benefit of being more lightweight because

it decouples the actor from its underlying thread of control,

allowing a single thread to execute many actors, allowing the

actor system to scale to a much larger number of actors

Kilim Kilim [18] is an actor framework for Java. The Kilim

weaver post-processes Java byte-code to add a lightweight

implementation of processes and provide strong isolation

guarantees. Each actor class needs to specify an execute

method as entry point for the actor. We categorise Kilim as

belonging to the Processes family of actor systems in our

35

Processes

Every process runs from start to completion. The se-

quential subset of actor systems that implement this

model is typically functional. Changes to the state of an

actor are aggregated in a single receive statement. The

scope of this receive statement then defines the current

state of that actor. Processes have a single entry point

that defines a flexible interface that can change by eval-

uating different receive expressions over time.

taxonomy because a Kilim actor is modelled as a process

that runs from start to completion. Getting a message from

an actor’s inbox is a blocking operation that in analogous to

executing a receive statement. The Kilim weaver makes sure

that context switching is possible during the execution of any

method that is annotated with the @pausable annotation, for

example, when an actor is waiting for a new message to ar-

rive in its inbox. Contrary to Erlang, the sequential subset

of Kilim is not functional and supports any Java statement.

To ensure isolation of the different actors, objects that are

transmitted over a mailbox have to implement the Message

interface and are passed by copy. However, there exist ex-

tensions to Kilim’s type system to enable zero-copy message

passing [10]. As long as the type system can guarantee that

any “shared” object is only accessible from within a single

actor then race conditions can be avoided. The use of linear

type systems to introduce shared-state in an actor model in a

safe and efficient ways is not only limited to Kilim. Pony [9]

also employs linear types to avoid deep copying messages

between actors.

3.4 Communicating Event-Loops

The E programming language [16] was the first language

to introduce the Communicating Event-Loop Actor Model.

This model takes a very similar approach to Asynchronous

Sequential Processes with the exception that it does not

make a distinction between passive and active objects. In

this model, each actor is represented as a vat. A vat has a

single thread of control (the event-loop), a heap of objects, a

stack, and an event queue. Each object in a vat’s object heap

is owned by that vat and those objects are owned by exactly

one vat. Within a vat, references to objects owned by that

same vat are called near references. References to objects

owned by other vats are called eventual references.

The type of reference determines the access capabilities

of that vat’s thread of execution on the referenced object.

Generally, actors are introduced to one another by exchang-

ing addresses. In the communicating event-loop model such

an address is always in the form of an eventual reference to

a specific object. The referenced object then defines how an-

other actor can interface with that actor. The main difference

between communicating event-loops (CEL) and other actor

models seen so far was that other actor models usually only

Communicating Event-Loops

A vat is a combination of an object heap, an event queue

and an event loop. Every reference that is passed be-

tween different vats is exported as an eventual reference

with a fixed interface and can serve as an entry point for

that actor. The sequential subset of actor systems that

implement this model is typically imperative. Changes

to the state of an actor can be done imperatively and

isolation is guaranteed by sending composite values be-

tween vats by eventual reference.

provide a single entry point or address to an actor (in other

words, at any point in time, an actor can have only 1 inter-

face). A CEL can define multiple objects that all share the

same message queue and event-loop and hand out different

references to those objects, thus essentially allowing one to

model an actor that has multiple interfaces at the same time.

The example in Listing 5 illustrates how to create an object

in E and send it an eventual message get.

def cell {

var contents := null

to put(newContents) {

contents := newContents

}

to get() {

return contents

}

}

var promise := cell<-get()

when (promise) -> {

println(promise)

}

Listing 5. A vat in E.

When an object in one vat sends an eventual message to

an object in another vat the message is enqueued in the event

queue of the owner of the receiver object and immediately

returns a promise. That promise will be resolved with the re-

turn value of the message once that message is processed. It

is not allowed for a vat to use a promise as a near reference.

