
Dynami c Constrai nt Detecti o n for Po l y morphi c B ehav i o r ∗

Nadya Kuzmina Ruben Gamboa
U niver si t y of Wyomi ng

{nadya,ru b en}@cs.uwyo.ed u

Abstract
Dynamic invariant detection, the automatic recovery of partial pro-
gram specifications by inferring likely constraints from program
executions, has been successful in the context of procedural pro-
grams. The implementation for dynamic invariant detection exam-
ines only the declared type of a variable, lacking many details in
the context of object-oriented programs. This paper shows how this
technique can be extended to detect invariants of object-oriented
programs in the presence of polymorphism by examining the run-
time type of a polymorphic variable, which may have different de-
clared and runtime types. We demonstrate the improved accuracy
of the dynamically detected specification on two real-world exam-
ples: the Money example from the JUnit testing framework tutorial,
and a database query engine model example, which we adopted
from a commercial database application. Polymorphic constraints
in both cases are shown to reveal the specification of the runtime
behavior of the systems.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Class invariants—automatic specification recovery

General Terms Verification, Algorithms

Keywords object constraints, class invariants, dynamic invariant
detection, automatic specification recovery

1. Introduction
A constraint1 is a restriction on one or more values of (a part of)
an object-oriented model or system [5]. Constraints are checked by
assert statements at runtime to guarantee that desired properties
hold. Constraints on visual formal models, such as class diagrams,
provide for better documentation, improved precision, and allow
communication with fewer misunderstandings among team mem-
bers.

Dynamic invariant detection automatically generates likely con-
straints by examining program executions. Likely constraints are
properties that hold on the examined program runs [4].

∗ The material is based upon work supported by the National Science
Foundation under Grant No. 0613919.
1 A constraint is called “invariant” in the Daikon literature. We are using
the term “constraint” to refer to properties of object-oriented, as opposed to
procedural, systems.

Copyright is held by the author/owner(s).
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

Figure 1. DisplayItem Example Class Diagram

Polymorphism is one of the challenges constraint detection
tools need to address in object-oriented programs. The declared
type of a polymorphic variable may not fully characterize the vari-
able’s behavior. For example, let Circle and Rectangle be the
child classes of an abstract class DisplayItem2 which has no de-
clared fields, as shown on figure 1. The resize(int amount)
method of a single DisplayItem variable will scale the radius
when applied to a Circle instance and the width and height
when applied to a Rectangle instance, but we need to examine
the fields of the different runtime instances in the DisplayItem
variable to state these properties about the resize method.

Our approach demonstrates the feasibility of characterizing
polymorphic behavior by inferring polymorphic constraints for
different runtime classes in Java. Our prototype implementation,
Turnip, considers the fields of runtime polymorphic variables in a
way that yields runtime-refined polymorphic constraints. Such con-
straints have the form of an implication where the antecedent spec-
ifies a particular runtime class and the consequent is a constraint
on the fields of the class. Consider the DisplayItem example.
Suppose the application is displaying a complex graphical compo-
nent which contains a DisplayItem figure as its attribute. The
user decides to adjust the size of the component by amount, which
causes the component to resize the figure and redraw itself. Some
of the postconditions of the redraw method of the component may
be as follows: (figure.class == Circle) ==>
(figure.radius == figure.radius@pre * amount)
(figure.class == Rectangle) ==>
(figure.width == figure.width@pre * amount).

In the rest of the paper, we discuss a problem with dynamic in-
variant detection in an object-oriented setting, present our solution
and list its limitations.

2 This example is inspired by [2].

657

2. Dynamic Invariant Detection with Daikon
Daikon [1, 4], developed by Michael Ernst and his research group,
is a general and publicly available implementation for dynamic in-
variant detection. Constraints are captured as “operational abstrac-
tions” which are the types of formulas programmers may place in
assert statements, such as x >= 0 or y = x ∗ z. Constraints are
stated in terms of variables present in a program.

Being a general purpose tool for a variety of languages, Daikon
does not provide specific object-oriented support for polymorphism
and inheritance. Daikon only considers the fields that are guaran-
teed to be present, given the declared type of an object. The prob-
lem arises when the declared type of a polymorphic variable is a
Java interface, which has no fields, or a superclass with relatively
few fields. The absence of fields results in the inability of Daikon
to infer many constraints characterizing the behavior of such poly-
morphic variables.

