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Abstract  
The complexity of the well-explored regions of the programming 
language design space has increased substantially in the last twen-
ty-five years with the addition of a large number of object-
oriented programming languages (OOPLs).  This design domain 
was already known to be large and complex before OOPLs came 
on the scene, and many offerings of the standard programming 
languages course before that time did not even mention the object-
oriented programming (OOP) paradigm.  Now that OOP has be-
come mainstream, undergraduate programs which include a 
course on programming language design and implementation have 
responded by expanding their existing course or by jettisoning 
some of the alternative ideas in favor of expanded coverage of 
OOPLs.  There are two facts, however, which must be confronted 
as we consider what information we would like to pass on to our 
students in this fascinating area of our discipline.  The first is that 
the design space represented by OOPLs is large enough to justify 
a separate course, and the second is that a large number of ideas 
from other language paradigms appear in subsets of well-known 
languages for OOP.  This paper presents a course in the design 
and implementation of programming languages that (as OOP itself 
did in the eighties) turns some accepted notions “inside out” by 
proposing that the entire course be presented from the OOP point 
of view.  Such a course has been offered by Grove City College 
for a decade and has matured into a very effective means of com-
municating essential programming language design and imple-
mentation ideas to our students.  The course could be offered as 
the only advanced course in the area, as one course in a two-
semester sequence, or as an alternative to the traditional course. 

Categories and Subject Descriptors D.3.m [Programming 
Languages]: Miscellaneous – the programming languages course, 
history of programming languages, object-oriented programming 
languages, computer science education. 

General Terms:  Design, Languages, Theory. 

Keywords:  languages; education; design; implementation; object-
oriented; event-driven; Simula; Smalltalk; Java; C++; C# 

1. Introduction 
The richness and relevance of the study of programming languag-
es has only increased over the years as worthy hands have ex-

plored its vast potential.  But the complexity of the programming 
language design domain presents an obstacle to its study on the 
undergraduate level.  The typical bachelor’s degree in Computer 
Science involves at most one course in programming language 
design and implementation, and in that course the instructor must 
make some difficult decisions, with which he or she often is not 
comfortable.  Moving lightly over the surface of this difficult area 
is at best unsatisfying, so the instructor often makes the choice to 
teach the course as a series of case studies, preceded by a sum-
mary of the essential concepts.  Although large areas of study may 
go uninvestigated, the languages studied are studied at a sufficient 
depth to form an appreciation for their utility and power. 

This common occurrence in practice, this tendency of our col-
leagues toward a set of depth-first selections from the subject, 
naturally forces us to ask the question whether perhaps we should 
build the sidewalks where we find the footpaths.  In other words, 
we should ask whether a course should be designed which intro-
duces the undergraduate to the topic of programming language 
design in a substantive way without attempting to achieve broad 
coverage of the area.  Certainly, if the course were taught in that 
fashion, additional breadth and depth could be achieved with 
another elective course or with graduate study.  In the interim, a 
solid foundation for further study will have been achieved, and 
those who do not choose to continue in the area will come away 
from the course having a firm grasp of the essentials. 

To come to the point, this author believes there is plenty of 
motivation for the discussion of the important issues in program-
ming language design bound up in the study of a few historically 
and currently influential object-oriented languages, which form a 
very coherent thread and to which practically every junior-level 
undergraduate has a sufficient introduction for the purpose of 
beginning and successfully completing that study.  A course in 
Programming Language Design and Implementation, based on the 
object-oriented paradigm (with an introduction to event-driven 
programming included), has been offered at Grove City College 
for ten years, and the concept has proven not only quite workable, 
but very effective. 

The course has as its focus the basic principles of object-
oriented languages and their historical evolution, but uses that 
organizational thread to introduce all the relevant concepts in 
programming language design. 

2. Organization 
The course at GCC begins with a discussion of what it means for 
a language to be object-oriented (a review for our students).  In 
this context we review the concepts of data abstraction, informa-
tion hiding, inheritance, polymorphism, overloading, and generic 
programming.  We then offer by way of contrast a definition and 
brief high-level discussion of some of the other paradigms, name-
ly procedural, modular ([2], [8]), functional ([1], [7]), and declara-
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tive ([6]).  We do not elaborate greatly on these other program-
ming styles, since to a certain extent the modular style is sub-
sumed by the object-oriented languages, and since our students 
will see the C language (procedural) in the operating systems 
course and the LISP (semi-functional) and Prolog (declarative) 
languages in the Artificial Intelligence course. 