If a vat wants to make an immediate call on the value rep-

resented by a promise, like printing it on the screen, that vat

must set up an action to occur when the promise resolves.

This is done by using the when primitive. Promises in E are

based on Argus’s promises [14]. With the main difference

being that accessing a promise in Argus is a blocking op-

eration while E adopts a purely asynchronous model (i. e.

executing the when primitive is also an asynchronous oper-

ation). When the promise for the value of the get message

becomes resolved, the body of the when primitive is exe-

cuted. During that execution the promise is resolved and can

be used as a local object.

36

AmbientTalk The communicating event-loop model was

later adopted by AmbientTalk [20], a distributed object-

oriented programming language which has been designed

for developing applications on mobile ad hoc networks. Am-

bientTalk was designed as an ambient-oriented program-

ming (AmOP) language.It adds to the Actor Model a number

of new primitives to handle disconnecting and reconnecting

nodes in a network where connections are volatile. The core

concurrency model however remains faithful to the original

communicating event-loops of E.

4. Actor System Properties

Each of the four families discussed gives some indication of

the properties of the actor system. However, these properties

still remain largely dependent on the specific implementa-

tion of the actor system. In this section we give an overview

of all the features and properties we use to classify the dif-

ferent actor systems discussed in Section 3. There are four

main classes of features and properties. First we look at how

each system processes individual messages. Secondly, we

look at how messages are received by the actor. Thirdly, we

look at what mutable state is available in the actor system

and how the actor system handles state changes. Lastly, we

classify the different actor systems according to the granu-

larity in which actors are meant to be used within a single

execution environment.

4.1 Message Processing

An important part of any actor system is the way in which

messages are processed. This is what we referred to earlier as

the sequential subset of the language. An important side-note

here is that, any property that holds for the sequential subset

of the language, typically only holds for the processing of a

single message. For example, any actor system that upholds

the Isolated Turn Principle guarantees that each message is

processed sequentially and fully isolated. However, once you

broaden that boundary to the processing of several messages,

most of these properties no longer hold. In this section we

only consider properties that hold during the processing of a

single message.

Paradigm The sequential subset of an actor language can

either be functional or imperative. If it is functional then,

typically, the only way to modify state is to change the

behaviour of the actor. If it is imperative then that means

that extra care needs to be taken to guarantee isolation of the

different actors. If the Isolated Turn Principle is guaranteed,

then the choice of paradigm does not impact the concurrency

properties of the resulting model.

Continuous The sequential subset of a language can allow

blocking statements or can ensure a continuous processing

of each message. In the latter case actors are guaranteed to

process a message from start to completion without having

to worry about deadlocks. Again, this only applies to the

Message Processing

Paradigm Continuous Consecutive

Classic Actor Model

Agha (ACT, SAL, Rosette) Functional Continuous Consecutive

Akka Imperative Blocking Consecutive

Processes

Erlang Functional Continuous Consecutive

Scala Actor Library Imperative Blocking Consecutive

Kilim Imperative Blocking Consecutive

Active Objects

ABCL/1 Imperative Blocking Interleaved

ASP (ProActive) Imperative Blocking Consecutive

SALSA Imperative Continuous Consecutive

Orleans Imperative Continuous Consecutive

Communicating Event-Loops

E Imperative Continuous Consecutive

AmbientTalk Imperative Continuous Consecutive

Table 1. Message Processing Properties

processing of a single message. Other forms of lost progress

can still occur between the processing of different messages.

Consecutive We consider a message to be processed in

consecutive order if it is processed from start to completion

without being interleaved with the processing of other mes-

sages of the same actor. This is usually guaranteed unless

there is some way to interrupt the processing of a single

message (e. g. express messages in ABCL/1).

