
MODE: A UIMS‘ for Smalltalk

Yen-Ping Shari**

IBM Cary
P.O. Box 60000

Cary, NC 27512-9968

Abstract

While the Model-View-Controller (MVC) framework
has contributed to many aspects of user interface
development in Smalltalk, interfaces produced with
MVC often have highly coupled model, view, and
controller classes. This coupling and the effort re-
quired to use MVC make user interface creation a
less effective aspect of Smalltalk.

The Mode Development Environment (MODE) is a
user interface management system (UIMS) which ad-
dresses the above issues. MODE is composed of two
major components: the Mode framework and the
Mode Composer. The Mode framework accommo-
dates an orthogonal design which decouples the user
interface components and increases their reusabil-
ity. The Mode Composer reduces the effort of us-
ing MODE by providing a direct-manipulation user
interface to its users. This paper discusses the im-
portance of orthogonality and illustrates its incor-
poration into the design of MODE. A comparison of
the Mode framework and the MVC framework is in-
cluded.

1 Introduction

Smalltalk [4] has been an effective environment for
developing experimental software. Its carefully de-
signed programming environment and its rich class

*This work was performed while studying at the University
of North Carolina at Chapel Hill.

Author’s Email: shan&s.unc.edu

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
CJ 1990 ACM 089791-41 l-2/90/0010-0258...$1.50

library allow exploring a design alternative in a short
amount of time. The Model-View-Controller (MVC)
framework [l, 71 is the major means of building user
interfaces in Smalltalk. Many user interface systems
were based on or influenced by the MVC paradigm
[2, 3, 5, 7, 9, 14, 161. Although the MVC framework
has contributed to many aspects of user interface de-
velopment, it also has some shortcomings. While the
MVC concept provides a compelling object-oriented
division at the abstract level, concrete implements
tions often result in highly coupled model, view, and
controller classes. Such coupling impedes the reuse
and interchange of software components and in addi-
tion produces awkward inheritance structures. Also,
substantial learning effort is required before a pro-
grammer can effectively use MVC. Even for experi-
enced MVC programmers, the time spent in creating
a new user interface is still a substantial portion of
the overall system development time.

Based on the high-level concepts of the MVC
framework, the Mode framework employs an or-
thogonal design to decouple the appearance, inter-
action and semantics components of an interaction
technique. This not only allows better reuse of
these components, but also results in a more flexi-
ble framework. The Mode Composer is the direct-
manipulation interface of MODE. Users of Mode
Composer create interfaces by dragging objects out
of the interaction technique library and pasting them
together. With the Mode Composer, the effort and
time required to create interfaces in Smalltalk is
greatly reduced.

After a brief discussion of the Smalltalk MVC
paradigm and its problems in the next section, Sec-
tion 3 defines the concept of “mode.” Section 4 de-
fines the Mode framework based on the “mode” con-
cept. Section 5 illustrates why the orthogonality in-
troduced in Section 4 supports generality and good
reusability of user interface components. Section 6
introduces the kernel classes of the Mode framework.

258 ECOOPlOOPSLA ‘90 Proceedings October 21-25, 1990

Section 7 compares the Mode framework with the
original MVC framework. The Mode Composer is
described in Section 8. Section 9 discusses the expe-
rience with MODE. Section 10 then closes with some
final remarks.

2 MVC and It’s Problems

The MVC paradigm divides the responsibility for a
user interface into three types of objects:

Model: The model represents the data structure of
the application. It contains or has access to in-
formation to be displayed in its views.

View: The view handles all graphical tasks; it
requests data from the model and displays
the data. A view can contain subviews and
be contained within superviews. The super-
view/subview hierarchy provides windowing be-
havior such as clipping and transformations.

Controller: The controller provides the interface
between its associated model/view and the user
input. The controller also schedules interactions
with other controllers.

The three parts of a user interface are intercon-
nected as shown in Figure 1. The standard interac-
tion cycle is that the user takes some input action
and the active controller responds by invoking the
appropriate action in the model. The model car-
ries out the prescribed operation, possibly changing
its state, and broadcasts to all its dependent views
(through the implicit links) that it has changed.
Each view can then query the model for its new state
and update its display, if necessary.