Essential programming language concepts are then taught, in 
the context of the object-oriented paradigm.  These concepts in-
clude abstraction, syntax and semantics, machines and virtual 
machines, the semantic mapping, binding times and translation 
strategies.  The student’s view of referencing environments 
(meaning the various contexts in which meanings of symbols can 
be determined, as defined by Pratt in [9]) is expanded by a more 
general discussion of scope and scope rules, visibility, access 
levels, value and pointer semantics, and parameter passing me-
chanisms.  Security in language design is highlighted with discus-
sions concerning types, type checking, type transfers, existence 
checking and variable initialization, aliasing, and exception han-
dling. 

A comparatively brief discussion occurs early in the course, 
which concerns models for event-driven programming, starting 
with a discussion of interrupts and interrupt handlers as a primi-
tive version of callback tables.  We discuss message-passing as a 
unifying theme between OOPLs and event-driven environments, 
and move quickly to object-oriented models for event-driven pro-
gramming.  Some standard categories of objects which are gener-
ally associated with event-driven environments are discussed as 
examples of program units which both generate and respond to 
events, including standard GUI components such as text boxes, 
scroll bars, and list boxes.  

The course is targeted toward case studies of significant 
OOPLs, because it is in those case studies that the students be-
come involved in a hands-on way.  To provide a context for their 
use of actual languages and programming environments we pro-
vide two initial case studies, one of them a comparatively “an-
cient” language no longer in general use and one of them both 
historically and currently relevant.  These languages are, respec-
tively, the Simula 67 and Smalltalk languages.  The first is used to 
provide a historical setting, a “bridge” between the older proce-
dural languages and the true object-oriented languages, whereas 
the second serves two functions:  (a) to show the students a lan-
guage with a small kernel and very few consistently applied de-
sign principles, and (b) to show the relative purity, power and 
persistence of this very first true object-oriented language. 

Simula 67 was originally conceived as a “niche language”, 
specifically designed for discrete event simulation.  It was, in fact, 
also a general-purpose programming language, and it quickly 
attracted a following outside the simulation community because of 
its innovative language design.  Because of this forward-thinking 
design, and also for historical reasons and to motivate the material 
on Smalltalk, we have introduced into the course at GCC a brief 
discussion of Simula.  Simula is used as a stepping-off place, a 
bridge between the old procedural paradigm and the beginnings of 
the object-oriented paradigm.  In the context of the Simula lan-
guage one can begin to talk about the important issues of storage 
management and referencing environments, and point out to the 
student the seeds of the idea of programmer-defined data types.  
The language also points backwards, as it was strongly influenced 
by Algol.  As does Algol, Simula requires a three-tiered approach 
to storage management equivalent to that of modern languages: 
static, stack-based, and heap-based.  Also as does Algol, Simula 
requires its heap to manage variable-sized storage elements; 
moreover, Simula expands the purposes for which the heap is 

used by storing not only dynamic arrays but also the activation 
records of objects. 

Interesting to students is the fact that the transition from pro-
cedural to object-oriented languages as we know them would 
probably never have occurred without Simula, which was certain-
ly not invented with the idea of establishing a new paradigm.  
Although objects were a natural outgrowth of the need to 
represent the entities in a simulation, these were not quite objects 
in the modern sense. Classes were not considered to be a generali-
zation of the abstract data type, which did not at that time exist as 
a language feature, but as a generalization of the procedure.  
Moreover, objects were not considered instantiations of a type but 
were simply procedure invocations whose activation records were 
not destroyed upon return and which “hung around for question-
ing” afterwards.  In other words, it was only by accident that the 
class provided a facility for programmer-defined data types.  But 
as a result of these simple ideas, Simula invented methods, inhe-
ritance, and polymorphism. Students enjoy hearing about this and 
other accidents in the history of programming languages, and 
although the discussion about Simula is not long (students are not 
expected to develop applications in Simula), it sets the stage for a 
series of discussions about language design and puts everything 
into a historical perspective. 

Moving from Simula to Smalltalk ([4]), the students see not 
only a language with a very few elegant design principles, but a 
language which was the first to be built around a development 
environment which assumed a mouse and bit-mapped graphics.  
Tying into the students’ avid interest in direct-manipulation inter-
faces, and using the excellent open-source Squeak environment, a 
direct descendent of Smalltalk-80, we take the students on a jour-
ney from the past into the future, and with relatively little pain 
show them just how radical a programming language design can 
be.  We show them the amazing flexibility achieved with the idea 
of late bindings, we show them code as data, and we show them 
some aspects of the functional paradigm using the notion of block 
contexts.  We also show them some of the most important design 
tradeoffs: the tradeoff between flexibility and efficiency; and the 
tradeoff between power through generality and power through 
structure and built-in features.  We show them programmer-
defined operators; but, perhaps more importantly, we show them a 
radically object-oriented view of programming, in which the 
“message” truly is delivered to the object itself, not to a statically 
declared variable. 

