
Pattern-Based Model Transformation
Sheena R. Judson

Computer Science Department
Louisiana State University

Baton Rouge, Louisiana USA
1-817-935-4518

judson@csc.lsu.edu

ABSTRACT
Model Driven Architecture (MDA), which supports the
development of software-intensive systems through the
transformation of models to executable components and
applications, requires a standard way to express transformations.
The approach developed by this research focuses on defining
pattern-based transformation at the metamodel level. This
research has two primary objectives. The first objective is to
support systematic application of patterns. The use of patterns as
model building blocks (through pattern-based transformations)
helps raise the level of abstraction at which systems are
developed. The second research objective is to support controlled
model evolution by specifying pattern-based transformations at
the metamodel level.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Object-oriented design methods; D.2.13 [Software Engineering]:
Reusable Software – Reuse models, Domain engineering.

General Terms
Design

Keywords
model transformation, model evolution, UML, design patterns,
Query/Views/Transformations (QVT), Model Driven Architecture
(MDA)

1. INTRODUCTION
Since the emergence of the Model Driven Architecture (MDA)
initiative, numerous techniques have been proposed for the
transformation of models (e.g., [1, 2]). MDA supports the
development of software-intensive systems through the
transformation of models to executable components and
applications. The main motivation behind MDA is to transfer the
focus of work from programming to solution modeling by treating
models as the primary artifacts of development. As stated in [3],
“MDA provides a set of guidelines for structuring specifications
expressed as models and the mappings between those models”.
The mappings transform the elements of a source model, which
conforms to a particular metamodel, into elements of another
model, the target model, which conforms to a metamodel [3].
In response to the need for a standard approach to define mapping
functions that map between metamodels, the Object Management
Group (OMG) issued the MOF 2.0 Query/View/Transformation

(QVT) Request for Proposals (RFP) [3]. “The principle
requirement of QVT is to provide a … standard means for
expressing transformations [4]”. QVT requires that model
transformations be defined precisely in terms of the relationship
between a source MOF metamodel and a target MOF metamodel.
The transformation of, and mapping between, models are the key
aspects of MDA [3]. In particular, well-defined transformations
that support rigorous model evolution, refinement, and code
generation are considered key elements of an MDA approach and
the QVT. This research focuses on developing a technique that
supports rigorous modeling of pattern-based model
transformations. The modeled transformations can be used as the
basis for developing tools that support rigorous and systematic
application of reusable transformations.

2. GOALS
The research is aligned with the goals of both MDA and QVT and
centers on developing a metamodeling approach for describing
families of transformations. Specifically it is concerned with
developing Unified Modeling Language (UML) [5] model
transformations at the metamodel level. The focus is on a type of
transformation referred to as pattern-based model refactoring. In
pattern-based refactoring, a well-defined pattern is incorporated
into a source design model. The result is a target model that
contains an instantiation of the pattern. Controlled model
refactoring can be accomplished by developing metamodels for
the transformations. The metamodels can be used to constrain
how the refactoring is carried out on the models and act as points
against which the model-level transformations can be checked for
conformance. The goals of this thesis are to:
1. Support the MDA goal of reducing software development

time by raising the level of abstraction through the use of
models and design patterns.

2. Capture transformations in a form that is reusable, which can
lead to the development of tools that support controlled
evolution of models (with respect to the reusable
transformations) at the metamodel level.

3. METAMODELING APPROACH
Figure 1 provides a diagrammatical overview of the
transformation approach that will be the base of this research. The
M2’ level, an extension of the UML metamodel level (M2),
supports metamodeling of transformations. The M1’ level, an
extension of the UML model level (M1), supports representation
of model transformations. A model transformation, T1, at the M1’
level takes a source UML model and transforms it to a target
UML model. T1, which is denoted using a notation adopted from
[6], is a member of the family of transformations characterized at
the metamodel level by Transformation Pattern. A transformation
pattern consists of characterizations of source and target models

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

124

(Source Pattern and Target Pattern, respectively) and constraints
on relationships between source and target elements. The Source
Pattern is a metamodel that characterizes source UML models
and the Target Pattern is a metamodel that characterizes target
models for the family of transformations characterized by
Transformation Pattern.
A transformation (e.g., T1) conforms to a transformation pattern
if: (1) the source model (Source Model) is an instantiation of the
source pattern (Source Pattern), (2) the target model (Target
Model) is an instantiation of the target pattern (Target Pattern),
and (3) the relationship between elements of source and target
models satisfy the constraints specified by the transformation
pattern. A UML model that conforms to a source or target pattern
metamodel is said to be an instance of the source or target pattern.
Similarly, a model transformation that conforms to a
transformation pattern is said to be an instance of the
transformation pattern. The transformation pattern developed by
this research consists of three parts: Source Pattern,
Transformation Schema, and Transformation Constraint.

