
Application Frameworks: How They Become Your 

Enemy 

 
Martin Mailloux 

University of Illinois at Urbana-Champaign  

martin.mailloux@gmail.com 

 

 

 
 

   

Abstract 
Application frameworks have become a de-facto standard 
to implement business systems.  In most organizations, 
when choosing either a development platform or a 
commercial solution, an application framework is part of 
the overall solution.  This paper reviews my personal 
experience developing a proprietary application framework, 
its lifecycle, software engineering practices, successes and 
mistakes through its releases.       

Categories and Subject Descriptors D.3.3 [Programming 

Languages]: Language Contructs and Features – 
frameworks.  

General Terms Management, Documentation, 
Performance, Design, Economics, Experimentation, Human 
Factors. 

Keywords Application Frameworks, Coupling, Evolution  

1. Introduction 

Application frameworks are central to most system 
development; they can either greatly facilitate or impair the 
implementation.  Many in-house application frameworks 
are solution specific to their business domain, they provide 
the “silver bullet” [1] to the team, making it more 
productive and improving the quality by resting on the 
shoulders of previous releases.  In most organizations, 
mastering the proprietary application framework enables 
greater developer productivity.  

 In many situations, an application framework will 
remain in use, as long as a minimal expertise remains 
within the team.  As both the team’s personnel change and 

the system goes through releases, its usage and longevity 
may suffer a downturn.  Application frameworks can 
represent challenging design and conceptual work; enticing 
deep understanding of the technology, complex algorithm, 
integration with the operating system. 

The demise of the American programmer was predicted 
over a decade ago [10] and with the flattening of the world 
[6], they are in competition with developers from around 
the world.  Commoditization of IT [3] is an added pressure 
to increase developer productivity.  In this paper I review 
my personal experience building a proprietary application 
framework through its releases which spanned many years. 
The information provided is based on my past experience 
as a software architect, but it also includes information 
made available to me by past colleagues. It was a 
successful development in many aspects for the early 
releases but the last releases were challenging. I document 
the successes, failures and challenges that each release 
brought to the team in terms of software engineering 
practices, software architecture and organizational 
structure. 

Unlike most research on application frameworks, a 
study was done independently to evaluate the value of 
migrating through different releases of the application 
framework [4].  The study focused on the early releases of 
the application framework and concluded it was positive in 
terms of effort versus new functionality. 

Application framework just like its counterpart, 
application system, evolves through time by subsequent 
chains of minor improvements and a few major (big bang) 
evolutions. To better understand the architectural changes 
that occurred through time in the application framework, 
information regarding the company strategy is provided 
and the evolution of the software engineering practices.  

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice and 
the full citation on the first page. To copy otherwise, or republish, to post on 
servers 
or to redistribute to lists, requires prior specific permission and/or a fee. 
SPLASH’10 October 17–21, 2010, Reno/Tahoe, Nevada, USA. 
Copyright © 2010 ACM 978-1-4503-0240-1/10/10…$10.00. 

115



2. Organization Specificity 

The organization was involved in developing website 
systems for its own usage, and all websites were not only 
sharing the application framework but some of the business 
functionality.  The websites were Business To Business 
(B2B) e-marketplace for a specific industry. All websites 
were online transactional processing (OLTP) systems, 
requiring high availability, with worldwide clientele (24/7).  
Specific extension and capability was provided to enable 
customization of application functionality for each website.  
The application framework supported the encapsulation of 
system level functionality but also extensibility features 
such as business rules specialization found in business 
oriented application frameworks such as the San Francisco 
framework [2]. 

The software development group (SDG) was divided in 
three distinct teams: 

• Software Infrastructure: in charge of the application 
framework. 

• Business Component: in charge of providing generic 
business components to implement business functionality. 

• Website Family: in charge of developing all the websites 
within a common business domain.  Amongst the websites 
that a website family team was in charge of, many were 
related to a similar industry in terms of functionality and 
business requirements.  A website family team would 
implement common functionality into a generic website for 
its family, which would then be specialized. 

3. Releases 

3.1 Bare Bones 

Description: it represents the initial implementation, with 
very few websites being developed by the organization; 
most developers had limited professional experience. 

