
Agility vs. Stability at a Successful Start-Up:
Steps to Progress Amidst Chaos and Change

Kurt Madsen
MetaTech, Inc.

18311 Sturbridge Court
Tampa, Florida, U.S.A.

+1 813 298 8180

madsen@metatech.us

ABSTRACT
It is not uncommon for good technical solutions to fail in the
marketplace. Equally true, great business opportunities are not
always met with appropriate technical solutions. While there can
be many causes to such failures, one common problem is the gap
between expectations and implementation. Extreme Programming
is an excellent delivery methodology for bridging this gap. This
paper presents lessons learned from applying Extreme
Programming in a start-up environment. In particular, the
challenges of meeting and adapting to evolving requirements are
presented.

Categories and Subject Descriptors
D.2.9 [Management]: Software Process Models, Lifecycle
D.2.2 [Design Tools and Techniques]: Decision Tables,
Evolutionary Prototyping, Object-Oriented Design Methods

D.2.11 [Software Architectures]: General

D.2.1 [Requirements/Specifications]: Elicitation Methods, Tools

K.6.5 [Security and Protection]: Authentication

General Terms
Design, Experimentation, Management, Security

Keywords
Agile Methods, Application Framework, Software Development
Life Cycle, Extreme Programming

1. INTRODUCTION
Start-up companies present unique challenges to the software
development process because the pressure to deliver is high,
resources are thin, and requirements often change frequently.

To be successful, a start-up team must:

� Build domain expertise in the business.
� Be able to deliver, preferably reusable and adaptable artifacts

with future value.
� Ensure that evolving deliverables are always aligned with

evolving expectations. In essence, be agile.
� Provide investors with a sense of stability and progress.

Extreme Programming is ideally suited for this environment. This
paper presents our practical experiences applying the Extreme
Programming lifecycle to such projects. In particular, it focuses
on tools and techniques that facilitate progress amidst chaos and
change in start-up environments.

2. SYSTEM OVERVIEW
Since much of our work is in the area of data communications, we
have developed an application framework that can be extended to
build a variety of networked applications [1]. The system
architecture is shown in Figure 1.

Figure 1. System Architecture

Components are classified in typical n-tier fashion and assembled
into one or more nodes. Nodes can be networked together to build
switching networks by feeding the output of one node into the
input of another. Note that not all components or even tiers are
used at every node. For example a switching node will have Copyright is held by the author/owner(s).

OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

Business
Services

Presentation
Tier

Data
Services

Infrastructure
Services

Security Engine
Directory Service
Transaction Monitor

Workflow (wfc)
Logging and Alarm Dispatch

External
Interfaces

Views

Controller Fa
ça

de

Se
ss

io
n

M
an

ag
em

en
t

Filters

Filters

XSL
Templates

M
od

el
 A

cc
es

s
Client

Services

Policy
Engine

NodeMgr

Customer

En
tit

y
B

ea
ns

Other
Services

Billing

Config

Adapter

Adapter

C-API

SOAP

Logic
Machine

Adapter

MQ
Series

Adapter
HTTP

313

network monitoring components but will not have user interface
components.

3. DEVELOPMENT LIFECYCLE
We built our lifecycle around Extreme Programming [2]. The
lifecycle for this software development methodology is broken
down into delivery iterations, each of which consists of three
phases. They are exploration, commitment, and steering.

� Exploration Phase – This phase is for information gathering
and includes collecting user stories, determining
requirements, and performing spikes if needed. (A spike is
typically throw-away code used to test an idea.) In practice,
this phase was somewhat informal for us since our users are
generally on-site.

� Commitment Phase – This is where developers take story
cards, estimate scope and effort, and the technology team
negotiates deliverables with the users. In practice, our team
lead performed this activity with input from the team. Story
cards are useful because they enforce succinct descriptions of
units of work for development.

Steering Phase – This phase encompasses the rest of the iteration
with an emphasis on providing feedback to the users. In practice,
we found that this was one of the most valuable aspects of
Extreme Programming because it led to requirements evolution
and discovery. Additionally, while the users were not always
happy, they always felt apprised of the current system status.