A summary of the different actor languages discussed in

this paper and their properties with respect to message pro-

cessing can be found in Table 1. In conclusion, we list a num-

ber of observations made from this table. Firstly, the Isolated

Turn principle is a unifying principle across all actor fami-

lies. On the one hand, we have actor languages which mostly

support this principle. The major benefit of this is that the

developer gets strong safety guarantees: low-level data races

are ruled out by design. On the other hand, we find actor

libraries, which are often built on top of a shared-memory

concurrency model and typically do not enforce actor iso-

lation, i. e., they cannot guarantee that actors do not share

mutable state, therefore violating the Isolated Turn Princi-

ple. Secondly, the sequential subset of an actor system can

be functional or imperative, and as long as the Isolated Turn

principle is upheld, the choice does not impact the concur-

rency properties of that system. Finally, having continuous

message processing guarantees that the the sequential sub-

set of the actor system is free of low-level deadlocks. How-

ever, this does not guarantee global progress of the system as

deadlocks can still occur when two or more actors are wait-

ing for a message to arrive. What it does guarantee is that an

actor cannot be blocked while processing a message. Finally,

if we do not consider express messages from ABCL, every

actor system processes messages in consecutive order.

4.2 Message Reception

Incoming messages are always stored in the inbox of an

actor. How those messages are taken out of that inbox can

differ between the different actor systems. In this section

we discuss some properties of actor systems according to

37

how they take messages out of their inbox before processing

them.

Interface The interface (i. e. behaviour) of an actor can

be specified in various ways. Some actor systems specify a

behaviour as a list of messages and processing instructions,

to be called implicitly when a matching message is available.

Others use special primitives such as receive to let the

actor proactively take a message from their inbox. Others

use an object-oriented style where the interface of the actor

corresponds to the interface of an object and a message send

corresponds to a method invocation.

Flexibility The interface to an actor can be fixed or flex-

ible. When the interface of an actor is fixed that means

that actor will always understand the same set of messages

throughout its lifetime. When the interface is flexible, the set

of messages an actor understands can vary over time. This is

typically done by changing the behaviour of the actor. How-

ever, this does not imply that changing the behaviour of an

actor has to somehow change its interface. A behaviour is

stateful and an actor can change its behaviour to update its

internal state without changing what type of messages it un-

derstands. Similarly, having a fixed interface does not imply

that actors always respond to a message in the same way.

With an imperative sequential subset it is possible to change

how an actor responds to a message depending on earlier

state updates.

Number of interfaces Traditionally, every actor has a sin-

gle addressable entry point, namely the interface (i. e., the

behaviour) of that actor. However, in the case of the com-

municating event-loop model, each actor can hand out many

references to multiple of its own objects, creating multiple

addressable entry points each with a potentially different in-

terface.

Order In the case of a fixed interface, it makes sense to

process messages in the same order they arrived in the inbox

of the actor. However, when the interface is flexible it can be

opportune to process messages out of order (similar to Out

of Order Execution, OoOE) depending on what messages

are supported by the behaviour that is in place at the start

of each turn. Finally, actors in the E programming language

processes messages in E-ORDER where the order of mes-

sages is preserved when some messages are first sent trough

a forwarding actor.