Organization: the overall company had less than 30 
employees. 

Table 1: Bare Bones Software Engineering Practice 

Project planning None 

Project management • Most specifications could fit on 
a single page. 

• Release management was non 
existent, write code→clean 
compiled→ship to 
production→wait for the 
comeback. 

Configuration 
management 

• An excel spreadsheet is used to 
track who is modifying which 
file. 

 

• Development and production 
environment only. 

Software Quality 
Assurance 

No bug tracking tool (except 
excel). 

Change management None. 

Programmer’s Life No enforcing of the few rules, 
collegiate environment. 

 

Software Architecture: the implementation was divided in 4 
layers: template, controller, entity object, entity accessor. 

• Template: an html page template was divided in 
sections, such as header, body and footer.  Within the 
template, placeholders were used to add content at 
runtime. 

• Controller: process a request and implement the business 
rules, interacts directly with the entity object and entity 
accessor to execute the request and generate the response 
using template. 

• Entity: an entity represents a Java implementation of a 
relationnal table. It did not implement any business logic 
and was a data object (getter/setter) to interact with its 
entity accessor. 

• Entity accessor: an entity accessor was composed of two 
sections, one generated by the framework and a user 
defined part.  A generator was used to generate both the 
entity and the entity accessor based on a create table 
statement. 

No factory was used within the system, therefore to 
begin the implementation of a website, a set of scaffolding 
classes was available.  The scaffolding classes were 
composed of classes prefixed with “AB” such as 
“ABUser”.  Within the code, instantiation of objects were 
instructed by “new ABUser()”.  Each Website class was 
prefixed with a set of specific characters, such as “TEST”. 
The generator processed the class’ sources, and generated 
the specific code for a website (it would generate the class 
file and rename all AB to the specific prefix for the 
website). 

Lesson Learned:  

• Learning curve:  the application framework used very 
basic techniques; therefore it was assimilated very 
rapidly. If a programmer could do an SQL statement, 
they could very rapidly code an entity and its accessor, 
and write a specific method for a controller.  The 
template system, even though proprietary, was very close 
to other templating systems of that time. 

• Protection:  there was no protection against 
programming errors, (ie., not closing a 
‘PreparedStatement’).  An unclosed PreparedStatement 
by a Controller will not release the resource at the 

116



database level and will exhaust in the long run the 
available resource. 

• Maintainability: the website could easily be maintained 
and the overall classes/code to implement functionality 
could very rapidly be found and traced by a developer. 
The code was using specialization to implement specific 
business rules.  There was no indirection in the code and 
very few abstractions were used in the system. 

• Generator: very easy and powerful way to generate the 
scaffolding code for a website.  The drawback was that 
many classes were generated only to instantiate specific 
classes.  To implement modifications of the application 
framework could require regenerating the website code. 

3.2 1st Abstraction 

Description: It was the first release of the application 
framework, where the ‘whitebox’ framework was not a set 
of generated classes specific for each website.  A basic 
Class factory was implemented which required minimal 
configuration to instantiate the specialized classes by the 
business components or the website.  Specialization of 
business rules was still based on overloading the method 
within the class hierarchy. 

Organization: the software development group had grown, 
but was still comprised of less than 30 employees.   

Table 2: 1
st
 Abstraction Software Engineering Practice 

Project planning None 

Project 
management 

• No development methodology. 
• Release management: no change. 

Configuration 
management 

• Quality Assurance and Pre-
Production environment are added 
to the Development and 
Production environment. 

• A proprietary build system is 
implemented. 

Software Quality 
Assurance 

• No bug tracking tool (except 
excel). 

• A Quality Assurance Group is in 
place:  QA is on overdrive to 
pickup the past releases.  

Change 
management 

Informal one-on-one coaching 

Programmer’s Life • Programming standard emerged. 
• Code generation for Entity was 

available.  A java program 
interprets the SQL Data Definition 
Language (DDL) and based on its 
specification, generates the 
properties and the getters/setters.  

 

Software Architecture:  A new business object emerged, 
the Transactional Object (TXO).  It will be used to remove 
some of the business related processing from the controller.  
Common interface started to be used to specify class 
signature. 