4. LESSONS FROM XP PRACTICES
Extreme Programming prescribes twelve key practices. We found
that some of these were more useful than others. Our experiences
with each of these practices is described below.

4.1 The Planning Game
In software development life cycles considerable time is often
spent first capturing and then translating requirements into design
specifications. Further, the end product does not always capture
the intent of the end users.

In practice, two problems make requirements capture difficult:
requirements are often ambiguous and users generally wait too
long for implementation feedback in the form of a working
system. The Extreme Programming planning game helps
considerably by providing a fast iteration cycle in which users
specify stories, developers negotiate deliverables, and
communication between both groups in the form of early
feedback is emphasized.

Still, we initially found ourselves reverting to maintaining
requirements documents based on use cases. Such requirements
documents are by their nature ambiguous and subject to change.

We wanted to minimize churning implementation to match
changing requirements. So rather than move to story cards as
prescribed by Extreme Programming, we gave our users a
decision table template and asked that they use it to validate their
most important use cases. These decision tables were versioned in
our source control management tool, Subversion. And they were
treated as first class development artifacts, just as important as
source code. Collectively, they specified the system behavior. A
sample decision table is illustrated in Figure 2.

Figure 2. Decision Table
The decision table is interpreted as follows: zeros are false, ones
are true, and stars match either boolean value. One event, in this
case e1, is the starting point into the table’s logic. The set of
conditions effectively define the current state of the system. Given
the input event and the set of conditions, one or more actions are
executed.

We worked with our users to get them to the point where they
could maintain their own tables. After specifying decision tables,
the users received immediate feedback in the form of modified
system behavior. They used this process to experiment and
discover new requirements, while we received a well-formed and
unambiguous system specification. Consequently, our
development team spent less time in analysis and design.

We built a logic machine, to load these tables as reference code
and execute them using framework code – it’s fast and accurate.
The logic machine is essentially a configurable server that
behaves as a finite state machine, but can handle many conditions
and actions in one event dispatch cycle.

Figure 3 shows the behavior that results when the logic machine
loads and executes the decision table from Figure 2. Note that
event e1 initiates the execution cycle which invokes several
actions, a1 through a9. (Action a9 is not shown.)

In this example, the Principle is a user with a browser client and
the logic machine is running on an authentication and
authorization server. The Principle seeks access to protected
URLs, which are only accessible via one of three security
protocols that are specified by the decision table. The first
protocol, called method A, applies rule 3 (which executes actions
a2 and a3) to encrypt user credentials and pass this data as hidden
text fields in an method A redirect. The Principle is then
redirected to the resource owner who decrypts the authorization
credentials. The second protocol, method B, applies rule 4 (which
executes actions a2, a4, and a5) to encrypt the authorization
credentials, get a security token from the URL owner (generally a
3rd party), and finally send this data to the principal via a method

Use Case: Security access control
R1 R2 R3 R4 R5

EVENT
e1 Principal requests access to URI 1 1 1 1 1

CONDITIONS
c1 Session exists 0 1 1 1 1
c2 Access authorized for this URI * 0 1 1 1
c3 Access method A applies * * 1 0 0
c4 Access method B applies * * 0 1 0
c5 Access via SAML * * 0 0 1

ACTIONS
a1 Retrieve session 1 1 1 1 1
a2 Encrypt assertion data 0 0 1 1 1
a3 Redirect via method A 0 0 1 0 0
a4 Get security token 0 0 0 1 0
a5 Redirect via method B 0 0 0 1 0
a6 Forward assertion via SAML 0 0 0 0 1
a7 Log session in audit trail DB 0 0 1 1 1
a8 Deny access 0 1 0 0 0
a9 Create session 1 0 0 0 0

RULES

314

B redirect. A security token is generally valid for a pre-defined
time period during which access is valid. The third protocol is
based on the security assertion markup language (SAML) [3]. It
applies rule 5 (invoking actions a2 and a6) to encrypt the
authorization credentials and assert the Principle’s identity to the
URL owner via a SAML assertion message.