Figure 1: The Model-View-Controller framework.

Although the MVC concept provides a convenient
object-oriented division at the abstract level, the

division is difficult to implement. In Smalltalk,
the MVC framework is implemented as three su-
perclasses (namely Model, View, and Controller).

Numerous subclasses of the three superclasses im-
plement the interaction techniques used in the
Smalltalk. Almost every model has a special view
and controller pair associated with it. For ex-
ample, the FillInTheBlank model has the Fill-
InTheBlankView and the FilIInTheBlankController.
When this is done, the use of a controller, for in-
stance, is limited to the view and model with which
it is associated. Assigning a different controller to a
view does not change the interaction but often breaks
the code. As explained in Section 5, this kind of cou-
pling often hinders the reuse of software components
and produces awkward inheritance structures.

Although the MVC concept has its problems, its
principle of dividing user interface components into
three parts can still be used to guide the design
of orthogonal interface components. While object-
oriented inheritance alone does not guarantee good
reuse of user interface components, an orthogonal
design of those components, along with inheritance,
can facilitate reusability. In addition, orthogonality
results in a more general and versatile system for
building user interfaces. The following sections dis-
cuss the Mode framework that accommodates such
an orthogonal design.

3 The Concept of a Mode-
Based User Interface

User interfaces that include more than one mode
are generally considered less desirable than mode-
less ones[I5]. This section provides a different point
of view and explains why the term mode was chosen
to express our central concept.

3.1 What is a Mode?

The campaign to eliminate modes from interfaces
was started in 1973 by Larry Tesler. He defines a
mode as follows:

A mode of an interactive computer system
is a state of the user interface that lasts
for a period of time, is not associated with
any particular object, and has no role other
than to place an interpretation on operator
input. [13]

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 259

Tesler describes two major types of mode: pre-
emptive mode and command mode [15]. Running a
program puts the user into a preemptive mode dur-
ing which the facilities of other programs are un-
available to him. This limitation has been elimi-
nated in multi-window systems that allow several
programs (running in different windows) to be ac-
tive at the same time. The user can switch back and
forth between windows to obtain services from dif-
ferent programs. Thus, advances in display technol-
ogy have eliminated the problems with preemptive
modes; however, the same is not true for command
modes.

Command modes interpret the same user input
differently depending on the state of the system.
User interfaces that include several command modes
have been criticized because they make it hard for
the user to determine:

which mode he is in,

how he got into the mode,

what operations are allowed in the mode,

and how to get out of the mode.

Since the interpretation of key strokes and other user
input depends on the mode or state of the system,
unexpected results can be generated when the user
loses track of the current mode.

3.2 Direct-manipulation Interfaces
are Modal

Most of the above problems were caused not by the
command mode design, itself, but by its realization
in text-based interfaces. More recently, many direct-
manipulation interfaces have actually used command
mode designs without causing problems and, possi-
bly, without their designers realizing it.

In a direct-manipulation interface, moving the cur-
sor to point to a different object is, in effect, a com-
mand to change mode, because once the cursor is
moved, the range of acceptable inputs is reduced and
the meaning of each of those inputs is determined [6].
Thus, direct-manipulation interfaces actually divide
the screen into modes, although they appear to be
modeless since these modes are always visible and
their contexts are entered and left by moving the cur-
sor. Users are frequently unaware that they are in a
different mode since all operations allowed in a mode
are presented by menus and dialogue boxes that can

Do you really want to remove this file?

Figure 2: A dialogue box can be viewed as a mode
with two submodes.

be invoked with simple, consistent actions (for ex-
ample, a button click). Thus, all four disadvantages
of modal interfaces stated above (potentially) disap-
pear in icon-based direct-manipulation interfaces.