Lesson Learned:  

• Learning curve:  initial loss of control due to the 
introduction of the class factory and its added abstraction 
was an acceptable solution in relation to its cost/benefit. 

• Protection:  it introduces a purer whitebox framework 
without code generation.  As loopholes were found in 
the application framework, the correction did not require 
anymore re-generating the website.   

• Maintainability: the drawback of using a factory to 
instantiate an object is greatly alleviated by the removal 
of all the repeated code.  The business  code is not mixed 
with framework related code. 

3.3 Commercial 

Description: This iteration of the application framework 
was in reaction to the business initiative of the company, to 
facilitate the commercialization of its solution if given the 
opportunity.  The initial application framework was based 
solely on proprietary technology, from the templating 
system all the way to the application server itself.  Only 
Java and its components, such as JDBC were used in the 
application server.  As J2EE was becoming the fad of the 
day, a new direction was set for the application framework.  
The business entity became J2EE Entity (the Entity and 
Entity accessor were merged) and the TXO a stateless 
Session bean.  It was decided to modify the proprietary 
application server to support the J2EE semantic instead of 
purchasing and migrating the production infrastructure. 

Organization: the software development group was 
growing, and within a year it was over 100 employees.   

Table 3: Commercial Software Engineering Practice 

Project planning Websites begin to implement 
project plan. 

Project management No change. 

Configuration 
management 

A configuration manager is 
implemented. 

Software Quality 
Assurance: 

No change. 

Change management Formal documentation: “How-
to”. 

Programmer’s Life A code generator was 
implemented, to generate the 
required Interface, Entity and the 
J2EE proxy object. First release 
of the Developer Workbench. 

117



Software Architecture:  the overall layered architecture 
remained the same. The modifications implied changes at 
each level, but their design responsibility remained the 
same. 

Lesson Learned:  

• Organization growth:  the rapid growth of the software 
development group requires documenting and formal 
training on our technology.  The original few are spread 
amongst the teams in an effort to provide in-team 
support.  The average tenure for team members in the 
company can almost be counted in weeks. 

• Learning curve:  this release is a major rewrite of the 
business object implementation, but the overall learning 
curve is fast as most of the concepts are very similar. 

• Inertia: the rapid growth of the software development 
group and in the number of websites that it must support, 
adds to the challenge of implementing through the 
website teams a new release of the application 
framework. 

• Maintainability: having its proprietary J2EE 
implementation, no commercial IDE is available to help 
developer productivity. Projects are started to integrate 
the continuous build platform into a tool (Developer 
Workbench) to automate and facilitate the tasks of 
managing the project configuration. 

3.4 Advanced Business Function 

Description: The software development group initiates the 
centralization of common business function development to 
a central business component team.  The more complex 
business functions are redesigned, to implement a 
configurable workflow system to facilitate the 
customization across websites. 

Organization: the software development group is stable, 
with a very low turnover.   

Table 4: Advanced Business Function 

Software Engineering Practice 

Project planning The application framework is 
following a release management, 
with planned release and features 
set (Priority: Required, High, 
Medium, Low).  

Project management No change. 

Configuration 
management 

Documentation for Major/Minor 
release and overall release policy  

Software Quality 
Assurance 

Automated testing is 
implemented by the websites, but 
not for the application 
framework. 

 

Change management • A preliminary description of 
each release is communicated 
to the website teams. 

• Formal release notes includes: 
dependency & compatibility, 
migration activities, fixes & 
improvement, business layer 
modifications. 

Programmer’s Life TogetherJ is now used as 
platform for code generation. 

 

Software Architecture:  the layered architecture is reviewed 
to enforce greater de-coupling between the presentation and 
the business layer.  XML serialization of Entity is added 
and XSLT template is supported alongside with the 
previous template system.  A new business object, New 
Entity, is implemented to replace the J2EE entity.  The 
New Entity is implemented to fully support inheritance, 
unlike its DDL predecessor.  It is modeled using TogetherJ. 
TogetherJ code generation is too generic and not specific to 
the application framework.  A custom code generator is 
integrated with TogetherJ.  

