

Teaching Polymorphism with Elementary Design Patterns
Joseph Bergin
Pace University

http://csis.pace.edu/~bergin

berginf@pace.edu

Abstract
Polymorphism is often treated as an advanced topic by
educators. Many feel that if statements are in some sense more
“fundamental” to computing. On the contrary, polymorphism is
both fundamental to object programming and is an elementary
topic that can be easily understood by students. Previous papers
[1] have shown how role-play exercises can remind students that
they already have a deep understanding of dynamic
polymorphism. The question then becomes how do we find
effective teaching techniques to present this topic when we
move from the level of metaphor to that of programming. A few
elementary patterns [2] can be used to teach this topic even
before the student is introduced to ad-hoc selection with if
statements. Teaching these patterns early has the added benefit
that they are pervasive in the Java libraries, so understanding
them eases the student's later work.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object Oriented
Programming –polymorphism, control structures.

General Terms: Design, Languages.

Keywords: Teaching, Design Patterns.

1. Think polymorphically using elementary
design patterns.
Consider the following simple polymorphism pattern:
Context: You are at a point in a program at which one of several
things needs to be processed. These things are objects (rather
than ints...). You may have different kinds of things and in any
case different things need to be processed in different ways.
Problem/Forces: You want the program to be simple and
extendable. You want the object autonomy to be maintained as
usual. You want a single point of change for each logical
element as the program evolves.
Therefore, organize your code so that all of the different object
types share an interface, perhaps because they derive from a
common ancestor. At the point of commonality define a method
to perform the processing you need done, and implement this
method as appropriate in each type. If you need different kinds
of information (parameters) for each type, then you can delegate

the processing to an auxiliary object called a Strategy. In many
cases this additional object can be created when the original
object is and can be held as part of its state. The strategy object
can encapsulate all of the additional information.
For example, imagine a library processing books. There are
CheckableBooks and PermanentReserveBooks. When books are
brought back to the desk after use, they need to be returned. In
this case we probably already have these two classes extending a
common class, Book. If the same processing is required for all
books, we can put a doReturn method into the Book class. You
can now say simply

 book. doReturn();

Even in the case in which one or more of the subclasses must
process returned books differently, we can simply override this
method as appropriate, provided the parameter structure (here
no parameters) of the method can properly be the same. Even
with different implementations of doReturn in the different
classes, the invocation is identical.
We would like to maintain this simplicity in harder cases as
well.

2. Harder Cases: Strategy
In some cases different things need to be done on return of a
book, however. For example, a reserve book needs to be
returned immediately to a certain shelf, and a checked book
needs to be processed through the patron's library records for
late fees and outstanding fines. In this case we can delegate the
process to a strategy. If we write methods with different
parameters in the two classes it will be hard to use them
polymorphically unless we provide an intermediary, a strategy.
For flexibility, strategies are best defined in interfaces. In this
case, we can say

interface ReturnStrategy
{ public void returnBook();
}
Then individual strategies can be defined in classes that
implement this, such as:
class CheckableReturn implements ReturnStrategy
{ public CheckableReturn(Patron p, CheckableBook b)
 { this.patron = p;
 this.book = b;
 }

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

167

 public void returnBook()
 { book.returnCheckable(this.patron);
 }

 Patron patron;
 CheckableBook book
}

class PermanentReserveReturn implements
ReturnStrategy
{ public PermanentReserveReturn(Shelf s,
PermanentReserveBook b)
 { this.shelf = s;
 this.book = b;
 }
 ...
}

Then, when the book is given to a patron, one of these strategy
objects is created and saved within the book object itself. In fact,
the strategy could be created by an appropriate method of the
individual class itself. So the CheckableBook class can have a
method
 void createReturn(Patron p),
 {
 this.returnStrategy
 = new CheckableReturn(p, this);
 }

Then later, when the book is returned, the book can be asked to

 book.doReturn();

This method is defined in the Book class as

 public void doReturn()
 { this.returnStrategy.returnBook(); //Delegation
 this.returnStrategy = null;
 }

What do we gain? The original problem was that we were at a
point in a program at which different things could occur. Now,
the code for this is just a simple command like

 book.doReturn();

We do not here need to ask what kind of book it is. To see why
this is important, read on.
The above is a bit different from the way many programmers
would solve the problem. When the program is originally
written an if statement distinguishing the cases would be simple
enough, with different methods called depending on the test.
However, this means that when the problem changes or is
extended (common occurrences) this point in the program would

need to be visited again for update. If a new type of book is
introduced, we would need to replace the if with a switch or
more complex if structure. If the processing of any book changes
we might need to change the bodies of the if/else clauses if they
were more than just simple messages. This sort of programming,
with frequent changes to many places in a program is very error
prone as has been shown in practice over many years.
With the strategy solution, however, we don't need to modify
this point in the program for future changes. If we create a new
kind of book we create a new kind of strategy as well if
necessary. If the processing of some kind of book changes we
update or extend the appropriate strategy class that handles
returns for that kind of book. In a large program that will
change, this is hugely beneficial as we have localized the points
of change to the classes in which the change occurs and not
those places where objects of the classes are used.
The key to thinking above was that in a situation in which many
things are possible, one object delegates an action to another
kind of object (the strategy). Delegation is the key. You arrange
to create the new object at the early point at which you have the
necessary knowledge to do so. One consequence is that you
have more objects, but the individual objects are simpler. Simple
objects are easy to understand and maintain. They may also be
easy to extend through inheritance or other mechanisms.
We note that there are other ways to use the strategies than have
them held within the book objects. For example, we could put
the return strategies into a hashmap using the book as the value
and the strategy as the key. Since the strategy contains all the
information necessary to return a book, we could, when asked to
return a book, find the corresponding strategy in the hashmap
and then send it a returnBook() message. There are many other
possibilities, of course.