Smalltalk is not only historically important, but it is very im-
portant in a course like this because it plays the role that Lisp 
plays in a more traditional Programming Languages course.  
Namely, Smalltalk is an example of a language with a very simple 
implementation and a strong but very flexible type structure, 
where types are not bound to variables at translation time and 
where existence checking and type checking are routinely done at 
run time.  It also eschews traditional control structures, relying on 
message-passing and polymorphism to accomplish control flow. 

3. Alternatives 
After an introduction to Smalltalk, the course normally divides 
into one of two alternatives, depending on whether the student’s 
main instruction was in C++ ([10]) or Java ([5]).  (At GCC, where 
the students have already had ample exposure to C++, we do our 
next case study on Java.)  

C++ and Java are superficially similar, and it is our duty to 
show the students just how radically different from each other 
they are.  For students who have already seen the emphasis on 
safety, regularity, and maintainability of Java, a language based 
on the assumption that much human error can be avoided through 
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careful language design, the instructor can show them the result 
obtained in the design of C++ by the opposite assumption – that 
programmers sometimes need to have complete freedom in order 
to construct an application that is both powerful and efficient.   

Conversely, having struggled to learn the byzantine details ne-
cessary to master C++, the student can be shown a completely 
different set of design choices in Java, some of which lead to 
more secure and maintainable systems and some of which may 
seem baffling to the student who has been trained to consider 
efficiency as well as readability.  The instructor can show the 
students the radical effect on a language’s design that is engen-
dered by the choice between pointer semantics and value seman-
tics.   

In placing one of these languages for contrast alongside the 
other, we can show our students how syntactically similar source 
code elements can have radically different meanings, purposes, 
and implementations. Examples of this are (a) templates in C++ as 
opposed to Java generics; and (b) inner classes as statically nested 
types versus inner classes whose objects are dynamic entities 
requiring ownership by an object of the outer class type. 

Certainly the notion of a library as an extension of a language 
is richly illustrated with either Java or C++, and the student 
should see the different directions those two languages have taken 
with their standard container classes and iterators.  Libraries for 
event-handling are an eye-catcher for students.  In the course at 
GCC we follow up on the introduction to event-driven program-
ming in Smalltalk by giving the student time to explore the 
event/listener model in Java’s Swing library.  Alternatives for 
C++ could be the MFC document/view model or Windows 
Forms. 

4. New Ideas 
Finally, a lot can be learned from the upstart C# ([3]), which lately 
has been getting a lot of attention and a lot of the market share 
previously claimed by Visual Basic.  An odd mixture of ideas 
from C++ (e.g. operator overloading, enumerations, namespaces, 
“unsafe code”) and Java (e.g. interfaces, single inheritance, range 
checking, automatic initialization of variables), C# also adds a 
number of interesting new ideas which challenge our notions of 
what constitutes good language design.  Delegates have strange 
semantics but pragmatically seem to be “just the thing” to support 
event-driven programming.  “Properties” streamline the idea of 
access functions but again offend our sensibilities by blurring the 
lines between code and data.  Expression trees and lambda func-
tions have a strongly functional flavor. This language may or may 
not be here to stay, but like PL/I it will have a long run and will 
engender much useful discussion.  Much can be gained by giving 
the students the chance, after a thorough acquaintance with the 
important issues, to look closely at this relatively new design and 
form their own opinions. 

5. Experience with the Course 
The course at Grove City College has evolved from fairly humble 
roots, but has matured into a lynchpin of our curriculum and has 
been enthusiastically accepted by our students.  Our curriculum 
begins with a heavy dose of C++, and exposure to functional and 
declarative languages occurs in the context of the Artificial Intel-
ligence class, while the Operating Systems class gives students 
experience with the procedural C language.  Without this course, 
however, our students would not have the opportunity to put all 
these paradigms into historical perspective, and they would not 
see the very important ideas of safety and maintainability embo-
died in the Java language. 

The secondary theme of event-driven programming in the 
course as offered here is more than a sidebar.  It is a key ingre-
dient for making the course seem relevant to our students, and it is 
a language/library feature design puzzle.  Are event handlers to be 
simply function pointers, or are they to be objects which imple-
ment an interface, or should they be a specially designed language 
feature?  Also, is the message loop a separate thread?  Is it a part 
of the run-time system? Is it attached to an object?  How is the 
correspondence established between the event source, the event 
object, and the handler?  GUI design is a useful hook to get stu-
dents interested, but once they begin to engage in that design we 
can ask them some important questions that might not have been 
meaningful to them before they were able to have hands-on expe-
rience. 