Lesson Learned:  

• Decoupling: XML provided a very strong decoupling 
mechanism between the presentation and the business 
layer.  Within the business layer and through the 
persistence layer, XML processing was more costly to 
program and also to execute. It could adversely influence 
performance due to the cost of XPath and/or 
serializing/de-serializing the objects.  In an effort to 
decouple all aspects of the application system, all 
dependencies were transferred into configuration 
elements.  Using XML as a decoupling mechanism 
moved most of the basic validation from the compilation 
to the runtime realm. Code quality degradation cannot be 
tracked by using coupling as a criteria [7] with XML as a 
integration scheme. 

• Layers vs Workflow:  most designs of a workflow, start 
with the state machine and the pre/post condition.  The 
workflow system had to be highly customizable to meet 
the variety of requirements across all the websites.  The 
current layering implementation between the 
presentation and the business layers is based on using 
XML as communication protocol. This requires specific 
processing for the workflow system and creates a 
dependency in its configuration and its counterpart at the 
presentation layer.  The workflow system may dictate as 
it changes state the next user interface to be displayed.  
If a pre-condition is added and adds a user input, the 
presentation layer configuration must be modified to 
enable this use case.  

• Role Based Access Control (RBAC) [FK92]: to further 
improve the granularity and customization of the 

118



business components, the ACL security control was 
replaced with a RBAC system.  The workflow system 
was integrated with the RBAC system, to provide greater 
security in its implementation.  The configurable 
element at both the workflow and at the RBAC level 
made it almost impossible to predict the dependency 
between adding a condition in the workflow and the 
required RBAC modifications.  Conflicts arise between 
achieving a configuration of RBAC at a higher level to 
simplify its configuration and its impact on the 
workflow’s condition. 

• Learning curve:  as new technology and abstraction 
concepts are introduced, the short term productivity is 
lowered.  The strategy is through greater decoupling, the 
cost of customization should be reduced in the long 
term. 

• Maintainability: decoupling between the components 
using XML, made the current IDE (Eclipse) ill-adapted. 
We lost the power of live debugging and checking 
objects/variables states at run time. Properly writing a 
configuration file became almost a programming 
language of its own. 

• Configuration: the number of errors caused by the high 
level of configurable elements in the components 
configuration, required building a configuration 
browser/editor.  Also, as the configuration became a 
central location for dependency between components, it 
was also the main element in configuring the 
components across the environment (development, 
quality assurance, pre-production, production).  From the 
original configuration file in XML it grew into a XSLT 
like file. Where specific keywords could be used within 
the configuration to specify based on the 
environment/servers specific parameters to the 
components (such as database username/password). 

3.5 User Experience 

Description: To improve the User Experience, we initiated 
a stronger binding, through configuration and naming 
convention, between the presentation layer and the business 
layer.  One of the caveats of web development, compared 
to a 4th generation programming platform, is field 
validation such as maximum input must be duplicated 
between the layers.  The extent to which a business object 
will be customized across the website could not be 
predicted by its designer.  The ease of modifying a field’s 
attribute at the configuration level did not have its 
equivalent all the way to the presentation layer.  Basic 
dynamic binding using ‘contract’ between the layers was 
initiated, binding the field’s attribute of the persistence 
layer across all the layers. 

Organization: the software development group is stable, 
with very low turnover.   

Table 5: User Experience Software Engineering Practice 

Project planning No change. 

Project management No change. 

Configuration 
management 

The business component group is 
challenged in implementing a 
release management, with 
planned releases and feature sets.  
The customization by some 
websites makes it too costly to 
migrate them to the newer 
version.  

Software Quality 
Assurance 

A bug tracking tool is 
implemented (bugzilla). 

Change management • A preliminary description of 
each release is communicated to 
the website teams. 

• Formal release note includes: 
dependency & compatibility, 
migration activities, fixes & 
improvements, business layer 
modifications. 

Programmer’s Life A developer workbench is 
developed to integrate the 
proprietary tools (build system, 
management console).   

 

Software Architecture: to provide a refined user interface, 
such as highlighting field in error, a mechanism that 
enables to customize errors between the layers is 
implemented.  The error management by itself is very 
complex and costly to use effectively.   

Lesson Learned:  

• Decoupling: To make the components work together we 
kept adding more configurations.  Architects and 
designers greatly appreciated the advantage, but 
developer productivity started to be a challenge. 