A summary of the different actor languages discussed in

this paper and their properties with respect to message recep-

tion can be found in Table 2. In conclusion, we list a num-

ber of observations made from this table. Firstly, Classic Ac-

tors and Processes provide the best support for flexible inter-

faces and out of order message processing and thus facilitate

what is known as “conditional synchronisation” [7] (e.g. im-

plementing a blocking bounded buffer, or other more com-

plex forms of synchronisation). Secondly, actor systems de-

Message Reception

Interface Flexibility # Interfaces Order

Classic Actor Model

Agha (ACT, SAL, Rosette) Behaviour Flexible 1 OoOE

Akka Behaviour Flexible 1 OoOE

Processes

Erlang Receive Flexible 1 OoOE

Scala Actor Library Receive Flexible 1 OoOE

Kilim Mailbox Flexible 1 FIFO

Active Objects

ABCL/1 Methods Fixed 1 FIFO

ASP (ProActive) Methods Fixed 1 FIFO

SALSA Methods Fixed 1 FIFO*

Orleans Methods Fixed 1 FIFO

Communicating Event-Loops

E Methods Fixed * E-ORDER

AmbientTalk Methods Fixed * FIFO

Table 2. Message Reception Properties

veloped within an object-oriented paradigm tend to support

fixed actor interfaces in combination with imperative be-

haviour, while actor systems developed within a functional

paradigm tend to support flexible actor interfaces in com-

bination with a purely functional behaviour. Finally, Com-

municating Event Loops is the only actor family that allows

multiple addressable entry points to a single actor. This helps

support a POLA (principle of least authority) style of pro-

gramming, by facilitating the creation of many small, object-

level interfaces, rather than a single large actor-level inter-

face.

4.3 State Changes

Regardless of whether their sequential subset is functional

or not, all implementations of the Actor Model have some

form of mutable state (e. g. the behaviour/inbox of an actor).

Granularity The state of an actor may consist of multi-

ple individually addressable variables, each holding simple

atomic values (e.g. numbers), composite values (e.g. a list

of numbers) or references to other actors. State changes can

be aggregated or on an individual, i. e. per variable, basis. If

the sequential subset of the actor system is functional then

state changes are typically aggregated by replacing an ac-

tor’s behaviour. If the sequential subset of the actor system

is imperative then state changes can be made on an individ-

ual basis.

Isolation Isolation is guaranteed when no two actors can

read-write or write-write to the same memory location. In

actor systems where the sequential subset is functional this

is guaranteed because in those languages the only mutable

state is the behaviour of an actor and actors are only able

to modify their own behaviour. In actor systems where the

sequential subset is imperative some extra care needs to be

taken when sharing mutable state. For example, by (deep)

copying any data structure when it is passed between ac-

tors. Actor systems designed as libraries on top of execution

environments that support shared-memory multithreading

typically cannot guarantee isolation.

A summary of the different actor languages discussed in

this paper and their properties with respect to state changes

38

State Changes

Granularity Isolation

Classic Actor Model

Agha (ACT, SAL, Rosette) Aggregated Isolated

Akka Individual Shared-Memory

Processes

Erlang Aggregated Isolated

Scala Actor Library Individual Shared-Memory

Kilim Individual Isolated

Active Objects

ABCL/1 Individual Isolated

ASP (ProActive) Individual Isolated

SALSA Individual Isolated

SALSA Individual Shared-Memory

Communicating Event-Loops

E Individual Isolated

AmbientTalk Individual Isolated

Table 3. State Changes Properties

can be found in Table 3. In conclusion, we list a number

of observations made from this table. Firstly, the paradigm

of the sequential subset (functional or imperative) seems

to directly determine whether state changes at the level of

an actor are aggregated (for functional languages) or on

a per-variable basis (for imperative languages). Secondly,

actor systems generally ensure state changes are isolated

per turn. The general exception are actor systems designed

as libraries on top of execution environments that support

shared-memory multithreading.

4.4 Actors Per Execution Environment

The original intention for the Actor Model was to provide

a programming model for expressing concurrent programs

over different nodes in a distributed network. The message

passing model and isolation of the different actors is a good

fit for such systems. As such, most actor systems include

support for distribution. However, where they do differenti-

ate is how actors were meant to be used on a single node.

This ranges from Erlang, which is known for its lightweight

implementation of actors and supposed to run many actors

in a single execution environment, to AmbientTalk, which

is an actor language designed for mobile applications where

the execution environment in each phone would typically

host only a handful of actors.

A summary of the different actor languages discussed in

this paper and their properties with respect to the granularity

of their concurrency model can be found in Table 4. We

found that Classic Actors and Processes generally lead to

a style of programming where each individual actor is at the

level of abstraction of what an OO programmer would think

of as an “object”, or a functional programmer would think of

as an “abstract data type” (ADT), whereas for Active Objects

and CELs, each actor is more at the level of abstraction of

what an OO programmer would think of as a “component”,

or a functional programmer as a “module”.

