Integrating Concerns with Development Environments

Jan Juhar

Department of Computers and Informatics, Technical University of KoSice, Slovakia

jan.juhar@tuke.sk

Abstract

Program comprehension is an essential process in program-
ming and many researchers report that it tends to take up to a
half of a programmers’ time during their work with a source
code. Integrated development environments (IDEs) facilitate
this process but there still are only restricted possibilities for
narrowing the gap between concerns of a problem domain
and a source code that implements them. In our work we uti-
lize projectional properties of modern IDEs to make them
able to process concern-related metadata and to provide cus-
tomizable code projections. These projections preserve the
original code structure while they show it from an alterna-
tive perspective regarding the contained concerns. We plan
to evaluate the effect such code projections will have on pro-
gram comprehension tasks.

Categories and Subject Descriptors D.2.6 [Programming
Environments]: Integrated environments; K.6.3 [Software
Management]: Software maintenance

Keywords program comprehension, integrated develop-
ment environments, software concerns, projectional editing

1. Research Problem

The primary factor that complicates a program comprehen-
sion process is a wide semantic gap created by abstraction
between a problem domain and a solution domain. Much
information about high-level concerns present in a problem
domain is lost or scattered during a transformation to the
source code. That makes it hard to answer questions about
the intent behind a particular piece of code [7].

Another issue of program comprehension lies in a single
dominant system decomposition. It is hard to find an optimal
design or structure for a particular problem in a particular
programming paradigm. The eventually used decomposition
is influenced by code author’s experience and by particular-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

SPLASH Companion’16, October 30 — November 4, 2016, Amsterdam,
Netherlands

© 2016 ACM. 978-1-4503-4437-1/16/10...$15.00
http://dx.doi.org/10.1145/2984043.2984047

ities of the task at hand. Other programmers working with
the same code later must adapt to this decomposition and
the mental model behind it, or if it does not suit them, per-
form a permanent refactoring with a hope that the original
structure will not be needed later [9].

Many tools were created to support program comprehen-
sion. Findings of Maalej et al. [8] tell us that particularly
IDEs are the most used tools for reading the code by in-
dustry programmers. The IDEs themselves contain tools de-
signed to facilitate the comprehension and, as Kosar et al.
show in [6], they improve the correctness of program com-
prehension tasks.

However, as IDE tools are designed to be universally us-
able “out-of-the-box”, they work with source code-intrinsic
information only. This means they work with any source
code written in a supported language (optionally combined
with a supported technology) without any additional infor-
mation needed. This also means they operate only in a solu-
tion domain with implementation-level concerns and leave
the discussed semantic gap wide. Furthermore, IDE code
editors adhere to the standard file-based model and display
source code in the same units as those persisted on a storage
medium. Programmers cannot create custom code views that
would more closely convey their mental model of a system
and that would also preserve the original structure.

There were attempts to deal with these issues by chang-
ing storage formats of software systems. For example, stor-
age layer of the software configuration management system
Stellation [2] individually tracked class methods and fields
instead of whole files and provided a query language for
building virtual files out of these smaller code fragments.
However, this approach required import and export steps
through an XML format to achieve interoperability with ex-
ternal tools.

More recent tools tackle the discussed issues from a pro-
gramming task point of view. Mylyn (formerly Mylar [5])
for Eclipse IDE filters software project structure views (e.g.,
package explorer) to the most often used elements in a spe-
cific task context. Canvas-based editors (e.g., Code Bub-
bles [1]) break the file-based paradigm and allow to create
custom layouts of editable code fragments on a pannable
canvas. These tools focus on specific code exploration or de-
bugging tasks but lack in the area of layout reusability across

different tasks. Moreover, they still use primarily source in-
trinsic information, although augmented with information
gained by tracking programmer’s activities.

2. Motivation

Concern-oriented tools, like those for feature location, pro-
duce some sort of metadata regarding concerns (or features)
they identify in the source code. These metadata provide
linkage between source code elements or fragments and
concerns—concepts from a problem domain. And it is the
fact that IDEs currently do not utilize such custom metadata
that we, similarly to Nosal’ et al. [9], consider for the main
reason why these tools cannot bring the code more closely
to the problem domain.

Adding concern-related metadata to the source code is the
core idea behind the Concern-oriented source code projec-
tions [10]. This approach uses code-level decorative mark-
ings (e.g., Java annotations) to assign high-level concerns to
program elements. These metadata are utilizable by both ex-
ternal text-processing tools and also by IDE tools that can
search for all usages of particular annotations. Additionally,
the approach is complemented with an IDE plug-in that can
construct a projection of all the code fragments marked with
user-chosen annotations into a single virtual file that can be
edited with an included editor. This is an attempt to address
both the issue of the wide semantic gap and of the domi-
nant system decomposition without giving up the direct tool
interoperability.

The motivation for our work is in further development
and evaluation of this approach in several aspects that could
promote the role of high-level concerns in IDEs. First, the
idea of concern-oriented projection can be extended to other
IDE tools besides code editors. Next, we want to provide
declarative means of building the projections from program
elements belonging to chosen concerns. And finally, we want
to focus on a visualization design for a virtual file projection
with regard to its effectiveness for program comprehension.

