
Programming Language Evolution
via Source Code Query Languages

Raoul-Gabriel Urma
Computer Laboratory, University of Cambridge

raoul.urma@cl.cam.ac.uk

Alan Mycroft
Computer Laboratory, University of Cambridge

alan.mycroft@cl.cam.ac.uk

Abstract
Programming languages evolve just like programs. Lan-
guage features are added and removed, for example when
programs using them are shown to be error-prone. When
language features are modified, deprecated, removed or even
deemed unsuitable for the project at hand, it is necessary to
analyse programs to identify occurrences to refactor.

Source code query languages in principle provide a good
way to perform this analysis by exploring codebases. Such
languages are often used to identify code to refactor, bugs to
fix or simply to understand a system better.

This paper evaluates seven Java source code query lan-
guages: Java Tools Language, Browse-By-Query, SOUL,
JQuery, .QL, Jackpot and PMD as to their power at express-
ing queries required by several use cases (such as code id-
ioms to be refactored).

Categories and Subject Descriptors D.2.0 [Software En-
gineering]; D.3.0 [Programming Languages]

General Terms Languages

Keywords program analysis, source code, query languages

1. Introduction
Programming languages evolve just like programs. Lan-
guage features are added and removed, for example when
programs using them are shown to be error-prone.

Language designers often make use of program analysis
to understand the impact of language features. They iden-
tify locations of a specific feature in a corpus of programs
to learn whether it should influence the evolution of the lan-
guage [12]. In addition, when language features are modi-
fied, deprecated, removed or even deemed unsuitable for the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLATEAU’12, October 21, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1631-6/12/10. . . $10.00

project at hand, it is necessary to analyse programs to iden-
tify occurrences to refactor.

Various automated tools have been developed to assist
programmers analyse their programs. For example, several
code browsers have been developed to help program com-
prehension through hyperlinked code and simple queries.

Recently, source code query languages have been devel-
oped to provide extensive analysis of source code. They let
programmers compose queries written in a domain specific
language to locate potential bugs, code to refactor or simply
to understand a system better. Many query languages have
been developed with different characteristics and features.
For example, some source code query languages are based
on Abstract Syntax Tree expressions, some provide an SQL-
like feel, others include features from logic programming to
build more complex queries.

In principle, source code query languages could help lan-
guage designers perform program analysis to learn whether
a feature is prevalent enough to influence the evolution of
the language. In fact, a recent empirical study made use of
a source code query language to investigate the use of over-
loading in Java programs [11].

In this paper, we compare seven recent source code query
languages: Java Tools Language, Browse-By-Query, SOUL,
JQuery, .QL, Jackpot, PMD [1, 4, 6, 8–10, 17] and evaluate
whether their expressiveness suffices for language design
research. To this end, we study several use cases of recent
Java features and their design issues – investigating their
expressibility as queries in the languages we examine.

2. Java Source Code Query Languages
This section gives an overview of the seven source code
query languages we evaluate: Java Tools Language, Browse-
By-Query, SOUL, JQuery, .QL, Jackpot and PMD. We se-
lected these languages because they provide a variety of de-
sign choices and let the programmer specify user-defined
queries. For example, we excluded Findbugs as it only lets
programmers query source by creating new classes based on
a Java framework [3]. We also only selected source code
query languages that include a guide or a working imple-
mentation. Figure 1 gives a brief summary.

35

Name Paradigm Query: “find all methods named bar” Input Date Licence
JTL Logic public bar(*) Bytecode 2006 Open Source
BBQ Declarative matching "bar" methods in all classes Bytecode 2005 Open Source

SOUL Logic
if jtMethodDeclaration(?m) {

public ?type bar(?paramList) { ?statements };

}

Source 2011 Open Source

JQuery Logic method(?M,name,bar) Source 2003 Open Source
.QL OO, SQL-like From Method m where m.hasName("bar") select m Source 2007 Commercial

Jackpot Declarative

$modifiers$ $returnType foo($args$)

throws $thrown$ {

$bodyStatements$;

}

Source 2009 Open Source

PMD XPath XPath //MethodDeclarator[@Image = "bar"] Source 2004 Open Source

Figure 1. Overview of the analysed Java source code query languages

Java Tools Language (JTL) is a logic-paradigm query
language to select Java elements in a code base and com-
pose data-flow queries [8]. The implementation analyses
Java bytecode classes. JTL syntax is inspired by Query-
by-Example [17]. It also provides variable binding, which
allows queries to capture a match in a variable. This allows
queries to refer back to a match (e.g. to find two method
declarations with the same name and declared in the same
class).