6. Examples 
Some specific teaching points and code examples are presented in 
this section, to illustrate the way some important concepts are 
taught.  Note that the level of detail indicated in these examples 
would be difficult to achieve in a more general-purpose course in 
programming languages. 

6.1 Interrupts and Events 

Interrupts are introduced in the course as an example of a primi-
tive type of “language support” for event-driven programming.  
The interrupt vector table and its “hard-wired” operation are de-
scribed, and it is noted that this mechanism is the inspiration for 
call-back tables.  The fact that synchronously initiated interrupts 
(software interrupts) were a natural addition to the instruction sets 
of interruptible machines illustrates the usefulness of adding a 
level of indirection between the occurrence of an interrupt (or 
event) and the actions which are initiated in response to it. The 
operation of the callback table is then discussed as a software-
simulated way to achieve this same set of advantages in higher-
level languages.  It is then pointed out that a true object-oriented 
model for event-driven programming requires more than a func-
tion pointer – it requires an (object, method) pair.  Throughout the 
course the students see multiple ways of realizing such an object-
oriented model, ranging from (1) C++’s relatively primitive 
“pointer to member”, to (2) Java’s library convention which, for 
each “listener” object interested in the event, will invoke at run 
time a method having a specific signature, and (3) C#’s “first-
class” delegate types whose objects are a curious combination of 
the “function pointer” and “listener list” ideas. 

6.2 Messages 

Like the term “heap”, the term “message” has multiple meanings, 
and the students need to be warned of this fact.  We present two 
definitions, namely that (1) a message is an encapsulated event 
notification, and (2) a message is a method call.  We point out that 
in whatever manner the message is delivered, for example by 
direct invocation of a method or by placing an event notification 
on a queue, the same information is transmitted, namely a mes-
sage type and a collection of accompanying data concerning that 
message.  The difference in efficiency is evident, since direct 
invocation does not require a separate polling thread.  Immediate 
but indirect invocation using a callback table or one of its more 
sophisticated generalizations (discussed above) is shown to be an 
intermediate position, offering both efficiency and flexibility. 

6.3 Pointer Semantics and Value Semantics 

One of the most valuable things we can give our students in any 
course in programming language design is a thorough understand-
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ing of both of the common implementation strategies for the as-
signment and initialization operations – those dictated by pointer 
semantics and by value semantics, respectively. The student 
should learn by direct experience how it feels to program under 
each convention.  The contrast between advantages and disadvan-
tages is striking; the extra overhead incurred in a language with 
value semantics, by routinely making separate copies of large 
objects, is a disadvantage balanced by a marked reduction in the 
number of aliases produced.  The disadvantages of value seman-
tics are painfully apparent when a large number of large objects is 
inserted in a container, and the disadvantages of pointer semantics 
are seen when complicated cloning protocols must be followed to 
achieve the effect of deep copying. 

For students who are used to value semantics, it is disconcert-
ing when they make changes to an object recently removed from a 
container and find that those changes are mirrored in another ob-
ject they had conceived as having a separate identity.  For students 
trained in pointer semantics, the concept of “call by reference” 
seems unnecessary until they fully understand value semantics.  
We do our students a disservice if we do not make them struggle 
with these ideas. 

A very good example of the confusion created with these two 
opposing semantic viewpoints is seen in the common mistake 
students make when designing copy constructors.  In Java, a copy 
constructor is just another way of constructing a cloning facility, 
and the Java programmer pays his or her dues by learning about 
and enforcing the deep copy discipline.  When that programmer 
must design a copy constructor for a C++ class, the deep copy 
issue is not at the forefront and usually is a non-issue.  The mis-
take the Java programmer learning C++ makes in constructing a 
C++ copy constructor is that he more often than not attempts to 
pass the constructor’s parameter by value.  Since the call by value 
implicitly invokes the copy constructor, an infinite recursive call 
sequence is initiated and the programmer is baffled by the stack 
overflow that results.  The resulting psychological impact is trau-
matic, but it is useful for helping the programmer to see the need 
for “call by constant reference” as an alternative to call by value. 