It is our conjecture that Classic Actors and Processes lead

to a style of programming where the state of an actor tends to

be small in terms of the number of values involved (not nec-

essarily in terms of the size of the values involved), whereas

Active Objects and CELs lead to a style of programming

Actors per Execution Environment

Granularity

Classic Actor Model

Agha (ACT, SAL, Rosette) Fine-grained

Akka Fine-grained

Processes

Erlang Fine-grained

Scala Actor Library Fine-grained

Kilim Fine-grained

Active Objects

ABCL/1 Coarse-grained

ASP (ProActive) Coarse-grained

SALSA Coarse-grained

Orleans Fine-grained

Communicating Event-Loops

E Coarse-grained

AmbientTalk Coarse-grained

Table 4. Actors Per Execution Environment Properties

where the state of an actor tends to consist of many small

objects, like in a regular heap of an object-oriented program.

5. Conclusion

Over the years different actor systems have used different

terminology to name certain concepts. This paper provides

an informal definition of a nomenclature of a common sub-

strate by which we can name different concepts found in ev-

ery actor system. Additionally, this paper provides a brief

history of some of the key programming languages and li-

braries that implement the actor model and have influenced

and will continue to influence the design and rationale of

other actor systems today. While discussing these different

actor systems, we identify and define four broad categories

along which any actor system can be categorised. Namely:

Classic Actors, Active Objects, Processes and Communicat-

ing Event-Loops.

We also define the Isolated Turn principle as a unifying

principle across all actor families. The Isolated Turn Princi-

ple guarantees that the Actor Model is free of low-level data

races and deadlocks and guarantees that, during a single turn,

an actor has a consistent view over its state and its environ-

ment. Contrary to actor libraries that are built on top of a

shared memory concurrency model and typically cannot en-

force actor isolation, we identified that most actor languages

support this principle.

The properties of an actor system remain largely depen-

dent on the specific implementation of that actor system.

Therefore this paper defines a number of important proper-

ties along which every actor system can be evaluated. How-

ever, there are still some general conclusions to be drawn

from our evaluation of the different actor systems discussed

in this paper. Firstly, the sequential subset of an actor sys-

tem can be functional or imperative, and as long as the Iso-

lated Turn principle is upheld, the choice does not impact

the concurrency properties of that system. Secondly, actor

systems developed within an object-oriented paradigm for

their sequential subset tend to support fixed actor interfaces

in combination with imperative behaviour, while actor sys-

tems developed within a functional paradigm tend to sup-

port flexible actor interfaces in combination with a purely

functional behaviour. The flexible interface of the latter fa-

39

cilitates conditional synchronisation. Thirdly, the paradigm

of the sequential subset directly determines whether state

changes at the level of an actor are aggregated (for func-

tional languages) or on a per-variable basis (for imperative

languages). Finally, it is our conjecture that Classic Actors

and Processes are mostly used in a fine-grained concurrency

setting and lead to a style of programming where the state of

an actor tends to be small in terms of the number of values

involved (not necessarily in terms of the size of the values in-

volved), whereas Active Objects and CELs are mostly used

in a a coarse-grained concurrency setting and lead to a style

of programming where the state of an actor tends to consist

of many small objects, like in a regular heap of an object-

oriented program.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in

Distributed Systems. MIT Press, Cambridge, MA, USA, 1986.

[2] G. Agha. Concurrent object-oriented programming. Commun.

ACM, 33(9):125–141, Sept. 1990.

[3] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A

foundation for actor computation. J. Funct. Program., 7(1):

1–72, Jan. 1997.

[4] J. Allen. Effective Akka. O’Reilly Media, Inc., 2013.

[5] J. Armstrong, R. Virding, C. Wikström, and M. Williams.

Concurrent Programming in ERLANG (2nd Ed.). Prentice

Hall International (UK) Ltd., Hertfordshire, UK, UK, 1996.