Browse-By-Query (BBQ) reads Java bytecode files and
creates a database representing classes, method calls, fields,
field references, string constants and string constant refer-
ences [1]. This database can then be interrogated through
English-like queries. In addition, BBQ allows more complex
queries via filtering mechanisms and set operators.

SOUL is a logic-paradigm query language [10]. It con-
tains an extensive predicate library called CAVA that matches
queries against AST nodes of a Java program generated by
the Eclipse JDT . SOUL uses a combination of logic queries
and template matching of a Java code. In practice, this means
a user can create a logic variable to match an AST node and
reuse this variable within the query regardless of the execu-
tion path where the variable appears.

JQuery is a logic-paradigm query language built on top of
the logic programming language TyRuBa [13]. It analyses
the AST of a Java program by making calls to the Eclipse
JDT. JQuery includes a library of predicates that lets the user
query Java elements and their relationships.

.QL is an object-oriented query language. It enables pro-
grammers to query Java source code with queries that resem-
ble SQL [9]. This design choice is motivated as reducing the
learning curve for developers. In addition, the authors argue
that object-orientation provides the structure necessary for
building reusable queries. A commercial implementation is
available, called SemmleCode, which includes an editor and
various code transformation.

Jackpot is a module for the NetBeans IDE for querying
and transforming Java source files [4]. Jackpot lets the user
query the AST of a Java program by means of a template
representing the source code to match. It supports variable
binding within queries.

PMD is a Java source code analyser that identifies bugs or
potential anomalies including dead code, duplicated code or
overcomplicated expressions [6]. It has an extensive archive
of built-in rules that can be used to identify such code. One
can specify new rules by writing them in Java and making
use of the PMD helper classes. Alternatively, one can also
compose custom rules via an XPath expression that queries
the AST of the program. As we concentrate on source code
queries, we only evaluate the XPath facilities of PMD.

3. Use Cases
In this section, we describe the use cases we chose; these
highlight current language design discussions in the research
community and by language designers as well as exploring
various Java features.

3.1 Generic Constructors
A constructor has two sources of type arguments. It can use
the type parameters declared in a generic class. Additionally,
it can declare its own type parameters. The code below
illustrates a constructor of class Foo which declares its own
type parameter S that extends the class’s parameter.

class Foo<T extends Number> {

<S extends T> Foo() {}

}

The combination of the diamond operator (<>, introduced
in Java 7, which allows inference of generics arguments) to-
gether with explicit constructor type arguments was banned
as it caused problem with the type inference mechanisms.
In addition, the language designers argued that this restric-
tion has little impact because generic constructors are rare in
practice [2].

36

Use Case 1: Find generic constructors whose type parame-
ters extend the enclosing class’s own type parameters.

3.2 Overloaded Methods
Overloading methods allows programmers to declare meth-
ods with the same name but with different signatures.

For example, one could write an add method that takes a
different number of parameters:

public void add(T a) { ... }

public void add(T a, T b) { ... }

Often this pattern can be refactored using varargs if the
overloaded methods’ parameters share a single type:

public void add(T a, T ... args) { ... }

Related to this use case, recent work has investigated over-
loading in Java and found that a quarter of overloaded meth-
ods are simulating default arguments. The authors used the
source code query language JTL to query a corpus for over-
loaded methods [11].
Use Case 2: Find overloaded methods with multiple param-
eters that share a single type.

3.3 Covariant Arrays
In Java and C#, array subtyping is covariant, meaning that
type B[] is considered a subtype of A[] whenever B is
a subtype of A. However, this relation can cause run-time
exceptions [15]. Consider the following Java code where
Banana and Apple are subtypes of Fruit:

Banana[] bananas = new Banana[5];

Fruit[] fruit = bananas;

fruits[0] = new Apple(); // ArrayStore Exception

peelBanana(bananas[0]); // Apple???