Source Pattern Transformation Pattern Target Pattern

Source Model Target

«instance» «instance» «instance»M2'

M1'

model
transformation

T1

Figure 1. Transformation Overview.

The source pattern defines the set of source models to which
transformations characterized by the transformation pattern can be
applied. The pattern is expressed as a metamodel fragment that
consists of classes characterizing model elements that are affected
by the transformations. Each of the classes in the source pattern
are specializations (subclasses) of classes in the UML metamodel.
The source pattern thus determines a specialized UML metamodel
for static structures.
The transformation schema shows the classes of model elements
that are created by the transformations and the classes of source
model elements that the transformations remove by conforming
transformations. The classes in a transformation schema are
specializations of UML metamodel classes. The schema is
expressed as a metamodel fragment in which the classes of new
model elements are enclosed in dashed boxes and classes of
deleted source model elements are marked with an X.
The transformation schema determines the basic structure of the
target model. The transformation constraint determines the
relationships that must hold between target and source model
elements. It is expressed as object structures, where the objects are
prototypical instances of classes in the source pattern and the
transformation schema (i.e., the objects are prototypical
representations of UML model elements). The object structures
describe transformation constraints in terms of relationships that
must hold between elements of the source and target models.

4. STATUS AND FUTURE RESEARCH
This research presents an approach for model transformations that
focuses on defining pattern-based transformations at the
metamodel level. These pattern-based transformations are defined
declaratively using the metamodel. We have applied the
previously described approach to the Abstract Factory (AF)
design pattern. As a result, AF transformation patterns have been
developed for UML class and interaction design models. For both
transformation patterns, the constraints are expressed both
diagrammatically and through the use of the Object Constraint
Language (OCL). We plan to apply our approach to other design
patterns and UML models.
Future work includes the development of a technique for
obtaining model level transformations from the metamodel
characterizations. Currently, we are investigating whether the
approach can be used to derive a SMW (Software Modeling
Workbench) [7] transformation from a transformation pattern. Our
goal is to show that the transformations conform to the UML
metamodel through the use of the SMW transformation language.
In addition, we are developing a formal basis for model
transformations. That is, we develop a formal basis for the
metamodel descriptions and model level transformations so that
one can establish that model level transformations conform to
transformation specifications at the metal model level.
With the continued development of our model transformation
approach, we hope to complete this work by May 2004.

5. REFERENCES
[1] Song, E., R. B. France, D. K. Kim, and S. Ghosh. Using

Roles for Pattern-based Model Refactoring. in Proceedings
of the Workshop on Critical Systems Development with
UML (CSDUML'02). 2002.

[2] Akehurst, David and Stuart Kent. A Relational Approach to
Defining Transformations in a Metamodel. in UML 2002 -
The Unified Modeling Language: Model Engineering,
Concepts, and Tools. Springer, October 2002.

[3] Object Management Group. Request for Proposal: MOF 2.0
Query / View / Transformations RFP. OMG 2002.
http://www.omg.org/docs/ad/02-04-10.pdf.

[4] QVT Partners. QVT: The high level scope. QVT-Partners,
2003. http://qvtp.org/downloads/qvtscope.pdf.

[5] Object Management Group, UML 2.0 Superstructure Final
Adopted Specification. OMG 2003. http://www.omg.org/cgi-
bin/doc?ptc/2003-08-02.

[6] QVT Partners. Initial Submission for MOF 2.0
Query/View/Transformations RFP. QVT-Partners, 2003.
http://qvtp.org/downloads/1.0/qvtpartners1.0.pdf.

[7] Porres, Ivan. A Toolkit for Manipulating UML Models,
TUCS Technical Report No. 441. Turku Center for
Computer Science, Åbo Akademi University, January 2002.
http://www.tucs.fi/Research/Series/index.php.

125