Principal LogicMachine

e1: request Access (URL)

a2: encrypt Data

a3: method A Redirect ()

a6: assert Identity

a5: method B Redirect (token)

a7: log Session

Audit
Trails

a1: lookup Session

a8: deny Access

a4: get Token

Figure 3. Desired System Behavior

Note that Figure 3 highlights portions of all three protocols for
the purpose of illustrating the flexibility of the decision table
approach. From this experience, we learned the value of having a
simple tool to quickly implement user stories and new
requirements.

Several lessons came out of our planning game experience.

LESSON: Put your customers to work by letting them maintain
specifications under supervision.
LESSON: Unambiguous requirements align delivery with
expectations and reduce developer workload.
LESSON: Rapid feedback leads to better exploration of the
problem space and requirements discovery.

4.2 Simple Design
Another XP practice is simple design. As Albert Einstein once
said, “make everything as simple as possible, but not simpler.” In
our case, this meant using only one decision table template and
resisting the temptation to overload the functionality of the logic
machine.

Regarding implementation, we first considered using the State
pattern [4], which can be used to build a finite state machine that
is easily extended. But, the decision table approach turned out to
be a simpler design because of the number of states (combinations
of conditions) and the fact that each dispatch cycle generally
invoked several actions.

Figure 4 shows the static structure of the logic machine used to
load and execute decision tables.

+getName() : String
+isSet() : Boolean
+doAction(in session) : Boolean

Action
-manages

1

-isManaged

1..*

+getName() : String
+isSet() : Boolean
+doAction(in session) : Boolean
-delegateAction() : Boolean

encrypt Data Action

+getName() : String
+isSet() : Boolean
+doAction(in session) : Boolean
-localAction() : Boolean

assert Identity Action

+setConditions()
+getConditions()

-_sessionID
-_conditionFlags : BitMask

Session

+loadLogic(in logicTable)
+handleEvent(in Session)

LogicMachine

other Actions

Figure 4. Logic Machine Implementation

The logic machine has two methods, loadLogic() and
handleEvent(). At system startup, loadLogic() loads each decision
table into a HashMap of rules. The hash key for each rule is the
bit mask of conditions and the lookup value is a set of references
to actions. Note that for each rule, the set of actions are organized
along the lines of the Pipes and Filters pattern [5].

For example, the HashMap entry for rule r4 is:

Key = {1, 1, 1, 0, 1, 0}
Value = {a1, a2, a4, a5, a7}

This process is repeated with one new HashMap created for each
decision table. (In general, we only used one decision table and
one HashMap.)

At runtime, handleEvent() is passed a session from which it
obtains the set of current conditions (i.e., the bitmask). Using this
condition set as a key, it finds the set of actions that apply for that
rule. Iterating over the set invokes all actions for that rule. For
each action, if isSet() == true, then doAction() is invoked. We
later changed this to only load those actions where isSet() == true
for a given rule. In other words, it is not necessary to load actions
when isSet() == false because they will never be invoked.

Note that some action classes, such as A2, implement local
actions while others, such as A1, delegate an event and session
context block to other handlers or even applications. It is
important to ensure that the processing time consumed by such
handlers does not exceed (or even block) the logic machine’s
processing cycle. The Active Object design Pattern is an excellent
approach to dealing with this problem [6].

In addition to the logic machine, we needed a concurrent server
for asynchronous event de-multiplexing and dispatching. We
considered the Reactor pattern and more generally the ACE
communications framework [7] as well as various options using
J2EE and EJB. The team had good J2EE experience, but we
needed a simple solution with good performance. We opted to use
a concurrent server based on work by Comer and Stevens [8].

315

The main loop of the server is essentially two lines of code:

SCB scb = sessionPool.retrieve(SessionID);
logicMachine.handleEvent (e, scb);

This implementation is simple to maintain and it is fast. From an
external point of view, the behavior is what matters; the
implementation details are irrelevant as far as the users are
concerned. Keeping the implementation simple allowed us to
focus meeting user expectations.

LESSON: Keep it Simple.

4.3 Metaphor
The Metaphor practice within Extreme Programming refers to
maintaining a common system description that guides
communication and development. This practice was not clearly
understood by the team (other than the obvious need for common
understanding among team members). Thus, it was not
intentionally implemented.