4 A Design for a Mode F’rame-
work

In this section, we define the concept of mode as it
is used in this research and the Mode framework in
which modes are embedded. The working hypoth-
esis of this research is that this particular concept
of mode can provide a unified conceptual framework
that can be used to develop a wide variety of user
interfaces. The MODE system was built to test this
hypothesis.

The basic building block of the Mode framework
is called a mode. Each interface created with MODE
is composed of a number of such modes. A mode is
a composite defined by its three attributes: appear-
ance, in2era&on, and semantics. It is distinguished
by an area on the screen in which most likely at least
one of its attributes is different from those of other
modes in surrounding areas. A user interface might
be composed of a group of hierarchically structured
modes. A mode in such a structured interface could
contain other modes as submodes. Any given mode,
however, would be a submode of only one mode - its
“supermode.” The set of modes in a structured inter-
face forms a hierarchy. The composition of modes in
the Mode framework is analogous to the composition
of views in MVC.

To illustrate, the dialogue box shown in Figure 2
can be thought of as a mode with two submodes: a
“yes” submode and a “no” submode. The yes and
no buttons (modes) highlight themselves when the
left mouse button is pressed within them, and they
dehighlight themselves when the cursor moves away

260 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

or the left mouse button is released. Their behavior
is different from that of their super-mode (the con-
taining dialogue box) which does not respond to a
left mouse button press. Notice that the text in the
dialogue box is not a mode. It affects the appear-
ance of the dialogue box, but it does not form an
area that provides a different interpretation of the
user’s input.

Each individual mode is defined by its appearance,
its semanhcs, and the form of in2eradion it provides.
For example, the “yes” submode has the following
definition:

Appearance: White background with black border
of width one and a piece of text (“yes”) centered.
The highlighted appearance is the inverse of the
normal appearance.

Semantics: Confirm to remove the file.

Interaction: Highlight when the left mouse button
is pressed inside the mode; dehighlight when the
cursor leaves or the button is released.

Notice that the “no” submode shares exactly the
same interaction part with the “yes” submode. The
differences between them come from the appearance
and semantics parts.

In an object-oriented design, a mode is an object.
The appearance, semantic, and interaction compo-
nents are objects, as well. They can be owned by
mode objects, as shown in Figure 3. The mode ob-
ject defines an internal protocol so that the compo-
nent objects can communicate with each other in a
standard way. The appearance component, called
the display object, maintains the mode’s appearance
and can display itself upon request. The interac-
tion component, called the co&roller, responds to
the input from the user to interact with the user and
triggers the semantic actions. The semantic compo-
nent, called the semanfic object, supplies the seman-
tics of a mode. The term “supply” is used instead
of “generate” because in MODE, the actual seman-
tics are “generated” by the application but they are
“supplied” to the interface by the semantic object.
Semantic objects can also connect to each other.

Because the mode object provides a structure in
which the three component objects can be plugged
and unplugged, a mode’s appearance, interaction,
and semantics can be changed by replacing these
component objects. For example, a mode that high-
lights can be implemented to have two different dis-
play objects: one for normal state, the other for high-
lighted state. When the mode highlights, it replaces

output to El-an

Figure 3: The structure of a mode.

the normal display object with the highlight display
object. When it dehighlights, the normal display ob-
ject is switched back.

5 A User Interface Component
Space and Its Axes

In the above design, a mode is the composition of
three parts: the appearance object, interaction ob-

ject and semantic object. By assigning an axis to
each part, we can define a three-dimensional type-
space for modes, as shown in Figure 4. Each point
in the space represents a different mode type. The
“yes” and “no” submodes of the dialogue box exam-
ple are shown as two points in the space. They have
the same interactive behavior but different appear-
ance and semantics. This is reflected in their sharing
the same value on the “Interaction” axis.

Orthogonality of the Axes
Axes that span a space are orthogonal if changing
the value on one axis does not affect the values on
the other axes. That is to say, the axes are indepen-
dent of one-another. Orthogonal design axes, such
as those for MODE, have several important impli-
cations that can be seen when compared with one-
dimensional designs.