• Learning curve:  more abstraction added more 
proprietary technology, which required more proprietary 
tools added to Eclipse to alleviate the development 
effort. Our development teams were no longer Java 
specialists, but experts (some will say PhD) in our 
proprietary technology.  Error messages and stack trace 
were not indicative to the source of the problem, but 
required interpretation to diagnose the issue.   

• Maintainability: in most cases, a runtime error generated 
a stack trace that included calls only to the framework 
classes.  Most business objects became anonymous and 
were dynamically configured. 

• Configuration:  it seems that most developers spent more 
time trying to decrypt their configuration then doing java 
coding. 

119



• Contract: the contract system provided a mechanism to 
manage the difference in specification across the layers. 
As an example, in a business object ‘User’ the username 
may be mandatory.  In the search function for users, the 
username must follow the attribute length, but not inherit 
that it is mandatory.   Contracts were dynamically 
generated for Create/Read/Update/Delete (CRUD) 
services on an object, but complex business transactions 
had to build their contract step by step.  At the business 
function level, the contract represented a Service 
Oriented Architecture (SOAP), but within the system 
implementation itself, all operations had become 
services.  Developers on top of configuring the business 
object had become contract experts.  

The standardization of literal values for numbers, strings, 
dates, was standardized in the earlier release, following 
the “Whole Value” pattern [5].  The deferred validation 
pattern was implemented to provide an initial pass of 
validation for a form.  Instead of having each field 
process all its validation at once, a two phase validation 
was implemented. The first phase provided basic unit 
field validation such as: mandatory/optional, length, 
format. Any error during this phase, produced a 
feedback to the user about which fields were incorrectly 
entered. The second phase of validation was related to 
complex business rules, which included inter-field 
dependency such as verifying a begin date is before or 
equal to the end date.    

3.6 Going Horizontal 

Description: the model of centralizing the development of 
common business objects, but going through a distributed 
model for customization became inefficient.  The 
distributed customization incurs a very high cost of training 
each website team in the specificity of each common 
business module.  Also, the centralized team lacked the 
opportunity to synchronize the websites’ release in 
accordance to their own schedule.  Websites were allowed 
an ‘a la carte’ choice, instead of the ‘buffet’ approach, and 
therefore would pick and choose to upgrade only a few 
modules at a time.  The cost to manage the diverse version 
of the common modules, and their inter-dependencies, 
made it impractical to have an ‘agile’ response time. 

Organization: the software development group was 
reorganized based on the common business modules that 
existed.  Each team was in charge of a specific set of 
common business modules and its customization. 

Table 6: Going Horizontal Software Engineering Practice 

Project planning Each team plans its activities, with 
informal inter-dependency 
scheduling.   

Project management Initial attempt to initiate a Project 
Management Office (PMO).   

Configuration 
management 

No change. 

Software Quality 
Assurance 

Quality Assurance was divided 
across the business modules team.  

Change 
management 

An initial training was provided to 
the development team. The 
application framework rate of 
change was so fast, that rapidly the 
initial training became obsolete. 

There are no formal 
meetings/communication channels 
to funnel the information. 

Programmer’s Life The developer workbench/open-
source or commercial tools are not 
providing the proper toolset to 
enable productive work with this 
application framework.  

 

Software Architecture:  the organization takes this 
opportunity to expand the Contract system.  The primary 
goals were to leverage emerging open-source technologies 
and to use a declarative approach.  It leveraged the 
metadata information from the entity as a source to define 
the contract. 

This release of the application framework, unlike the 
previous release, could not upgrade one website at a time to 
track the tasks required and fix the problems that arose.   

The new organization structure meant it had to upgrade 
all the business module teams at once, to have one 
functional website.  The major challenges for the 
infrastructure team were: 

• Persistence Layer: major upgrades to the persistence 
layer are performed to make it more declarative.  It is 
migrated from a proprietary ORM implementation to 
Hibernate.   

• Declaractive programming: very complex processing is 
added to support the declarative approach across all the 
layers. 

• Website as assembly: websites are not whole anymore.  
They are an assembly of services. Distributing the 
workload across servers based on the website must be 
modified to support the distribution by business module. 