Daikon previously provided a less satisfactory solution to cap-
turing runtime behavior known as a runtime-refined types mech-
anism in the older, deprecated front end for Java, dfej. dfej
allowed to refine the runtime type of a polymorphic variable
to one specific runtime type via an annotation. For example,
/*refined type: Integer*/ Object element;
makes dfej treat element as a variable of class Integer. How-
ever, the annotation mechanism does not account for polymorphic
cases when it is impossible to limit the runtime class of a variable
to only one particular class, which is quite often the purpose of
using polymorphism.

3. Our Approach
We call our version of Daikon augmented to consider runtime-
refined cases Turnip, in accordance with the naming scheme de-
vised by Daikon developers3. Turnip examines the fields of run-
time objects to identify runtime variable values to identify the con-
straints that likely hold between them. In the presence of poly-
morphism, Turnip examines the actual runtime class of each pro-
gram variable to infer properties that likely hold for the fields in
the examined runtime class. With polymorphism, examining vari-
ables specific to the actual runtime class of a declared program vari-
able yields properties that are likely to hold for the variables in the
examined runtime class. We call such properties runtime-refined
constraints. For example, consider the DisplayItem figure vari-
able. Examining the values of the figure.radius attribute when
the runtime class of figure is Circle yields relationships between
figure.radius and other visible variables at a particular program
point.

Runtime-refined constraints reveal the characteristic behavior
for the known classes of a polymorphic variable. These details
remain hidden due to the lack of examined subclass fields if only
the declared type of a polymorphic variable is taken into account.

3.1 Modifications to Daikon
Chicory is the front end for Daikon that instruments Java classes
when they are loaded by the JVM with the purpose of collecting
the runtime values of the variables.

We enabled Chicory to collect values for the fields of the ac-
tual runtime classes of each polymorphic variable. Chicory has an
inner representation for different kinds of variables in a program.
We introduced a new variable abstraction into Chicory, called a
group variable, which represents polymorphic variables declared
in the target program. The program variable that underlies a partic-
ular group variable is referenced as its base variable. A polymor-
phic variable is a variable declared as a user-defined class that has

3 Daikon is an Asian radish.

child classes. The value of such variable can be an object of the
declared parent class (if it is not abstract) or an object of one of the
child classes. In the DisplayItem example, a variable declared as
DisplayItem figure is a polymorphic variable. The group vari-
able’s implementation is based on the state design pattern [3], al-
lowing it to alter its behavior at run-time when the runtime class of
the base variable changes. The state of a group variable represents
the current runtime class of its base variable and is changed every
time the base variable changes its runtime class. A group variable
then delegates all value collecting activity to the current state ob-
ject. We also introduced a similar mechanism for reading in values
for polymorphic variables into Daikon.

4. Limitations
Constructing extensive hierarchies is prohibitive in terms of used
resources. This limitation can be overcome by disregarding Chico-
ry’s assumption that all variables have an a priori known fixed
type. Then only actual runtime types would be considered for
polymorphic variables.

Turnip processes more variables per program point than Daikon
does, which results in decreased performance and more acciden-
tal properties reported by Turnip. This problem is related to the
nature of dynamic constraint detection. It can be partially solved
by disabling some properties, and, perhaps, adjusting the statistical
justification threshold. Such fine-tuning mechanisms are built into
Daikon.

More relevant invariants can be produced by combining static
program analysis techniques with dynamic detection. Symbolic
evaluation can be used to augment dynamic analysis with the
knowledge of underlying source code. Abstract interpretation
might aid in pruning the search space of potential properties for
dynamic analysis.

5. Experiments
We validated our approach on two real world examples: the Money
example from the JUnit testing framework tutorial, and a database
query engine model example, which we adopted from a commercial
database application. Both cases offer an insight into the behavior
of the system that Daikon alone could not.

6. Conclusions
We have demonstrated that examining polymorphic behavior re-
sults in better accuracy of dynamically inferred specifications for
object-oriented systems. Our prototype implementation for dy-
namic invariant detection with runtime-refined cases, built upon
Daikon, produced compelling results for two real world systems.

References
[1] Daikon invariant detector. http://pag.csail.mit.edu/daikon.

[2] G. Booch. Object-oriented analysis and design with applications.
Benjamin-Cummings, second edition, 1994.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns.
Addison-Wesley, 1995.

[4] J. H. Perkins and M. D. Ernst. Efficient incremental algorithms for
dynamic detection of likely invariants. In Proceedings of the ACM
SIGSOFT 12th Symposium on the Foundations of Software Engineering
(FSE 2004), pages 23–32, November 2–4, 2004.

[5] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1998.

658