6.4 Value Types, Inheritance, Templates, and Generics 

Smalltalk has a radically object-oriented point of view which 
requires that all objects, even simple numeric quantities, be “first-
class” objects, and that their classes must inherit from a common 
base class.  One consequence of this requirement is that all gener-
ically constructed container classes are heterogeneous, and the 
corresponding container objects have the ability to store any ob-
ject.  Subsequent designs have tried to achieve this same kind of 
flexibility and power in their library container classes.   

C++, with its emphasis on preprocessor and compiler actions, 
solved the problem using templates instead of inheritance.  A 
consequence is that C++ container objects are type-specific in-
stead of heterogeneous, but that type-specificity serves one of 
C++’s major goals of efficient run-time operation.  Also, because 
C++ puts off some of its compile-time checks until template ex-
pansion time, the programmer can effectually make a class tem-
plate as type-specific as she desires, by sending type-specific 
messages to template arguments which are not in fact explicitly 
bound by the template definition to a type.  This design is flexible 
but does not obey the principle that interfaces to declared entities 
should be explicitly indicated in their declarations. 

Java moved more in the direction of Smalltalk, requiring all 
classes to inherit from the same Object base class.  Java terms all 
such types reference types, and like Smalltalk it provides automat-
ic heap storage management for all objects of such types. Initially 

all Java library containers were designed to store only references 
to objects of type Object. 

But Java’s primitive types are value types and not first-class 
objects, and so cannot be stored in library containers.  The solu-
tion to this problem is the wrapper classes and the compile-time 
trick of autoboxing.  These decisions made it possible to store 
anything in a Java library container, if one was willing to pay the 
price of explicitly casting it from the Object base class type back 
to its proper type after fetching it from that container. 

Then an interesting thing happened.  Java’s design expanded 
to make room for a “generic” class definition facility which super-
ficially resembled C++’s class templates.  An alternative generic 
container library allowed the programmer to use containers of 
type LinkedList<Double>, for example, rather than the hetero-
genous LinkedList class.  Interestingly, although the one pattern, 
LinkedList<>, is in fact a generic facility for creating linked list 
containers, the containers which programmers are able to create 
from that pattern are less generic than the original LinkedList, and 
in fact are “type-specific”, the opposite of “generic”.  The result-
ing advantage actually had nothing to do with genericity, but in 
fact allowed the programmer to dispense with casting and allowed 
the compiler to do compile-time type checking and thus improve 
run-time efficiency. 

All these considerations are interesting to students, and it is a 
valuable exercise for them to see the complexities resulting from 
the different design decisions.  It is also important that they see 
the stark difference between C++ templates and Java generics, as 
evidenced by the fact that a template definition cannot be fully 
compiled into conventional object code, whereas a Java generic 
class can be compiled into the same type of object code as an 
ordinary Java class.  

6.5 Unifying Value Types and Reference Types 

Through all of the above considerations, Smalltalk’s simplicity 
stands apart in its ability to unify all types into one hierarchy.  But 
languages which compile to a low-level code, whether for a real 
or virtual machine, must make allowances for the fact that the data 
types on that machine must have corresponding types in the high-
level language if the efficiency and power of those data types is to 
be made available to the programmer.  Hence all such languages 
include these low-level types as “value types”.  C++ in essence 
makes all types value types, but some of those types are pointer 
types, and the programmer can explicitly manipulate pointers as 
values rather than the values to which they point. 

C# attempts to blend the C++ and the Java views by maintain-
ing the distinction between value types and reference types as it 
exists in Java but extending value semantics to some structured 
types.  Whereas in C++ the struct and the class are logically 
equivalent in terms of their abilities to construct new types, C# 
uses those two keywords in two radically different ways.  A type 
constructed with the keyword struct uses value semantics, whe-
reas a type constructed using class uses pointer semantics. Thus 
the notation 

new MyType(<argument list>) 

which in previous languages has always denoted a pointer or ref-
erence, in C# denotes a value if MyType is defined as a struct. 

Not content with borrowing the idea of value semantics for 
large objects from C++, the C# language has also borrowed the 
“type unification” idea, folding all value types and reference types 
into a single inheritance hierarchy.  Although value types may not 
be used as base classes, all of them have as base class the type 
ValueType, which in turn inherits from the ultimate base class 
Object.  Interestingly, ValueType is a reference type.  What is 
actually happening here is that C# is using its own style of “auto-
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boxing”, but rather than using specific “wrapper classes” for that 
purpose it wraps a ValueType object around any value type object 
being passed to a parameter of type Object. 