It is possible to represent the same mode-types
with just one axis in which each type occupies a
value on this single axis; however, this approach is
less desirable since creating a new point on the axis
defines only one new type. In the case of a three-
space, described above, creating a new point on one
of the axes defines a plane of new types. In user in-
terface construction, the one-dimensional approach
represents lumping all three parts of a mode together
in a single object. (Keeping them in three separate
but closely coupled objects, like what has been done
in MVC, is essentially the same.) The parts can only

October 21-25, 1990 ECOOPlOOPSLA ‘90 Proceedings
261

I “No” submode

* Appearance
J

Semantics

Figure 4: The three space for mode types. Two sam-
ple points are shown. One for the “yes” button, the
other for the “no” button. They share the same in-
teraction part.

be reused when the whole object can be reused. In
the three-dimensional case, three parts of a mode are
put into three independent objects. The chances for
each one of them to be reused are increased.

For example, assume an interaction technique li-
brary that contains two buttons. Button A is square-
shaped and responds to a left mouse button click to
perform operation Opl. Button B is round and re-
sponds to a middle mouse button click to perform
operation 0~2. What one would like to have is but-
ton C which is square-shaped and responds to a mid-
dle mouse button click to perform operation Opl, as
shown in Figure 5.

In a single-dimensional design (such as that of the
MVC framework), since buttons A and B must be
reused as a whole, one must create a new class for
button C and inherit from both A and B. Making C
a subclass of A requires duplicating the interaction
portion of B in class C. Making C a subclass of B
requires duplicating the appearance and semantics
portions of A. Using multiple inheritance requires
one to disambiguate what should and should not be
inherited from ciasses A and B. None of these ap-
proaches is satisfactory.

On the other hand, since a three-dimensional or-
thogonal design allows the attributes of the but-
tons to be reused individually, button C can be ob-
tained simply by reusing the appearance and seman-
tics parts of button A and the interaction part of

AppcarMcc Intcraclim Sun0ryica

EXISti r-“‘--“----‘-----“---““----‘-‘--”-,

A in

I

1cftButlmclick opl I
t

,,,,--,,,,,,,--,,,,,,,,,,,,,,,,,,--,,--J

B middleButtonClick
:

Opz I

Figure 5: The button example.

button B. No new class is needed. In fact, by per-
muting the three components, one can produce 8 dif-
ferent buttons without creating any new classes.

This is a good example of how inheritance, alone,
does not guarantee good reuse whereas an orthogo-
nal design does. Notice that the three-dimensional
orthogonal design is different from parameterizing
the appearance and interaction of a single object.
When a new appearance is invented (say a triangu-
larly shaped display object), the three-dimensional
approach immediately gives four additional new but-
tons. This is in contrast to the parameterized sin-
gle dimension approach where editing the code and
recompilation is necessary to incorporate the new
shape.

Assuming the total number of types in the type-
space to be N, a single axis must have N distinct
values to represent all the types. With three orthog-
onal axes, each axis would need approximately +$%
distinct values, in general. The number of distinct
values for all three axes is 3 x $6, as opposed to
N in the single-axis case. In the above example, N
is equal to 12, and the three-dimensional approach
requires 7 values (three appearances, two interac-
tions, and two semantics). The single-dimensional
approach will need 12 values on its axis. Since N is
usually much larger than 12, the three-space repre-
sentation is also more efficient.

Generality

The generality of the user interface framework de-

pends heavily on the choice of the axes. The more
axes a framework has and the more orthogonal these
axes are, the more mode-types it can span and the
more general it is. In reality, it is difficult to find
fully orthogonal axes. One can only strive for axes
that are as orthogonal as possible. The Mode frame-
work is an attempt to find one-such set of orthogonal
axes as a demonstration of the concept. An imple-
mentation of this framework is described in the next

262 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

section. New axes will evolve as new interaction tech-
niques (for instance, sound) emerge.

6 Realization of the Mode
Framework

The Mode framework is implemented on top of an
event-driven mechanism [lo] to avoid unnecessary
performance loss and to provide a clean structure for
interface programs. Four classes make up the Mode
framework. They are Mode, MController, MDisplay-
Object, and SemanticObject.