• Distribution model: the distribution model is also 
supported at each layer, distributing the presentation and 
business/persistence layer across servers. 

The overhaul of the application framework is initiated as 
the functional module teams are created.  During the first 
four months, the functional module teams are involved in 
requirements gathering across all the websites. Training 
sessions are organized to bootstrap the team on the 
technology.  As implementation begins, missing 

120



functionality or heavy/redundant configurations are 
modified. No efforts are spared in having an application 
framework that will require no programming, only 
declarative configuration. The declarative programming is 
implemented by specifying all rules in XML. Code 
walkthroughs are also performed to monitor what is lacking 
in the declarative programming.  The application 
framework is extended as business modules are developed 
to support them through declarative programming.  The 
modifications are retrofitted into the current development. 

In the first few weeks when the implementation began, 
developers encountered problems with the application 
framework that were resolved promptly without many side 
effects.  As the development effort gained momentum, 
more developers were using the application framework 
encountering more problems and limitations.    

Throughout its lifecycle, the application framework had 
very limited formal quality assurance performed prior to a 
website upgrade.  Ad-hoc unit tests were performed by 
each developer on the application framework with each 
modification.  The first website migration was performed 
by the application framework team, assisted by the website 
technical lead.   

Under the horizontal team structure all the teams had to 
be affected at once by any changes to the application 
framework.  Any deficiency in quality assurance by the 
application framework team increased the risk of downturn 
with all the teams experiencing bugs, stopping them in their 
tracks.  As expected, the downward spiral of having more 
teams finding more bugs meant tighter deadlines for the 
application framework team to release fixes, increasing the 
risk of regression bugs showing up.    

The application framework was upgraded every day, 
with all the teams linking directly to the development 
version to have access to the latest fixes.  One way to 
minimize the risk was to slow down the rate of releases of 
the application framework and to stabilize each version 
prior to release.  With increasing pressure to provide the 
missing functionality, proceeding forward was deemed the 
best solution. 

 Lesson Learned:  

• Pulling the Carpet: having a whole software 
development organization developing on an application 
framework that was modified beneath them was a risky 
proposition and it was proven to be a costly approach. 

• Pilot Project: no pilot project was initiated, or even in 
this case, a pilot/test website to support future quality 
assurance activities.  The pilot project should have led 
the way in functionality and been used as a 
demonstration/teaching platform for the teams. 

• Champion: as the application framework team got 
overwhelmed with the development/bug fixing/support 

cycle, having a champion in each business module team 
would have eased the problems. Champions would have 
been a key asset in communicating the best practices as 
well as serving as a single point of communication.   

• Toolset/IDE: as new technology is released, having the 
proper toolset/IDE to support it is essential.  As an 
example, the lack of validation in the configuration 
makes it very costly to track and fix a problem.  Poor 
support of the developer in repetitive tasks or having 
complex configuration files, creates a barrier to the 
adoption of the application framework.   

• Weekly gathering: no organized communication 
structure was established to gather either the technical 
lead on each team or at the management level.   

• Moral:  developers did not see it in a positive light, to 
become a XML specifier instead of a Java developer.   

• Quality: an application framework initial quality + 
support of the developers in their task would be 
proportional to its acceptance.   Each issue encountered 
slowed the curve of acceptance of the new framework. 

• Layering: The new application framework implemented 
two distribution layers for a website. The traditional 
distribution between presentation and business layer was 
implemented between two instances of application 
servers, but also, across servers for each functional 
module.  Each functional module could be leveraged 
across multiple websites.  The double distribution and 
dependency across functional modules (i.e., each are 
dependent on the security module) required complex 
operational process for upgrades or system restart.   

• Remote layering: as a means to provide higher 
scalability and remove all coupling between servers, 
each invocation across layers went through a queuing 
system.  The queuing system was implemented using a 
persistent manager.  Each layer was conceptually 
implementing a service oriented approach, publishing its 
services and guaranteeing the execution of the request. 

SOA:  As described in [12], the major goals of a service 
oriented architecture vs an object oriented analysis-design 
are: 

• Increased Business Requirements Fulfillment 
• Increased Robustness 
• Increased Extensibility 
• Increased Flexibility 
• Increased Reusability and Productivity. 