Ironically, it appears that it was the desire to accommodate 
multiple programming styles (all within the object-oriented um-
brella, of course) that led the C# designers to defeat their goal of 
unified types.  The “unsafe” pointer types are borrowed directly 
from C++ and cannot be allowed to participate in the type hie-
rarchy that enfolds the other types, for the simple reason that if a 
pointer type were allowed to be a first-class object, then it could 
escape its unsafe block by being used as the return value of a me-
thod call. 

For Java programmers, used to using specific wrapper classes, 
there is a pitfall awaiting them when they begin to deal with C# 
value types, and that is its wholesale use of type name aliases.  
Seeing the correspondence between int and the library type Int32, 
the Java programmer jumps to the natural conclusion that the 
latter is a wrapper class for the former.  He is surprised when he 
realizes that in fact there is no difference between the two, other 
than the fact that the former name is a keyword. 

6.6 Inner Classes 

Instructive to students is the difference between the inner classes 
of Java and of C++, and the reasons for that difference.  In C++ an 
inner class is just a type definition within a type definition.  For 
that reason, a C++ inner class may not reference an instance vari-
able (non-static data member) of the outer class, since at any giv-
en time there may be no instances or many instances of the outer 
class and no clear way to associate the reference with a specific 
instance.  This fact is illustrated by the instantiation code below, 
where Inner is the name of the inner class and Outer the name of 
the outer class. 

 
Outer.Inner oInner = new Outer.Inner(); 
 

There is no indication in these notations of any particular instance 
of the outer class, which might be used to resolve references to 
data members in the outer class.  Contrast this to the Java instan-
tiation code below, in which oOuter is an object of the outer class 
type.  

 
Outer.Inner oInner = oOuter.new Outer.Inner(); 

 
Here the notation explicitly provides an object to be used for 
resolving references to outer class instance variables, namely 
oOuter.  Of course, when the instantiation occurs inside an 
instance method of the outer class, the outer class object need not 
be named if it is the object which received the message.  The outer 
class object in that case is understood to be this. 

Thus inner class objects can by means of non-local references 
deliver portions of the state of the outer class object to their “own-
ers”.  For example, if head is the first element of a linked list in 
the outer class, then an object which was created as an instantia-
tion of an inner class has access to the attribute head, and the 
client programmer could indirectly be allowed access to that 
attribute using an instantiation of the inner class.  Referring to the 
above example, oInner might have the ability to return the first 
value in the list maintained inside oOuter via a method call, for 
example oInner.first().  

Even more instructive to the students is the use to which Ja-
va’s inner classes are put.  Inner class objects are naturals for 
iterators and for event handler objects.  Here Java’s interface fa-
cility (for which there is no equivalent in C++) comes in handy, 
because the inner class type need not be public, and indeed need 

not even be a named type, if it implements the interface needed by 
the client.  A “listener list” maintained by an object having know-
ledge of the occurrence of an event can add the inner class object 
to its list of interested objects, without needing to know the actual 
type of the listener object, as long as the listener object imple-
ments the required interface. 

6.7 Delegates and Event Handling 

Java’s listener lists are a library convention which makes use of 
language facilities not explicitly designed for event handling.  By 
way of contrast, C#’s delegate types are “tailor-made” for event 
handling, but also seem to violate the software engineering prin-
ciple of functional independence – delegate types are designed to 
do two things at once.  Any declared delegate variable has the 
potential to denote either a “first-class” function object or a col-
lection of such function objects.  Consider the following C# class 
and the delegate type definition following it. 

 
public class Cheers { 
    public static void Generic() {  
 Console.WriteLine("Yay!"); } 
    public static void LongGeneric() {  
 Console.WriteLine("Yaaaaaaaaaay!"); } 
    private string teamName; 
    public Cheers(string teamName) {  
 this.teamName = teamName; } 
    public void Specific() {  
 Console.WriteLine("Yay, {0}!", teamName); 
    } 
    public void LongSpecific() {  
        Console.WriteLine( 
  "Yaaaaaaaaaay, {0}!", teamName); 
    } 
} 
 
public delegate void VoidFunction(); 

 
The class Cheers encapsulates a private string – teamName, the 
name of a sports team for which we are to cheer.  It also provides 
a constructor for instantiating a Cheers object, two static member 
functions Generic() and LongGeneric() which provide non-team-
specific cheers, and two ordinary member functions Specific() and 
LongSpecific() which provide team-specific cheers.  The delegate 
type VoidFunction is a pattern for creating first-class objects from 
methods which have no parameters and which return no result, a 
property shared by all four methods of the class. The code 

 
VoidFunction cheerleader = new VoidFunction( 

 Cheers.Generic 
); 

 
instantiates such a first-class object to correspond to our generic 
cheer, and the “call” 

 
cheerleader(); 
 
produces the output 
 
Yay! 
 