The Mode class implements the basic structure of
a mode. It has three instance variables to hold an
MController, an MDisplayObject and a SemanticOb-
ject. A Mode coordinates the activities of these three
objects to perform the interaction. Besides that, a
Mode is also responsible for handling various win-
dowing functions (such as event dispatching and clip-
ping). The Mode class also implements a simple con-
straint system to manage the layout of the user inter-
face. While a view in the MVC framework queries
the model and updates the display, a mode in the
Mode framework provides only the structure within
which its three components collaborate to perform
the interaction. Therefore, the Mode class is very
stable and seldom need to be subclassed.

An MConfroller performs the interaction by send-
ing out messages according to the types of events it
receives. The instance variable “eventResponses” of
this class holds a dictionary that stores the mapping
between the event types and the messages. Upon
receiving an event, an MController tries to process
it locally. When semantic actions are required, a
message is sent to the semantic object to pass it the
control.

An MDisplayObject defines the appearance of a
mode by maintaining a collection of displayable ob-
jects. Any object that understands the protocols
defined in the Smalltalk DisplayObject class can be
put into the collection. This includes text, drawings,
bitmaps, and animated pictures. An MDisplayOb-
ject accepts a display box and a collection of visible
rectangles from its mode to display its contents.

SemanticObjects supply the semantics of modes.
They reside in a layer maintained by MODE. Objects
in the layer have knowledge of both the user interface
and the application. They insulate both sides from
the effects of changes.

The MController, MDisplayObject, and Semanti-

cObject define parts of a mode that are largely or-
thogonal to each other. As a consequence, these
parts are more likely to be reused. More detail dis-
cussions of the implementation of the four classes can
be found in [ll, 121.

7 A Comparison to MVC

This section discusses some of the differences be-
tween the Mode framework and the Smalltalk MVC
framework to show how the parts of a mode can be
decoupled. The decoupling of the parts of a mode
demonstrates the orthogonality of the Mode frame-
work design. Although the comparison is made only
between two specific systems, many of the points are
applicable to more general cases. In the following
discussions, the model, view, and controller of MVC
are compared with their counterparts in MODE.

Controllers
In MVC, controllers are often involved in processing
the semantics in addition to their defined role as in-
terface objects. For example, many controllers are
responsible for creating menus, invoking them, and
executing the selected operations. Many subclasses
of Controller-are created just to have different menus.
For instance, the Iconcontrollerand the ProjectIcon-
Controller are the same except for their menus. In
MODE, controllers are not involved in semantic pro-
cessing. They invoke menus to interact with the user
but leave the creation of menus and execution of the
operations to the semantic objects. Since the con-
troller does not have deep knowledge of the menus,
it is less tightly coupled to the semantics of the sys-
tem. This reduces the number of controller classes
while making the existing controllers more reusable.

A rough analogy can be drawn between a user in-
terface and a restaurant. The controllers in a user
interface correspond to the waiters in a restaurant.
The semantic objects correspond to the cooks. In a
normal restaurant, the cooks defines the menu and
prepare whatever is on the menu. A waiter brings
the menu to the customer (corresponding to the end
user) and passes the selections back to the cooks.
This procedure is analogous to the way MODE han-
dles menus’. Just as there is no reason for the wait-
ers to define the menu and cook the dishes, there is
no reason for the controller to create the menu and
perform the operations (as some MVC controllers
do).

‘Some Smalltalk pluggable views handle their menus

similarly.

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings
263

In MVC, some controllers (BinaryChoiceCon-
2roller, for example) query the state of their models
to determine what kind of interaction to perform.
This couples the controllers with their models. In
MODE, when the state of a semantic object changes
and requires a different interaction, it can assign a
different controller to the mode. No controller has
to query the state of its semantic object. This ap-
proach is actually used in MODE to provide seman-
tic feedback for dragging. When a mode is dragged
by the user, all other modes on the screen switch
to their drag-handling controllers. For example, the
trash mode switches to a controller that highlights
the mode when the dragged object is on top of it
and responds to the mouse button release event to
discard the dragged mode. The trash mode switches
back to its normal controller after the drag action is
finished.

