
MetaEdit+: Domain-Specific Modeling for Full Code
Generation Demonstrated [GPCE]

Juha-Pekka Tolvanen
MetaCase

Ylistonmaentie 31
FIN-40500 Jyvaskyla, Finland

+358 14 4451400

jpt@metacase.com

ABSTRACT
Domain-Specific Modeling (DSM) raises the level of abstraction
beyond programming by specifying the solution directly using
domain concepts. In many cases, the final products can be
generated from these high-level specifications. This automation
is possible because both the language and generators need fit the
requirements of only one company and domain.

This demonstration illustrates DSM by showing real world cases
from various fields of software development. These cases
describe how DSM, giving first class support for modeling, can
prevent incorrect or unwanted designs at the early stages of
development, and how full code can be generated from the
modeler’s point of view. Second part of the demonstration will
show in an interactive manner both the design side and the use
side of DSM languages and generators. Using MetaEdit+ tool for
metamodeling, we define a DSM for a given domain and apply it
to generate full code from high-level models.

Categories and Subject Descriptors
D 2.2 [Design Tools and Techniques]: Computer-aided software
engineering (CASE)
D 2.6 [Programming Environments]: Graphical environments
D 3.2 [Language Classifications]: Design languages,
specialized application languages, very high-level languages

General Terms
Design, Languages

Keywords
Metamodel; domain-specific modeling; code generators

1. INTRODUCTION
Domain-Specific Modeling raises the level of abstraction and
hides today's programming languages, in the same way that
today's programming languages hide assembler [5, 6]. Symbols
and language constructs in a domain-specific model map to
things in the domain - the world in which the application is to
run. Rather than having concepts and symbols that map one-to-
one with the constructs of a programming language, each symbol
can be worth of several lines of code. This offers a whole level of
abstraction higher than with current modeling languages, such as
UML. The properties that characterize the symbol can further

elaborate different mappings to code, or the connections the
symbol has to other symbols offer further mappings etc. The
developer can therefore solve the problem only once by visually
modeling the solution using only familiar domain concepts. The
final products can be automatically generated from these high-
level specifications with domain-specific code generators, aided
where necessary by existing component code [2, 3, 4].

As the name suggests, Domain-Specific Modeling is only
possible because of narrowing down the design space, often to a
single range of products for a single company [1, 2]. One expert
defines a domain-specific language containing the domain
concepts and rules, and specifies the mapping from that to code
in a domain-specific code generator. An experienced developer
can state exactly what code is wanted from models in a given
domain. Normal developers then make models with the modeling
language and code is automatically generated. As an expert has
specified the code generators, they produce products faster and
with better quality than could be done by normal developers by
hand [3]. The generated result will be free of most kinds of
careless mistakes, syntax and logic errors.

Generally speaking, defining a language and generator is
considered a difficult task: this is certainly true once building a
language for everyone. The task eases considerably if you make it
only for one problem domain in one company. This task becomes
even easier if you can use metaCASE tools that that support both
DSM development and use.

2. METAEDIT+ FOR DSM
MetaEdit+ is an environment that allows building modeling tools
and generators fitting to specific application domains, without
having to write a single line of code. In MetaEdit+, one expert
defines a domain-specific language as a metamodel containing
the domain concepts and rules, and specifies the mapping from
that to code in a domain-specific code generator. For this method
implementation, MetaEdit+ provides a metamodeling language
and tool suite for defining the method concepts, their properties,
associated rules, symbols, checking reports, and generators. The
method definition is stored as a metamodel in the MetaEdit+
repository allowing future modifications, which reflect
automatically to models and generators.

MetaEdit+ follows the given method definition and automatically
provides full CASE tool functionality: diagramming editors,
browsers, generators, multi-user/project/platform support, etc. A
whole team can immediately start to edit designs as graphical

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

39

diagrams, matrices or tables, switching between views according
to user needs. User can browse designs with filters, apply
components, link models to other designs following domain
rules, and check models with various pre/user-defined reports.
The results of modeling can be published to the web or word
processors, and generated into code for your product.

3. EXAMPLES OF DSM
Every domain is different, and so every DSM example is
different. This demonstration shows real world cases of DSM
from various fields of software development: enterprise
application development into Symbian smartphones, financial
product definition into B2B J2EE web site, voice menu
development into 8-bit microcontroller and MMS/SMS telecom
service configuration. These samples cover a wide range of code
generation target languages, scripting languages, object-oriented
languages and assembler. These cases illustrate how DSM,
giving first class support for modeling, can prevent incorrect or
unwanted designs at early stages of the development, how
underlying platform complexity is hidden, and how full code can
be generated from the modeler’s point of view.

4. CREATING DSM
Second part of the demonstration will show in an interactive
manner both the design side and the use side of DSM languages
and generators. On the DSM use side, we implement the
OOPSLA/GPCE conference registration application into a mobile
phone. This is done by modeling in MetaEdit+ tool (Figure 1).

The design model is directly based on domain concepts, such as
Note, Pop-up, SMS, Form, and Query. These are specific to

mobile phone services and its user-interface widgets. As can be
seen from the design model, all the implementation concepts are
hidden. Developers can focus on finding the solution using the
domain concepts. As the descriptions capture all the required
static and behavioral aspects of the application, it is possible to
generate the application fully from the models. In this case the
generated code uses the services provided by the smartphone
framework. After design, there is no need to map the solution to
implementation concepts in code or in UML models visualizing
the code. Nor there is need to change the generated code.

In the demonstration we shift next to the DSM creation side:
Using MetaEdit+ tool for metamodeling, we extend the modeling
language as well as the generator. Language extensions deal with
adding domain constraints (Figure 2), rules and new concepts.
Once the DSM is extended, this allows us to revert to modeling
in order to finalize our sample conference registration
application.

5. CONCLUSION
Domain-specific modeling provides significant increases in
productivity, especially for product families. Providing tool
support for such a modeling method has previously required at
least a man-year of work. A metaCASE tool such as MetaEdit+
reduces the time needed down to the order of days or weeks.
Industrial experiences such as Nokia [4] show productivity gains
of 5-10 times, and comparable decreases in the time needed for
new users to become productive.

6. REFERENCES
[1] Fayad, M.E., Johnson, R. (Eds.), Domain-Specific

Application Frameworks, Wiley 1999.

[2] Greenfield, J., Short, K., Cook, S., Kent, S., Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools, Wiley, 2004.

[3] Kieburtz, R. et al., A Software Engineering Experiment in
Software Component Generation, in Proceedings of 18th
International Conference on Software Engineering, Berlin,
IEEE Computer Society Press, March, 1996.

[4] MetaCase, Benefits of MetaCASE: Nokia Mobile Phones
Case Study, http://www.metacase.com/papers/

[5] Pohjonen, R., and Kelly, S., “Domain-Specific Modeling,”
Dr. Dobbs Journal, August 2002.

[6] Tolvanen, J-P., Rossi, M., Gray, J., (eds.), Proceedings of
3rd OOPSLA workshop on Domain-Specific Modeling
(DSM'03), University of Jyväskylä 2003.

Figure 1. Sample model and generated application running

Figure 2. Adding constraint.

40