on the console.  But far from stopping there, C# was going after a 
more streamlined version of Java’s “listener lists”, so it allows the 
curious looking code 

 
 cheerleader += Cheers.LongGeneric; 

 Cheers irish = new Cheers("Irish"); 

 Cheers bama = new Cheers("Bama"); 
 cheerleader += irish.Specific; 
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 cheerleader += bama.Specific; 

 cheerleader += irish.LongSpecific; 
 cheerleader += bama.LongSpecific; 

 
after which the single call cheerleader() produces the output 
 
Yay! 
Yaaaaaaaaaay! 
Yay, Irish! 
Yay, Bama! 
Yaaaaaaaaaay, Irish! 
Yaaaaaaaaaay, Bama! 
 
Let us look more closely at this code.  First of all, note that there 
is actually no type provided in the language for a method name 
sans arguments, such as irish.Specific.  So how are we to parse the 
following line of code? 

 
 cheerleader += irish.Specific; 
 
The first and most obvious response is that the function name is 
“auto-boxed” in a sense, so that the following line of code is 
equivalent. 

 
 cheerleader +=  

  new VoidFunction(irish.Specific); 
 
But this explanation fails too, since the entity “passed to” the 
“constructor” for VoidFunction will be vulnerable to the same 
question.  What is its type? 

The answer is simply that irish.Specific has no type, and the 
code above is not actually a “constructor call”, nor is there a piece 
of code anywhere which we can identify as a “constructor” for 
VoidFunction.  The parser identifies irish.Specific as belonging to 
the syntactic category “method group”, and the CLR code gene-
rating the corresponding delegate object is produced by the com-
piler after a context-sensitive parse.  The component elements of 
the token string  

 
 new VoidFunction(irish.Specific) 

 
do not have any meaning when taken separately. This design 
clearly violates the software engineering principle of modularity. 

The design of C# continues to evolve, at a pace which might 
be considered quite rapid if we take into consideration the delibe-
rate way in which other programming languages have evolved.  
The question we must ask our students is whether continued radi-
cal departures from conventional design principles are justified by 
short-term pragmatic goals, or will there be a long-term price to 
be paid by making the design serve ad hoc objectives? 

6.8 Polymorphism – Forced or Optional? 

As originally included in Simula, polymorphism was an optional 
facility.  If a method was declared virtual, then it behaved in a 
polymorphic fashion.  If it was not, then compile-time actions 
bound member function calls to a particular statically-determined 
function definition.  Smalltalk departed radically from that design, 
requiring that a message should be sent to an object, and that it 
should not matter by what name that object is identified.  Small-
talk provides only one exception to that rule, as follows.  If the 
object is identified by the name super, then the message is han-
dled not by the object itself, but by the object considered as an 
instance of its superclass. This provides a curious example of an 
unintended infinite loop.  Consider the following method defini-

tion, where f is the name of an instance method already defined in 
the superclass. 

 
 f 

  super f f 
 
Here the method call super f  will be handled by the definition for 
f in the superclass.  Assuming that definition does not provide a 
specific return value, Smalltalk will automatically use self as the 
value returned.  But even though the code returning that value is 
superclass code, the notation self denotes the original object, not 
the object considered as an instance of the superclass. This means 
that the second call of f will not be handled by the superclass, but 
will be handled using Smalltalk’s strict interpretation of polymor-
phism – the object receiving the original message will handle the 
call.  Since the original call to f was handled by the code above, so 
will this call, meaning that we have begun an infinitely recursive 
loop. 

The Simula view and the Smalltalk view of polymorphism 
both still have their proponents.  (To recap, those views are re-
spectively that (a) polymorphism should be explicitly requested 
and that (b) polymorphism should be the default behavior.)  C++ 
and C# take the Simula view and use the virtual keyword in a way 
similar to the way it is used in Simula, and Java takes the Small-
talk view.  C# goes one step further, however, adding the key-
words override and new to fine-tune polymorphic behavior down 
the inheritance hierarchy.  An override of a virtual function is 
expected to be given the attribute override as a notification to the 
reader that it redefines, and participates in the polymorphic beha-
vior of, a function in a base class (although the omission of such 
notification should only produce a warning).  More interesting is 
the attribute new, which “seals off” the method name and prohi-
bits polymorphism for the method to which it is attached, from 
that point down in the inheritance chain.  One result of this design 
is the following curious anomaly.  Consider the three C# class 
definitions below. 

 
public class MyIndirectBase { 
    virtual public int f(int x) { 

        return x; 

    } 
} 

public class MyBase: MyIndirectBase { 

    override public int f(int x) { 
        return x * x; 

    } 

} 
public class MyDerived: MyBase { 

    new public int f(int x) { 

        return base.f(x)*x; 
    } 

} 
 

The reader should consider the following two lines of code, 
and ask herself what they will produce on the console. 

