
Modeling and Building Software Product Lines with Eclipse

Olaf Spinczyk
University of Erlangen-Nuremberg

Martensstr. 1
D-91058 Erlangen

olaf.spinczyk@informatik.uni-erlangen.de

Danilo Beuche
pure-systems GmbH

Agnetenstr. 14
D-39106 Magdeburg

danilo.beuche@pure-systems.com

General Terms
Design, Management

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Domain en-
gineering, Software product lines; D.2.9 [Software Engineering]:
Management—Software configuration management

Keywords
software product lines, variant management, model-driven soft-
ware development, embedded systems

1. INTRODUCTION
Software product line development (SPLD) can reduce the over-

all software production costs, but imposes extra complexity on
the development process. Dealing with the commonalities and
variabilities of the product variants and with the flexible software
archiecture makes product line development a real challenge. De-
velopers can only be successful with adequate tool support for
product line development, which is still not the ”state of the art”.

The demonstration shows the integration of software product line
modeling based on feature models into the popular integrated de-
velopment environment Eclipse. We will demonstrate that a flex-
ible product line architecture can be build by using the modeling
capabilities provided by pure::variants, an eclipse plugin for soft-
ware product line development.

The plugin covers all steps of product line development from
requirements and variability analysis to product generation. Ex-
tended feature models are used for modeling of problem domain.
Family models are used to represent the variable architecture of
product line solution domains independent of the programming or
modeling languages used for product line implementation.

Along some concrete examples from the domain of embedded
software product lines we will make a round-trip through all steps
of the development from domain analysis to product deployment
and demonstrate how pure::variants facilitates the entire process.
We will show how features are used to model problem domains,
how product line architectures are connected with domain models
and finally how to integrate concepts of model driven development
into the process of product derivation.

Copyright is held by the author/owner.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

2. TOOL SUPPORT FOR SOFTWARE
PRODUCT LINES

Despite some quite successful demonstrations of software prod-
uct line development it is still in the beginning of attracting more
and more interest. It will take a long time before there will be a
common set of best pratices in SPLD and precise instructions how
to implement them in reality.

Development of software product lines is a complex problem,
involving high-level issues like development organisation structure
and processes, but also software architecture, design and imple-
mentation. One of the cross-cutting and most crucial tasks in prod-
uct line development is the variant and variability management.
However, most available software development tools, including but
not limited to Eclipse [2], do not offer support for explicit handling
of this task.

Several important issues have to be considered for tools support-
ing the complete process of variability management:

• Easy, but universal model(s) for expressing variabilities and
commonalities should be supported.

• Variability at all levels must be manageable.

• Introduction of new variability expression techniques should
be possible and easy.

The pure::variants tool chain was developed to meet all these
requirements. It is the successor of the research prototype presented
in [1]. It is structured in a client/server architecture with an Eclipse
plugin as its main graphical front end.

Figure 1: Overview of models and derivation process

The pure::variants-based tools are used in different phases of the
software development process. The development of product lines
is basically divided into two steps. In the first step the problem and

18



solution domains are analyzed, common assets are identified and
realized (domain engineering). In the second step the individual
products are derived from the product line (application engineer-
ing).

Several model types are used to capture the information required
to manage variability and variants on the different levels of domain
knowledge, software design and implementation.

Feature models [3] play a key role in this. They allow a uniform
representation of variabilities and commonalities of the products
of the entire product line. Compared to orignal works on feature
models, pure::variants supports an extended version of this concept.

Implementations of the product line are described by family
models. They enable the mapping of the problem space to the
different implementations. This model type was developed espe-
cially for the pure::variants technology, since existing modeling
techniques such as UML or SDL were not suitable for this purpose.

The variant description model is used to describe a individual
product. It describes the products features and values associated
with those features, and it is used to derive the final product from
the family models.

Figure 2: pure::variants plugin during variant derivation

Figure 1 depicts the simplified process of variant derivation with
pure::variants. Most steps are be performed automatically once the
various models have been created. The product line developers
have to provide feature models, family models, and the implemen-
tations itself. To derive a specific variant features from the feature
models have to be selected and possibly some associated values
specified. Once this variant description is sucessfully validated the
the transformer generates the variant realization from the variant
model using a product line specific transformation process.

2.1 Benefiting from the Eclipse principles
The Eclipse platform is a successful open-source project with a

high impact on the way how software tools are developed. The
basic idea of Eclipse is that extensibility is the core for success-
ful development environments. This idea was transformed into a
very powerful and highly extensible framework by IBM and many
contributors from the community.

For the pure::variants project using Eclipse as base for the graph-
ical user interface allowed for reuse in many ways. The already
available infra-structure could be reused for many standard task
like resource handling, problem list, error display etc.. Also the
already existing user interface elements provided a guide for own
implementations.

But most importantly the pure::variants plugin uses the Eclipse
extensibility mechanisms to provide interfaces for user specific im-
plementation of views, editors and other components using the ba-
sic pure::variants infrastructure.

3. CONCLUSIONS
Crucial factors in the development of software product lines are

adequate models for the domain analysis and design, programming
languages that support the modular implementation even of cross-
cutting concerns, and an integration of all this in a user-friendly
development environment, which supports the whole process. The
demonstration will show that the pure::variants tool chain in com-
bination with the Eclipse platform addresses these factors success-
fully.

Further Information on pure::variants including a free commu-
nity edition can be found on [4].

4. REFERENCES
[1] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.

Variability Management with Feature Models. In Proceedings
of the Software Variability Management Workshop, pages
72–83, University of Groningen, The Netherlands, Feb. 2003.
Technical Report IWI 2003-7-01, Research Institute of
Mathematics and Computing Science.

[2] Eclipse Project Homepage. see http://www.eclipse.org.
[3] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.

Feature Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, USA,
Nov. 1990.

[4] pure-systems Homepage. see http://www.pure-systems.com.

19