3. New Strategies From Old: Decorators
As your program develops you will find yourself with several
strategy classes and the need to define new ones. Sometimes this
can be done with inheritance, but there is another way that often
works. Suppose you have a strategy that does one thing and you
need a strategy that does that thing, but also some independent
thing as well. For example, suppose that we discover that some
(but perhaps not all) of our book return actions also need to
record how much time the book was out. It might even be the
case that not all CheckableBooks need this extra action, but only
some. One way to proceed is to write a Decorator for strategies
that holds another strategy and performs its action in addition to
another.
For example, let's build a timer Decorator for return strategies.
For simplicity we will assume that the time the decorator is
created is the desired check out time.

class TimerStrategy implements ReturnStrategy
{ public TimerStrategy(ReturnStrategy d)
 { this.decorated = d;
 }

 public void returnBook()
 { decorated.returnBook();

168

 timeRecorder.record(this.timeOut, new Date());
 }

 private ReturnStrategy decorated;
 private Date timeOut = new Date();
 // Time the strategy is created.
}

Then when we need such a thing, we can create it, wrapping any
other kind of return strategy, for example

 returnStrategy = new TimerStrategy(new
CheckedStrategy (aPatron));

We can now return the book exactly as before with

 this.returnStrategy.returnBook();

and both actions will be done.

4. Cleaner Code: Null Object
Note that we have left the returnStrategy object of the Book
class null after a book is returned. The value null is difficult to
work with. If you dereference it by accident or poor design your
program will crash (actually, throw an exception). We assumed
that an invariant of the field was that it was null when the book
was in, and not null otherwise. We can do a bit better, actually,
and lessen the chance of using null incorrectly, by not using it at
all. Here we will apply another design pattern called Null Object
[3]. We let a special object take the place of null. Here we will
develop an NullStrategy.

class NullStrategy implements ReturnStrategy
{ public void returnBook()
 { // do nothing
 }
}
Now the returnStrategy field of Book could be initialized with
one of these

ReturnStrategy returnStrategy = new NullStrategy();

And the doReturn method could be modified to:

 public void doReturn()
 { this.returnStrategy.returnBook(); //Delagation
 this.returnStrategy = new NullStrategy();
 }

5. Keep it Simple: Singleton
Well, we can do even better than this. Note that the NullStrategy
has no state and so always behaves in exactly the same way. If
we have two or more of these they all behave exactly alike.
Therefore it is really unnecessary to have more than one of
these, so we can and should turn the NullStrategy (as is true of

most null objects) into a Singleton. We do this by giving the
class a private constructor but a public static instance.

class NullStrategy implements ReturnStrategy
{ public void returnBook()
 { // do nothing
 }

 public static NullStrategy value = new NullStrategy();

private NullStrategy()
 {
 }
}

It is now impossible to create more of these since the constructor
is private. But we have exactly one of them available defined by
the class itself, hence it is a Singleton.
Now wherever else we previously said new NullStrategy() we
now say NullStrategy.value.
Note that Singleton objects are useful in other places. If there is
no need to create more than one object of a certain class, or the
logic of the program suggests it is incorrect to do so, then the
class should be a singleton.

6. Keep it Safe: Immutable Object
Finally we note that all of the strategy classes we have shown,
including the decorator, were Immutable. An object is
immutable provided that its state cannot be changed after it is
created. The constructor must supply all data necessary to create
it (which it must do anyway) and there are no “mutator”
methods that change the state later. Immutable objects are very
useful in a program since they make the program easier to
reason about. If objects don't change state, we know that the
state we find them in at any point, including after a crash, is the
state they were created with. Don't provide mutator methods for
your classes unless they are really necessary and try to design
your code overall so that they are mostly not necessary.
Programs with few mutatorsare easier to maintain and debug.
It is hard to do much of this if you are processing things that are
not objects or even for final objects. This is because you can't
attach additional methods to them, though if you have access to
the source code, you can modify the definition of a final class.
There may be other reasons for not doing so, however.

7. References
[1] Andrianoff, Levine, Bergin, Role Playing: Easing the

Paradigm Shift, OOPSLA 2002 Educator's Symposium,
Seattle, WA

[2] Gamma, Helm, Johnson, and Vlissides; Design Patterns;
Addison-Wesley; 1995.

[3] Woolf; “Null Object”; Pattern Languages of Program
Design 3, edited by Martin, Riehle, and Buschmann,
Addison-Wesley, 1998.

169