 
MyIndirectBase b = new MyDerived(); 

Console.WriteLine(b.f(3)); 

 
The somewhat disturbing answer is that the method called 

with the expression b.f(3) will not be the method f associated with 
the declared type of b, nor will it be the method f associated with 
the actual type of the object to which the name b gives access.  It 
will be the method associated with the intermediate type, MyBase.  
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The value returned is 9.  The reason is twofold:  (1) the declared 
type of b has a polymorphic form of method f, since the virtual 
keyword has been used in the definition of that method, so that 
any derived classes which have an override for the method have a 
stronger claim to handle the message; but (2) because the version 
of f in the actual class to which the object belongs is given the new 
attribute, it is forbidden for that version of f to participate in the 
implementation of polymorphism.  Since by right of inheritance b 
“is” an object of type MyBase, that is the only logical place to 
resolve the call. 

6.9 Functional Notions in the OOPLs Domain 

Smalltalk shares with the functional languages a dependence on 
function composition as the major facility for controlling flow 
through a program.  It is “corrupted”, from the standpoint of the 
functional paradigm, by its use within each method definition of 
the default control mechanism referred to in structured program-
ming terms as “sequence”, which requires a series of machine 
states and hence completely disqualifies Smalltalk as a functional 
language in the purest sense.  However, one important element 
often seen in functional languages is also seen in Smalltalk, name-
ly functions as first-class objects.  The data type BlockContext 
provides such a facility, and is one of the few library types for 
which special notations are provided for its literals.  For example, 
we can represent the function f(x,y) = x2 y – 3x+5y  as the literal 

[:x :y | x*x*y – (3*x) + (5*y)] 

Sending the message value: 3 value: 7 to the object denoted by 
this literal is equivalent to evaluating the function call f(3,7). 

C++ adds no native facilities for functions as first-class ob-
jects, but there is a subterfuge which that language uses to give it 
some of the same benefits.  The “function application” operator 
can be overloaded multiple times for any class, so that if f is an 
object of a type which provides such an overload, say with two 
integer operands, then the expression f(3,4) is translated by send-
ing the operator()(3,4) message to object f.  (Interestingly enough, 
to this author’s knowledge no one has designed an object-oriented 
event-handling facility based on using such “function objects” as 
event handlers.) 

We have mentioned above the delegate types of C#, which are 
(among other things) a facility for functions as first-class objects.  
An element of convenience is added to that facility by the use of 
lambda expressions, which are able to describe “on the fly” the 
actions represented by such a function object.  A C# lambda ex-
pression similar to our Smalltalk example above might appear as 
follows. 
 (x, y) => (x*x*y - 3*x + 5*y) 

The difference is that whereas the corresponding Smalltalk 
expression is a literal of type BlockContext, the C# expression has 
no type, and represents only a syntactic category.  To give it any 
usefulness the programmer must instantiate an object of a delegate 
type.  For example, consider the following two declarations of 
delegate types IntFunction and DoubleFunction and delegate 
objects fashioned from them. 

 
int IntFunction(int x, int y); 
double DoubleFunction(double x, double y); 

IntFunction f1 = new IntFunction( 

 (x, y) => (x*x*y - 3*x + 5*y) 
); 

DoubleFunction f2 = new DoubleFunction( 

 (x, y) => (x*x*y - 3*x + 5*y) 

); 

Given these declarations, the expressions f1(1,1) and f2(2,0.5) 
evaluate to 3 and to –1.5, respectively. 

7. Future Directions 
Long ignored because of their relative simplicity, the scripting 
languages have shown enough staying power to deserve some 
coverage in a course like this.  Consisting of a minimum emphasis 
on structure and a maximum emphasis on functionality, delivered 
by a powerful and dynamic library, these languages have more in 
common with Smalltalk than with any of the other languages 
mentioned above.  Coverage of the salient features of the Python 
language will be introduced into the next offering of the course. 

8. Conclusion 
In summary, the ideas in the field of object-oriented programming 
language design and implementation have reached critical mass, 
are important ideas relevant to undergraduates, and deserve to 
constitute a course in their own right.    It is this author’s view that 
such a course is valuable and should seriously be considered as an 
option in designing undergraduate Computer Science curricula. 
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