The assignment to fruit[0] on line 3 will cause an Ar-
rayStore exception. Although statically, the variable fruit

has type Fruit[], its run-time type is Banana[] and thus
we cannot use it to store an Apple. We recently conducted
a corpus analysis to investigate the use of covariant arrays.
We found that these are rarely used in practice and can be
refactored using generics [16].
Use Case 3: Find occurrences of covariant array uses in as-
signment, method calls, constructor instantiations and return
statements.

3.4 Rethrown Exceptions
Java 7 introduced improved checking for rethrown excep-
tions. Previously, a rethrown exception was treated as throw-
ing the type of the catch parameter. Now, when a catch pa-
rameter is declared or effectively final, the type is known
to be only the exception types that were thrown in the try

block and are a subtype of the catch parameter type.
This new feature introduced two source incompatibilities

with respect to Java 6. In practice, the same program will
therefore have a different meaning if compiled with the
Java 6 and Java 7 compiler. This exemplifies the notion

of quiet changes in the ANSI/ISO C rationale document.
Quiet changes are discouraged because existing programs
may behave differently without warning.

Related to this use case, the Java language designers con-
ducted a corpus analysis to investigate nested try/catch
blocks and understand the impact of this change on users [12].
Use Case 4: Find occurrences of nested try/catch blocks
that rethrow an exception.

4. Evaluation
This section reports our evaluation of the source code query
languages and whether they could support our use cases.

Java Tools Language We did not find a working Eclipse
plug-in for JTL. Our evaluation is based on the available
documentation of JTL. We found that the use cases could
not be specified because JTL lacks support for statements,
generics and types of expressions. Since JTL is based on
bytecode analysis rather than source code analysis, several
queries are inherently restricted. For example, Java generics
are compiled to casts and macro-style constructs such as
foreach can be desugared during the bytecode translation.

Browse-By-Query We found that all except the overloaded-
method use case could not be specified in BBQ. It lacks
support for statements, generics and types of expressions.

SOUL We found that all our use cases could be specified
in SOUL. It supports all the constructs available in Java
including local variable declarations, generics and control
flow statements. SOUL also provides built-in access to the
Eclipse semantic analyser to retrieve types of expressions.
This enables the covariant arrays use case to be queried.
However, because SOUL relies on the Eclipse API some
queries have accidental complexity and become verbose.

To tackle this issue SOUL provides a template match-
ing mechanism: a query can represent a template of the
Java code that needs to be matched. However, not all Java
constructs are currently supported. For example, there is no
support for array accesses, generics, try/catch statements.
Hence our use cases cannot be specified using solely the
template matching feature of SOUL.

JQuery We found that JQuery could specify none of our
use cases as it does not support local variables, statements,
generics and types of expressions. Nonetheless, JQuery sup-
ports variable binding and predicates on method declara-
tions, which can express queries for overloaded methods.
However, it cannot express the additional constraint that the
overloaded methods need to share a single type.

.QL .QL is a commercial product and no reference mate-
rial is available. Our evaluation is based on private commu-
nication with the authors. .QL supports all language features
in Java as well as provides types of expressions. In addition,
.QL supports variable binding within queries. This combi-
nation matches the expressivity of SOUL. While the query

37

language syntax is not yet public, the authors confirmed that
it can express all our use cases.

Jackpot We found that Jackpot cannot specify two use
cases. Firstly, the covariant array use case is not supported
because Jackpot does not provide any type information for
AST nodes. Also the overloaded-method use case could not
be specified because the matching engine does not sup-
port such queries. However, the generic constructors and
rethrown-exception use cases could be specified using the
template-matching and variable features of Jackpot.

PMD XPath We found that PMD supports querying of all
Java constructs. In fact the entire program AST is stored
in XML format. However, as PMD lacks a variable-binding
mechanism within a query, it is not possible to refer back to a
match. In addition, the types of expressions are not available.
Hence none of our use cases could be specified.