Another limitation on MVC controllers which im-
pedes orthogonality is their polling protocol. The
MVC controllers must constantly query their views
for the information necessary to decide when and
where to pass control. The event-driven mecha-
nism of MODE takes charge of the control passing.
This frees the controller from querying the mode and
makes the two less dependent on each other.

Views
Some MVC views also overstep their authority by in-
corporating semantic information. These views often
keep information and code that could be decomposed
and distributed more appropriately among semantic
objects and subviews. For example, the Seledionln-
L&View keeps the list of items, remembers which
one of them is selected, and highlights or dehigh-
lights the items. The SeleclionInList View has to do
all this because it is at the end of the view hierarchy
(it has no subviews). The list items are not subviews.

With the Mode framework, on the other hand,
each list item is a mode and knows how to high-
light and dehighlight itself. The instance variables
and the code to handle the selection are moved to
their semantic objects. This not only simplifies the
interface but also makes it more flexible. For exam-
ple, one can use bitmaps, drawings, and animated
pictures in the display object of the list item modes
to create a nontext list. One can also freely select
the highlight styles for each individual list item (as
opposed to having a single fixed inverse highlight for
all of them).

Smalltalk menus, which are not built with MVC,
provide a related example. A Smalltalk menu is a
single complicated object. In MODE, menus are built

, i
I : C-

____------__
I : I-

Vi.W ; ; I’
I : ,’
!i I

MO&l

-----___----

Controller
I :
I :

User Imufacc V Application

Figure 6: The responsibilities are partitioned dif-
ferently in the Mode framework than in the MVC
framework.

with modes: each menu item is a mode; this makes
the menus more flexible. Item modes can also share
components with the list mode.

Models
In MVC, models do not have direct access to their
views and controllers. When a model changes, a
message is broadcast to notify all of its views and
controllers. The views and the controllers then
query the model and update themselves to reffect the
change. This has several disadvantages. First, the
model may be a widely shared data object that has
a large number of views. Having all the views query
it whenever there is a change is costly. Also, the
broadcast mechanism usually requires smart user in-
terfaces that know how to query the models and up-
date themselves. The code that supports this intel-
ligence goes to either the view class or the controller
class. Thus, knowledge of the application (model) is
inserted into the user interface. Once this is done,
the model, view, and controller are, in fact, coupled.

The Mode framework solves this problem by ab-
stracting this intelligence into the semantic object.
This frees the other objects from the need to be cou-
pled with each other. Figure 6 shows the partition
of responsibilities in the Mode framework and in the
MVC framework. The circles indicate the objects
in the Mode framework. The dashed lines show the

264 ECOOP/OOPSLA ‘90 Proceedinp October 21-25, 1990

Figure 7: Using the Mode Composer.

corresponding MVC objects (their names are in ital-
its).

8 Mode Composer

The Mode Composer is the direct-manipulation user
interface of MODE. It allows the user to create an
interface, edit it, and connect the interface to the
application through direct manipulation.

The user creates interfaces by dragging modes out
of the interaction technique library (the right-hand
window in Figure 7) and pasting them together. Vi-
sual representatives of semantic objects and appli-
cation objects can be created and manipulated di-
rectly. In Figure 7, the user has finished the layout
and connection of the interface (an upside-down win-
dow) and is asking the system to create a subclass
of the “aBackground” semantic object.

All interfaces created with the Mode Composer
are immediately testable at any stage of the devel-
opment. Thus, there is no need to switch to a test
state. After the interface is created and tested, it can
be promoted into the library for future use. In fig-
ure 8, the upside-down window has been promoted
into the interaction technique library and is repre-
sented by an icon. The user can also store it in a file
and share it with other user interface developers.

The interaction technique library of the Mode

Vanilla Moda

Fianra Window

Figure 8: The interaction technique library.

