
Finding Bugs in Eclipse (Demonstration)

William Pugh
University of Maryland
pugh@cs.umd.edu

Abstract
This will be a live demonstration of FindBugs, a static anal-
ysis bug finding tool, on the current development version
of Eclipse 3.4. FindBugs reports issues such as null pointer
dereferences, comparing incompatible types with equals, in-
valid method calls, infinite recursive loops, bad integer op-
erations, and more. FindBugs reports more than 400 such
issues in Eclipse 3.3.

During this demonstration, we’ll give a quick overview
of the FindBugs GUI and walk through 10-20 bug warnings,
categorize each warning as to whether or not fixing the issue
is important, and enter comments about the bug. We’ll be
able to browse warnings by date of introduction, so we can
see if the issues introduced in the past month are more or
less serious than the issues that have been in the code base
since Eclipse 3.3, 3.2 or earlier. Vocal audience participa-
tion is encouraged, and participants with laptops can follow
along and enter their own categorization and comments ei-
ther during the demonstration or afterwards. Audience mem-
bers with commit privileges to the Eclipse project will get
free FindBugs T-shirts.

We’ll also briefly demonstrate how to set up FindBugs as
part of a production development environment.

Categories and Subject Descriptors F.3.2 [Semantics of
Programming Languages]: Program analysis; D.2.4 [Soft-
ware/Program Verification]: Reliability

General Terms Experimentation, Reliability, Security

Keywords FindBugs, static analysis, bugs, software de-
fects, bug patterns, false positives, Java, software quality,
Eclipse

Static analysis for software defect detection has become
a popular topic, and there are a number of commercial, open
source and research tools that perform this analysis. Find-
Bugs [2, 1] is an open source static analysis tool for finding

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

Null pointer dereference 139
Reverse null point dereference 70
Doomed equals 31
Non short circuit evaluation 25
Dubious method invocation 15
Self assignment 12
Bad integer operation 18
Ignored return value 7
Doomed checked cast 4
Infinite recursive loop 3

Table 1. Selected correctness issues found in Eclipse

// org.eclipse.update.internal.core.ConfiguredSite

// lines 941

if (in == null)

try {

in.close();

} catch (IOException e1) { }

Figure 2. Null pointer issue since Eclipse 2.0

programming errors in Java programs. While many people
have read articles or seen presentations on FindBugs, fewer
people have actually sat down with FindBugs to see how it
works when applied to real software. In this demonstration,
we will demonstrate the use of FindBugs on the Eclipse 3.3
release. We will demonstrate the FindBugs graphical user in-
terface (Figure 1), the FindBugs plugin for Eclipse, and the
warnings generated by Eclipse’s own defect detection anal-
ysis. We’ll briefly discuss how to set up FindBugs as part
of your software development process and how to perform
collaborative distributed issue auditing.

FindBugs reports more than thousands of issues for
Eclipse, and more than 400 issues categories as “correct-
ness” issues by FindBugs, which are the issues where the
tool is most confident that the code does not correctly reflect
the developers intentions. Our experience [1] has been that
more than half of the correctness issues are issues that de-
velopers will want to address by changing the source code.
Table 1 gives a summary count of some of the issues found
by FindBugs in Eclipse.

856



Figure 1. FindBugs GUI

// org.eclipse.pde.internal.core.PluginModelManager

// line 839

public void resetState(PDEState state) {

// the following 2 lines were added after 3.3M7

if (fState != null && fState.equals(state))

return;

// clear all models and add new ones

int type = IModelProviderEvent.TARGET_CHANGED;

IModel[] removed = fState.getTargetModels();

Figure 3. Null pointer issue introduced after 3.3M7

During this demonstration, we will review a sample of the
issues found by FindBugs in Eclipse. Audience participation
will be encouraged in a discussion of which issues warrant
being addressed by changes to the source code. Not every
issue warants changing the source code, and we’ll discuss
some of the reasons for that phenominin, and how to deal
with it when incorporating static analysis into your software
development process.

We’ll also discuss tracking issues across multiple ver-
sions. This allows us, for example, to determine which issues
have been present since Eclipse 2.0 (e.g., the null pointer
problem in Figure 2) and which were introduced after 3.3M7
(e.g., the null pointer problem in Figure 3). While FindBugs
finds lots of null pointer issues, it also finds many other kinds
of issues. Figure 4 shows a doomed comparison to -1, while
Figure 5 shows a hash function that will generate a bad hash
for an underline or strikeout text style.

// org.eclipse.core.internal.localstore

// .FileSystemResourceManager

// line 274

int third = (input.read() & 0xFF);

if (third == -1)

return IFile.ENCODING_UNKNOWN;

Figure 4. Bad integer operation

// org.eclipse.swt.graphics.TextStyle

// lines 145-146

if (underline) hash ^= hash;

if (strikeout) hash ^= hash;

Figure 5. Nonsensical self-operation

Acknowledgments
Thanks to all the contributors to the FindBugs project. Find-
Bugs is sponsored by Fortify Software and by SureLogic.

References
[1] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and

Y. Zhou. Evaluating static analysis defect warnings on
production software. In PASTE ’07: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, pages 1–8, New York, NY,
USA, 2007. ACM Press.

[2] D. Hovemeyer and W. Pugh. Finding Bugs is Easy. In On-
ward!, 19th ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, Vancouver, BC,
October 2004.

857