4.4 Test First
Writing unit tests before developing code forces developers to
specify the acceptance criteria before coding features. This
practice is immensely valuable, but takes time to set up initially
which can make it difficult to justify in a start up environment. It
is particularly valuable for regression testing when implemented
together with continuous integration. This permits features to be
added incrementally without breaking previous work.

Aside from using Junit, we did not spend enough time up front to
get set up and establish a regression test suite. However, the effort
that we did do in this area was time well spent. As of this writing,
we are just getting started with Clover.

4.5 Re-factoring
Re-factoring in Extreme Programming provides agility. It also
gives developers the courage to make significant changes under
pressure (see continuous integration.) In practice, it is often
difficult for developers – and investors – to accept the fact that it
is sometimes necessary to delete code. Discarding or changing
code that works is often seen as a step backwards, particularly
when the new code that replaces it does not work.

It is important to understand that the activity of re-factoring code
is itself a deliverable because it hones the teams skills and creates
an agile delivery pipeline.

We found it useful to pursue axiomatic development by using
formal transformations such as boolean algebra [9], in particular
DeMorgan’s Laws. These transformations facilitate rapid re-
factoring while preserving program correctness. For example, the
law:

() BABA ∧↔∨

can be used to verify that the following two statements are
equivalent:

if (! (user.role() == “manager” || access == “allow”))
if (user.role() != “manager” && access != “allow”)

Real-world business logic can be substantially more complicated.
Such formal transformations reduce the risk of re-factoring and
build confidence among team members. In this sense, the act of
re-factoring is itself a deliverable. This practice combined with
tight SCM control ensured axiomatic development – we always
had a working integration code base with minimal branching.

LESSON: Use Formal Transformations.

4.6 Continuous Integration
Continuous integration is critical to stability and quality. It allows
teams to have courage – an Extreme Programming value – when
making changes under pressure. We made the mistake of asking
management for time to implement and test our
build/integrate/release cycle early in the project lifecycle. We did
this by pitching continuous integration as a first class feature
worthy of being placed on the project schedule. So, when it came
time to negotiate user stories, continuous integration was not
approved. This decision was due the pressures of a start-up as
well as management’s failure to recognize the value of continuous
integration (or our failure to communicate this value).

For future projects, we recommend that the development team set
up infrastructure elements such as continuous integration quickly
at the beginning of the project and without rationalizing it with
users. If the first few user stories are late, yet a continuous
integration process is in place, the project will be much better off
in the long-run.

LESSON: It is easier to ask for forgiveness than permission.
Don’t seek approval for CI; just set it up.

4.7 Pair Programming
Unlike continuous integration, which can be set up at the
beginning of the project under the radar, pair programming is an
XP practice that must be sold to management because staffing,
budget, and expectations are more visible. Unfortunately, the
concept of pair programming is still difficult to sell.

Too often, companies put several programmers together in one
conference room, each working on different tasks, and call it XP.
Assigning two developers to work on the same task is anathema to
business leaders.

Our primary observation is that both developers must be assigned
the same task in order to fully realize the benefits of pair
programming. This is partly due the psychology of a software
development team: egos are strong, and people are often reluctant
to ask dumb questions. Without true pair programming, these
questions – and bugs – linger in the project.

LESSON: Both developers must be assigned the same task.
LESSON: The team culture must encourage asking dumb
questions.

4.8 Collective Ownership
In any complex system, developers inevitably develop specialized
knowledge, which can put the project at risk if someone leaves the
project. To build common understanding of the system and a
sense of collective ownership, our management periodically asked
a random developer to give a brief presentation, similar to a
lightning talk, on one aspect of the system. The developer was

316

generally asked to present a portion of the system that they he or
she not develop. Advance notice was short, sometimes only
fifteen minutes, which kept preparation time to a minimum. The
intent was that this practice should not interfere with on-going
development.

LESSON: Collective ownership is built on common technical
understanding and random lightning talks.

4.9 Maintain a 40-Hour Week
We found it difficult to adhere to this XP practice. After months
of overtime, people burned out and some left the team.

Unfortunately, significant overtime in the form of a four to six
month crunch period is somewhat inevitable at a start-up
company because market windows are small and serious effort is
required by developers to bring a product to market. Promises of
stock options keep staff on-board during this critical build phase.
But once the product has been released into the market, sales and
support become top priorities and staffing levels are generally cut
back.