Composer stores prototypes [8] of the interaction
techniques. As a consequence, each library object
represents a prototype instead of a class. Once an
interaction technique is promoted into the library, it
can be reused immediately by making copies of its
prototype.

Besides the orthogonal design of the Mode frame-
work, the capability to easily introduce new objects
into the library is also essential to the generality of
the system. If an interface builder were to have a
fixed set of library objects, the kinds of interfaces
that it could create would be limited. Since the user
of MODE can freely promote new objects into the in-

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 265

czl
OddShape Window

266

Alfhouah I am a

wwironment has

Figure 9: Sample user interfaces created with MODE.

ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

teraction technique library, MODE is not limited in
this respect.

9 Experience with MODE

Sample Interfaces
MODE has been used to create many direct-
manipulation user interfaces. Figure 9 shows a few
sample interfaces created with it. The scroll bar in
the top left window (Roam demo) scrolls the picture
continuously. The top right window (Menu demo)
has three types of menus: title-bar menu, tear-off
menu, and pop-up menu (not displayed). Menu
items can be text, foreign characters, bitmaps, and
animated pictures. The lower left window (titled
“For Barry”) demonstrates the system’s capability
to incorporate scanned images and text editors. The
largest window (titled “OddShape Window”) con-
tains two subwindows; both allow the user to create
networks of hypertext nodes. The oddly shaped sub-
window has three nodes in it. The user is dragging
one of the nodes over the trash icon in another win-
dow (titled “Level of DM”). The trash icon opens
to provide semantic feedback. Rubber-band lines are
drawn from “Oddl” node and “Odd3” node to the
node being dragged to show the connection. Notice
that the oddly shaped subwindow has a hole in it
through which the user can work with objects (for
example, the “Belowl” node) underneath the win-
dow. MODE also supports semi-transparent windows
as shown in the right half of the oddly shaped sub-
window.

aShrinkS

c

Figure 10: The Mode Composer is used to edit itself.

of MODE, two groups of subjects were asked to create
the same problem interface. One group (consists of
Smalltalk programmers with less than three months
experience) used MODE exclusively; the other group
(consists of Smalltalk programmers with 1.5 to 5
years experience) used whatever tools they liked ex-
cept MODE. The group using MODE were able to fin-
ish the assignment both faster and with fewer unim-
plemented features than the other group.

Self-Creation
Not only is the Mode Composer an important com-
ponent of MODE, it is also an important application
of MODE. To demonstrate the generality of MODE,
the user interface of the Mode Composer was cre-
ated using itself. Consequently, the Mode Composer
can be used to edit itself. For example, in Figure 10,
the user is using the Mode Composer to examine the
connection between the “ShrinkBox” and the “Win-
dow” of the interaction technique library. The user
has also made some changes to the Mode Composer.
The two scroll bars of the interaction technique li-
brary have been removed, and a “Roam Box” (a
two-dimensional scrolling device) has been attached.

Classes Do Not Make Good Types
The interaction technique library is an interesting
example of classes not making good types. Observa-
tion shows that the users of MODE naturally treat
each object in the library as a type. For example, a
user might drag a button out of the library, change
its border width, and promote the changed button
back to the library. From then on, he would think
he has two types of buttons instead of one. The
same thing happened to changes made to the con-
troller and the semantic object. Even though the
two buttons are composed of parts from the same
classes, they are treated as different types. Since
differences in the interaction technique library come
more from the values of the instance variables of the
objects than the classes to which they belong, classes
are not sufficient to differentiate these types. This
supports the choice of using prototypes which pre-
serve the values of the instance variables, instead of
classes, to represent objects in the interaction tech-
nique library.

Since it is easy for users to customize the user in-
terface of MODE, other users’ interfaces may look
and feel differently than the author’s presented here.

Effectiveness
In an informal experiment to study the effectiveness

10 Conclusion

MODE provides an effective environment for devel-
oping user interfaces in Smalltalk. The capability

October 21-25, 1990 ECOOP/OOPSLA ‘90 Proceedings 267

to uncouple the parts of a mode not only increases
reusability but also results in a more flexible system
with which a wide variety of interfaces can be devel-
oped. Experience with the Mode Composer indicates
that its direct-manipulation interface substantially
reduces the time and effort required to create and
manage user interfaces in Smalltalk.