 

With the promised gain of a SOA approach, one can 
only question why almost the opposite occurred.  All 
aspects of SOA were leveraged: service contracts, 
coupling, abstraction, reusability, autonomy, statelessness, 
discoverability and composability.  The major misstep 
came in having a very small granularity level for the 

121



service definition.  The system was not anymore 
implemented using an object-oriented approach, but instead 
services built by aggregating atomic services together.  No 
distinction was done between an internal service required 
only within one business transaction and one by an external 
module.  An internal service would be implemented in a 
more straightforward manner through a traditional OO 
approach.  Toolsets to support SOA, especially complex 
service composition, were not available and had to be 
scripted manually.   

A service orientation architectural direction is justifiable 
if requirements such as a heterogeneous platform [11] is 
required.  The operational criteria under which the system 
was deployed did not have such requirements.   

3.7 Open-Source 

Description: after spending much time, energy and a 
massive capital investment, the organization judged that the 
current direction was not achieving its goals and could not 
be sustained.  Conversion to the Going Horizontal 
application framework was suspended; some functional 
modules remain implemented with the User Experience 
release. It did a first prototype based on open-source 
technology (Spring, Hibernate, JSP), which was then 
standardized for future development.  As the open-source 
release was deployed, efforts are engaged to break the ties 
between websites still dependent on the previous release. 

Organization: the software development group is regrouped 
around websites, as it was previously. 

Software Architecture:  the software architecture is now a 
mix of three releases, User Experience, Going Horizontal 
and Open-Source.   

4. Conclusion 

Application frameworks are part of most systems; some are 
part of a commercial platform and others a proprietary 
implementation. In all cases they support a set of 
implementation patterns relevant to their business domain, 
with the goal to reduce time to market and cost of 
development.  Our business domain was specific and as 
such, not very likely to attract the attention of a researcher 
or of a software provider.  Some of the challenges we 
encountered were common across the industry, such as 
implementing an Object-Relational-Mapping system.  
Today, commercial and open-source solutions are readily 
available for many of the requirements we had. 

The area where we encountered the most difficulty, 
contract management, is the one area where both research 
and the industry have not advanced to answer our 
requirements. 

Acknowledgments 

I would like to thank Professor Ralph E. Johnson at the 
University of Illinois at Urbana-Champaign, who served as 
my supervisor for an independent study which was the 
original bases for this paper. 

References 

[1] Brooks F. P., The mythical man-month, Addison Wesley, 
1995. 

[2] Carey J., Carlson B., Graser T., San Francisco Design 
Patterns: blueprints for business software, Addison Wesley, 
2000. 

[3]    Carr N. G., IT Doesn’t Matter, May 2003, Vol 81, Issue 5, p. 
41-49, Harvard Business Review, 2003. 

[4]  Corrales Y., Laporte C. Y., Étude de cas : Évaluation de la 
Migration d’une Architecture Logicielle d’une Société de 
Commerce Électronique, Génie Logiciel, N. 82, Septembre 
2007. 

[5] Cunningham & Cunningham Inc., The CHECKS Pattern 
Language for Information Integrity, Site reviewed on March 
11th,  2009. 

[6]  Friedman T. L., The World is Flat: A Brief History of the 
Twenty-first Century, Farrar-Straus and Giroux, 2005. 

[7]  Subramaniam G. V., Object Model Resurrection - An Object 
Oriented Maintenance Activity, ICSE 2000, ACM, 2000. 

[8]  Ferraiolo D. F., Kuhn R. D., Role-Based Access Controls, 
15th National Computer Security Conference (1992), 
Baltimore MD, pp. 554 – 563, 1992. 

[9]  Weinberg G.M., The Psychology of Computer Programming, 
Silver Anniversary edition, Dorset House, 1998. 

[10] Yourdon E., Decline & Fall of the American Programmer, 
Yourdon Press, 1993. 

[11] Mariani R., Bohling B., Smith C. U. Barber S., Improving 
.Net Application Performance and Scalability,  Microsoft 
Corporation, 2004. 

[12] Erl T., SOA Principles of Service Design, Prentice Hall, 
2008. 

 

 

122