[6] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet,

M. Morel, and R. Quilici. Grid Computing: Software Envi-

ronments and Tools, chapter Programming, Deploying, Com-

posing, for the Grid. Springer-Verlag, 2006.

[7] J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concurrency and

distribution in object-oriented programming. ACM Comput.

Surv., 30(3):291–329, Sept. 1998.

[8] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronous

sequential processes. Inf. Comput., 207(4):459–495, Apr.

2009.

[9] S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil.

Deny capabilities for safe, fast actors. In Proceedings of

the 5th International Workshop on Programming Based on

Actors, Agents, and Decentralized Control, AGERE! 2015,

pages 1–12, New York, NY, USA, 2015. ACM.

[10] O. Gruber and F. Boyer. Ownership-based isolation for con-

current actors on multi-core machines. In Proceedings of

the 27th European Conference on Object-Oriented Program-

ming, ECOOP’13, pages 281–301, Berlin, Heidelberg, 2013.

Springer-Verlag.

[11] P. Haller and M. Odersky. Actors that unify threads and

events. In Proceedings of the 9th International Conference on

Coordination Models and Languages, COORDINATION’07,

pages 171–190, Berlin, Heidelberg, 2007. Springer-Verlag.

[12] C. Hewitt and B. Smith. A plasma primer (draft), 1975.

[13] C. Hewitt, P. Bishop, and R. Steiger. A universal modular ac-

tor formalism for artificial intelligence. In Proceedings of the

3rd International Joint Conference on Artificial Intelligence,

IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.

Morgan Kaufmann Publishers Inc.

[14] B. Liskov and L. Shrira. Promises: Linguistic support for

efficient asynchronous procedure calls in distributed systems.

In Proceedings of the ACM SIGPLAN 1988 Conference on

Programming Language Design and Implementation, PLDI

’88, pages 260–267, New York, NY, USA, 1988. ACM.

[15] Microsoft. Orleans, 2015-16. URL

http://dotnet.github.io/orleans.

[16] M. S. Miller, E. D. Tribble, and J. Shapiro. Concurrency

among strangers: Programming in E as plan coordination. In

Proceedings of the 1st International Conference on Trustwor-

thy Global Computing, TGC’05, pages 195–229, Berlin, Hei-

delberg, 2005. Springer-Verlag.

[17] C. Scholliers, E. Tanter, and W. De Meuter. Parallel actor

monitors: Disentangling task-level parallelism from data par-

titioning in the actor model. Sci. Comput. Program., 80:52–

64, Feb. 2014.

[18] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors

for java. In Proceedings of the 22nd European Conference on

Object-Oriented Programming, ECOOP ’08, pages 104–128,

Berlin, Heidelberg, 2008. Springer-Verlag.

[19] C. Tomlinson, W. Kim, M. Scheevel, V. Singh, B. Will, and

G. Agha. Rosette: An object-oriented concurrent systems

architecture. In Proceedings of the 1988 ACM SIGPLAN

Workshop on Object-based Concurrent Programming, OOP-

SLA/ECOOP ’88, pages 91–93, New York, NY, USA, 1988.

ACM.

[20] T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, and

W. De Meuter. Ambienttalk: Object-oriented event-driven

programming in mobile ad hoc networks. In Proceedings of

the XXVI International Conference of the Chilean Society of

Computer Science, SCCC ’07, pages 3–12, Washington, DC,

USA, 2007. IEEE Computer Society.

[21] C. Varela and G. Agha. Programming dynamically reconfig-

urable open systems with SALSA. SIGPLAN Not., 36(12):

20–34, Dec. 2001.

[22] C. A. Varela. Programming Distributed Computing Systems:

A Foundational Approach. The MIT Press, 2013.

[23] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented

concurrent programming ABCL/1. In Conference Proceed-

ings on Object-oriented Programming Systems, Languages

and Applications, OOPLSA ’86, pages 258–268, New York,

NY, USA, 1986. ACM.

40