MODE is currently being used to create interfaces
for a hypertext system supporting the IBM System
Network Architecture (SNA). The author is also ex-
ploring the possibility of augmenting MODE to auto-
matically generate code for X Window System. (A
similar project has been done by hand.)

11 Acknowledgement

A number of organizations and people have con-
tributed to the work reported here. The author is
grateful to the National Science Foundation (Grant
IRI-85-19517) and the Army Research Institute
(Contract #MDA903-86-C-0345) for their support
of this research. This work has been done as part
of the author’s dissertation project under the su-
pervision of Professor John B. Smith. Murray An-
deregg, Barry Elledge, Rick Hawkes and John Mal-
oney provided valuable comments and suggestions
for this paper. The Textlab Research Group within
the Department of Computer Science at the Univer-
sity of North Carolina at Chapel Hill has provided a
provocative and supportive intellectual environment
for this work. @NTUEE

References

PI

PI

PI

[41

Sam S. Adams. MetaMethods: The MVC
Paradigm. HOOPLA!, l(4), July 1988.

J. H. Alexander. Painless Panes for Smalltalk
Windows. In OOPSLA ‘87: Object Oriented
Programming, Systems and Applications, pages
287-294, October 1987.

Carl Binding. The Architecture of a User Inter-
face Toolkit. In UIST ‘88: ACM SIGGRAPH
Symposium on User Interface Software, pages
56-65, October 1988.

A. Goldberg and D. Robson. Smalltalk-80: the
Language and Its Implementation. Addison-
Wesley, 1983.

PI

PI

171

PI

PI

WI

P11

WI

1131

R. Hartson. User-Interface Management Con-
trol and Communication. IEEE Software, pages
62-70, January 1989.

R. J. K. Jacob. A Specification Language
for direct Manipulation User interfaces. ACM
Transactions on Graphics, 5(4):283-317, Octo-
ber 1986.

G. E. Krasner and S. T. Pope. A Cookbook
for Using the Model-View-Controller User In-
terface Paradigm in Smalltalk-80. Journal of
Object-Oriented Programming, 1(3):26-49, Au-
gust/September 1988.

Henry Lieberman. Using Prototypical Objects
to Implement Shared Behavior in Object Ori-
ented Systems. OOPSLA ‘86: Object Oriented
Programming, Systems and Applications, pages
214-223, September 1986.

Jeff McAffer and Dave Thomas. Eva: An Event
Driven Framework for Building User Interfaces
in Smalltalk. In Graphics Interface ‘88, pages
168-175, June 1988.

Yen-Ping Shan. An Event-Driven Model-View-
Controller Framework for Smalltalk. In OOP-
SLA ‘89: Object Oriented Programming, Sys-
tems and Applications, pages 347-352, October
1989.

Yen-Ping Shan. An Object-Oriented Frame-
work for Direct-Manipulation User Interfaces.
In Advances in Object-Oriented Graphics, Euro-
graphicseminars Series. Springer-Verlag, 1990.

Yen-Ping Shan. MODE: A User Interface Devel-
opment Environment Based on the Concept of
Mode. PhD thesis, Dept. of Computer Science,
University of North Carolina, Chapel Hill, NC
27514, 1990.

D. C. Smith, C. Irby, R. KimbalI, and B. Ver-
plank. Designing the Star User Interface. Byie,
pages 242-282, April 1982.

Stepstone Corp., Sandy Hook, Ct. ICpak 201
Reference Manual, 1988.

L. Tesler. The Smalltalk Environment. Byte,
pages 90-147, August 1981.

Pieter S. van der Meulen. Development of an In-
teractive Simulator in Smalltalk. JOOP, pages
28-51, January/February 1989.

268 ECOOP/OOPSLA ‘90 Proceedings October 21-25, 1990