The best way to address work environment quality issues is to
communicate with investors and management regarding the effect
of stress and overtime on peak productivity rates. Proper resource
leveling and upfront communication with the team builds loyalty.

LESSON: Burned-out Developers are not Productive.

4.10 Coding Standard
We failed to take the time up front to agree upon one set of
coding standards. Coding standards become important to ensure
staff substitution and enterprise integration, particularly in larger
organizations.

4.11 Small Releases
Our experience has been that when properly controlled, frequent,
small releases lead to more stable production releases. This
requires tight control over source code control and release
management.

One best practice is to only have one set of project source files at
all times: the production set. Maintaining multiple sets of files for
various purposes (e.g., development, QA, demos, production) is
bad practice. Also, hard-coding development or test or demo data
into production source files is bad practice.

Some examples of best practices in release management include
the following [10]:

1. The build process and source code artifacts should be kept
self-contained: they should not depend on specific target
environments such as one developer’s PC. Also, the build
manager role should rotate among the team.

2. Release-specific properties should be isolated to one place
such as the project properties file. To change properties that
are specific for a particular target environment, the build
script should first source the production properties file
followed by a second properties file to override settings
specific to a non-production environment (e.g., DEV,
STAGE, CTGY). If the second properties file does not exist,
then a production release will be built.

Regarding the second point, each developer may have his or her
own properties file, my.properties, which is not checked in under
source control. In this way, each developer can alter properties for
testing without introducing developer-specific dependencies to
the project source tree. Thus, a demo on demand can be build
quickly by substituting the current build file.

LESSON: More frequent, smaller releases are less risky.

4.12 On-Site Customer
Users have the annoying habit of requesting demos at the worst
times, typically interrupting the development process. We found
that to maintain good communication between users and technical
staff, users must feel welcome to visit the development
environment anytime with minimal advance notice. This open
house policy creates an atmosphere of mutual respect between
business users and developers. Figure 5 shows how we involved
our business domain experts in the requirements discovery and
story creation process.

The key to making this feedback cycle work was our ability to
reconfigure the system by editing decision tables, configuring
components, and rebuilding the application. Here is where all of
the practices in Extreme Programming come together.

IT Delivery

Network

Components

Decision
Tables

Logic
Machine ApplicationGenerated

Application

Evaluate4

Customer
Domain

IT
Procurement

Analysis
Design

Build
Integrate

Fe
ed

ba
ck

Fe
at

ur
es

User Stories

Application
Assembly

Capture1

Build vs. Buy

Configure2 Deploy3

Vendor

Figure 5. Experimentation Drives Requirements

The result was that requirements evolved in sometimes
unexpected ways. This models the way people naturally solve
problems. One cannot learn to swim by writing requirements
documents. Rather, one must jump in the water and experiment.

LESSON: People Learn by Doing.
LESSON: Always be Ready for Demo on Demand.

5. FURTHER RESEARCH
Future plans include applications in new domains as well as
parameterized conditions. Figure 6 provides an example of a
decision table in the aviation domain in which condition c3 has a
parameter, $18. This parameter represents the cross-wind
component of the current wind speed and direction at the runway:
this crosswind component must be below 18 knots to land safely.

317

Parameters are implemented by establishing buckets of range
values, with one bucket for each rule. In this example, rule 1
applies if the crosswind condition, c3, is less than 3 knots, rule 2
applies if it is less than 6 knots, and so on by increments of 3
knots per bucket. Since the actual parameter for condition c3 is 17
knots, only rules R1 through R6 apply.

Use Case: Aircraft landing
R1 R2 R3 R4 R5 R6 R7 R8

EVENT
e1 Landing sequence begins 1 1 1 1 1 1 1 1

CONDITIONS
c1 Runway length is sufficient 0 0 0 0 1 1 1 1
c2 Landing gear is down * * * * 0 1 0 1
c3 Crosswind < $18 knots 1 1 1 1 1 1 0 0

ACTIONS
a1 Emergency gear extension 0 0 0 0 1 0 0 0
a2 Calculate final approach 0 0 0 0 1 1 0 0

POST ACTION
a99 Decide to land 0 0 0 0 1 1 0 0

RULES

Figure 6. Decision Table with Parameters

Rules R1 through R8 in Figure 6 are interpreted as follows:

� R1 through R4: 991 ac → . The runway is too short.