3. Approach

The ability of modern IDEs to work with an abstract code
representation was pivotal for transition from a pure tex-
tual code editing to a projectional editing, as described by
Fowler in [4]. In an IDE supporting projectional editing the
editor is parser-based', because source code is parsed into
a special form of an abstract syntax tree (AST) and used as a
model for structure-aware views (e.g., editors, project struc-
ture browsers) and operations (e.g., contextual code comple-
tion, refactoring). We intend to leverage this IDE property in
our work presented in the following three steps: (1) integra-
tion of concerns, (2) projection building, and (3) projection
visualization.

! Parser-based editors are distinct from AST-based editors that can be found
in projectional language workbenches like JetBrains MPS.

Integration of concerns. Metadata describing concerns
can be found in different forms. Above we described an ap-
proach that encodes concerns into annotations and they can
be included similarly also in structured code comments [10].
Feature location techniques and tools often produce lists of
relevant program elements [3]. These data can be used to
augment the abstract code model built by an IDE in a unified
format and then utilized in its views to make them aware of
the identified concerns. We plan to implement this as an IDE
extension able to transform and add concern-related data of
different origins to the code model.

Projection building. A concern-oriented projection is a
view of program elements that are related through associ-
ated concerns, and possibly also through code structural re-
lations. There needs to be a way for a programmer to specify
required properties of program elements that should be in-
cluded in a projection.

Projection building can be realized through a special
query language, a projection query language, that would
operate on our augmented code model. Such query language
can be based on existing program query languages, but it has
to support querying custom metadata [9].

Projection visualization. The goal of concern-oriented
projections is to provide alternative perspectives on a source
code to facilitate program comprehension. Thus, the visual-
ization needs to be understandable and unambiguous with
regard to the original code. We expect this to be achiev-
able by preserving a sufficient context from the original code
fragment scope in a projected view.

An adequacy of a provided context will be significantly
affected by a level of program elements granularity used to
describe concerns in a code. We conducted a preliminary
code tagging case study with 5 participants to learn which
concern granularity levels would be used by programmers in
source codes written in object-oriented and procedural lan-
guages. We found out that (in addition to the usual class
and function/method granularities) the statement granularity
level was used by every participant and that this level was
used at least once in 80% of identified concerns. Moreover,
for 47% of concerns identified in procedural code the state-
ment granularity was the coarsest one.

Described results suggest that it might be beneficial to
consider the statement granularity in the projection design.
Assessing whether it brings real advantage for comprehen-
sion (considering the added value against increased cost of
concern identification) will be the subject of the evaluation
part of our work.

4. Evaluation Methodology

Our goal is to evaluate our design of concern-oriented pro-
jection regarding its efficiency for program comprehension
tasks compared to standard IDE tools and other concern
management tools. We want to address the two following
research questions.

RQ1. Does our concern-oriented projection constructed
on the basis of multiple concern-related metadata make the
program comprehension more effective than the tools pro-
viding the metadata?

RQ2. Does the statement granularity level of a concern-
oriented projection increase effectiveness of programmers
in program comprehension tasks compared to a projection
restricted to coarser granularities?

Experiments. In order to answer RQI we will prepare
an experiment with a software project with concern-related
metadata originating from several tools. We will design a
program comprehension task and assign it to two groups of
participants. Both groups will have the metadata available,
but the first one with the original tools and the second one
with our projection. By tracking metrics like time needed
to complete the task, correctness of the solution, number of
code navigation operations, combined with a questionnaire
for qualitative evaluation, we will evaluate the effectiveness
of participants.

For answering RQ2 we will prepare an experiment with
a software project having both a simpler method-level con-
cern granularity and a derived, more detailed expression-
level concern granularity. Two groups of participants will
have our projection tool available during a program compre-
hension task, in which they will be required to modify some
project features with scattered code. Again, tracking multi-
ple quantitative program comprehension metrics will allow
us to evaluate effectiveness of participants. In the evaluation
we will need to consider also the additional effort needed to
create the more detailed version of concern description.

Acknowledgments

This work was supported by the Slovak Research and Devel-
opment Agency under the contract No. APVV-0008-10.

References

[1] A. Bragdon et al. Code bubbles: a working set-based interface
for code understanding and maintenance. In Proceedings of
CHI, 2010.

[2] M. C. Chu-Carroll, J. Wright, and A. T. T. Ying. Visual sepa-
ration of concerns through multidimensional program storage.
In Proceedings of AOSD, 2003.

[3] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature
location in source code: a taxonomy and survey. In Journal of
Software: Evolution and Process, 25(1):53-95, 2013.

[4] M. Fowler. Projectional Editing. http://martinfowler.
com/bliki/ProjectionalEditing.html.

[5] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest
model for IDEs. In Proceedings of AOSD, 2005.

[6] T. Kosar, M. Mernik, and J. C. Carver. The impact of tools
supported in integrated-development environments on pro-
gram comprehension. In Proceedings of ITI, 2011.

[7] T. D. LaToza and B. A. Myers. Hard-to-answer questions
about code. In Proceedings of PLATEAU, 2010.

[8] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On
the Comprehension of Program Comprehension. In ACM
TOSEM, 23(4):31:1-31:37, 2014.

[9] M. Nosal’, J. Porubdan, and M. Nosal’. Concern-oriented
source code projections. In Proceedings of FedCSIS, 2013.

[10] J. Porubén and M. Nosdl'. Leveraging Program Compre-

hension with Concern-oriented Source Code Projections. In
SLATE, 2014.

http:// martinfowler.com/bliki/ProjectionalEditing.html
http:// martinfowler.com/bliki/ProjectionalEditing.html

	Research Problem
	Motivation
	Approach
	Evaluation Methodology