5. Discussion and related work
We found that the source code query languages which could
express all our use cases shared four characteristics: com-
plete support of AST, attributed AST nodes, variable binding
and filtering mechanisms.

Adding information from other forms of program analy-
sis to query languages could ease the programming language
evolution. For example, a query language could provide sup-
port for querying the class inheritance graph of a source code
in order to perform a class hierarchy analysis. Similarly, it
could access dataflow information to express whether a vari-
able is live or the number of objects it may point to.

In addition, exposing the wider structure and state gener-
ated by a compiler could give further useful insights. For ex-
ample, with access to inference analysis, a source code query
language could provide syntax to test the impact of different
type inference rules. This is a current issue of discussion for
Java 8 which has more aggressive type inference [5]. More-
over, making run-time information available could be useful
in order to investigate the impact of a feature at run time such
as its memory consumption. In fact, existing query technolo-
gies can analyse a Java heap to facilitate application trou-
bleshooting.

We also believe that improved reporting could provide re-
searchers better insights to evaluate the results of a query.
For example, recent work analysed the use of generics and
their adoption [14]. A query that finds occurrences of gener-
ics is not as useful as reporting their instances along with
contextual information when finding patterns of use.

Alves et al. described a comparative study of code query
technologies [7]. They specified a software metric query in
each language and compared it against twelve criteria such
as modularity, output format and licensing. Our work differs
because we evaluate whether source code query languages
can help answer programming language design questions.

6. Conclusion
We researched whether source code query languages can
help programming language evolution, evaluating whether
seven such query languages can query for code idioms and
recent language design issues in Java. We found that only
SOUL and .QL provide the minimal features required to
express all our use cases: namely variable binding, filtering
mechanisms, complete AST and attributed AST nodes. We
also suggested possible extensions to query languages, such
as data-flow queries, to enhance their search capability.

Acknowledgments
We thank Alex Buckley, Joel Borggrén-Franck, Maurizio
Cimadamore, Jan Lahoda, Oege de Moor and Coen De
Roover for helpful comments. This work was supported by a
Qualcomm PhD studentship and an Oracle work placement.

References
[1] BBQ. http://browsebyquery.sourceforge.net/.

[2] Diamond and generic constructors. https://blogs.

oracle.com/darcy/entry/project_coin_diamond_

generic_constructors.

[3] Findbugs. http://findbugs.sourceforge.net.

[4] Jackpot. http://wiki.netbeans.org/Jackpot.

[5] Java 8: support for more aggressive type-inference.
http://mail.openjdk.java.net/pipermail/

lambda-dev/2012-August/005357.html.

[6] PMD. http://pmd.sourceforge.net/.

[7] T. Alves, J. Hage, and P. Rademaker. A comparative study of
code query technologies. In SCAM, 2011.

[8] T. Cohen, J. Y. Gil, and I. Maman. JTL: The Java tools
language. In OOPSLA, 2006.

[9] O. de Moor, M. Verbaere, and E. Hajiyev. Keynote address:
.QL for source code analysis. In SCAM, 2007.

[10] C. De Roover, C. Noguera, A. Kellens, and V. Jonckers. The
SOUL tool suite for querying programs in symbiosis with
Eclipse. In PPPJ, 2011.

[11] J. Gil and K. Lenz. The use of overloading in Java programs.
In ECOOP, 2010.

[12] B. Goetz. Language designer’s notebook: Quantitative lan-
guage design. http://www.ibm.com/developerworks/

java/library/j-ldn1/.

[13] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. In AOSD, 2003.

[14] C. Parnin, C. Bird, and E. Murphy-Hill. Java generics adop-
tion: how new features are introduced, championed, or ig-
nored. In Mining Software Repositories, 2011.

[15] B. C. Pierce. Types and Programming Languages. MIT Press,
2002.

[16] R.-G. Urma and J. Voigt. Using the OpenJDK to investigate
covariance in Java. Oracle Java Magazine, 2012.

[17] M. M. Zloof. Query by example. In AFIPS National Com-
puter Conference, pages 431–438, 1975.

38