� R7 and R8: 993 ac → . It is too windy to land.

� R6: [] 992321 aaccc ∧→∧∧ . The aircraft can land.

� R5: [] 9921321 aaaccc ∧∧→∧∧ . The aircraft can land
after the emergency landing gear procedure is complete.

Rules 5 and 6 highlight another area of current research, the
ability to specify post-actions. This is not the same as a post
condition in a use case. In our implementation, the order of
execution of actions is not guaranteed. But, it is often desirable to
have one action that executes last, which typically depends on the
outcome of the previous actions. In this example, the final action,
a99, is the decision to commit to a landing, which must follow
actions a1 and a2.

The brackets above act as state guards [11] to ensure that the post
action a99 executes last. For example in rule R6, action a2 must
execute before post action a99. Likewise, in rule R5, actions a1
and a2 must execute before post action a99.

Note, that this table assumes that action a1 succeeds. This action
initiates the emergency gear extension process. If this action were
to fail, then a landing would not be possible. Thus, rule R5
changes condition c2. We are currently experimenting with
multiple passes through the table to process one event. But,
iteration cycles must be marked to avoid infinite loops as would
result if the emergency gear extension process fails.

6. CONCLUSSION
There are many factors that determine the success or failure of a
software project. Our experience in applying the Extreme
Programming methodology at a start-up company was, on the
whole, very positive.

One general observation is that start-up companies are at risk of
being “penny-wise, pound-foolish.” Examples of areas that did

not receive enough attention early in the project were setting up
continuous integration and release management, establishing
coding standards, and properly emphasizing test-first
development. Also, in an effort to conserve scarce funding, we
used open source for everything even though, in some situations,
expensive products were appropriate. Our labor costs eventually
exceeded the initial savings. Still, these challenges are part of
what make start-ups exciting.

Our advice for future projects is that the value of unambiguous
requirements capture as well as the requirements discovery that
results from quick iterations and feedback cannot be
overemphasized. In summary, Extreme Programming helps bring
agility and stability to start-up environments.

7. REFERENCES
[1] Madsen, K. Five Years of Framework Building: Lessons

Learned. In 18th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
conference companion, pages 345–352, Anaheim, CA, Oct.
29–30, 2003. ACM Press, New York, NY.

[2] Beck, K. Extreme Programming Explained – Embrace
Change, second edition. Addison-Wesley, 2004.

[3] Lockhart, H., Hughes, J., Maler, E. Security Assertion
Markup Language 2.0 Technical Overview, working draft
03. OASIS Open. Feb. 20, 2005. www.oasis-open.org.

[4] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software,
pages 331–344. Addison-Wesley, 1995.

[5] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
Stal, M. Pattern-Oriented Software Architecture: A System
of Patterns, pages 99–122 and 53–70. John Wiley & Sons,
1996.

[6] Lavender, G., Schmidt, D., Active Object – An Object
Behavioral Pattern for concurrent Programming.
Proceedings of the Second Pattern Languages of Programs
conference in Monticello, IL. September 6–8, 1995.

[7] Schmidt, D. Reactor: An Object-Oriented Interface for
Event-Driven UNIX I/O Multiplexing. C++ Report, SIGS,
Vol. 5, No. 2, pages 1–12, February, 1993.

[8] Comer, D., Stevens, D. Internetworking with TCP/IP Volume
III: Client-Server Programming and Applications,
Linux/POSIX Socket Version, pages 143–150. Prentice Hall,
2000.

[9] Roth, C. Fundamentals of Logic Design, third edition, page
37. West Publishing Company, 1985.

[10] Burke, E. Top 15 Ant Best Practices, O’Reilly OnJava.com.,
Dec. 17, 2003.
http://www.onjava.com/pub/a/onjava/2003/12/17/ant_bestpr
actices.html

[11] Fowler, M., Scott, K. UML Distilled, second edition, page
119. Addison-Wesley, 2000.

318

