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Abstract

Although the Java platform has been used as a multi-

language platform, most of the low-level languages (such as

C, Fortran, and C++) cannot be executed efficiently on the

JVM. We propose Sulong, a system that can execute LLVM-

based languages on the JVM. By targeting LLVM IR, Sulong

is able to execute C, Fortran, and other languages that can

be compiled to LLVM IR. Sulong combines LLVM’s static

optimizations with dynamic compilation to reach a peak

performance that is near to the performance achievable with

static compilers. For C benchmarks, Sulong’s peak runtime

performance is on average 1.39× slower (0.79× to 2.45×)

compared to the performance of executables compiled by

Clang O3. For Fortran benchmarks, Sulong is 2.63× slower

(1.43× to 4.96×) than the performance of executables com-

piled by GCC O3. This low overhead makes Sulong an alter-

native to Java’s native function interfaces. More importantly,

it also allows other JVM language implementations to use

Sulong for implementing their native interfaces.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors - Run-time environments, Code

generation, Interpreters, Compilers, Optimization

Keywords LLVM, JVM, Sulong, dynamic compilation

1. Introduction

The Java Virtual Machine (JVM) has been recently used as

a platform for not only Java and Scala, but also for dynamic
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languages including Ruby, Python, and JavaScript (Rose

2009). Having the JVM as a common platform enables

cross-language interoperability so that Java code can call

functions or methods written in other languages. Language

implementation frameworks such as Truffle (Würthinger

et al. 2013) feature a mechanism for cross-language inter-

operability, which allows writing efficient multi-language

applications (Grimmer et al. 2015b). However, except from

a C implementation (Grimmer et al. 2014, 2015a), there

are no efficient Truffle implementations of lower-level lan-

guages, e.g., Fortran, C++, and others. To call functions

written in such languages, developers have to resort to the

Java Native Interface (JNI, Liang 1999) or other native func-

tion interfaces. These native function interfaces add run-

time overhead since data structures have to be converted or

(un)marshalled when transferring data between Java and the

target language. Also, language boundaries are compilation

boundaries, so a compiler cannot, for example, apply func-

tion inlining across languages.1

In this paper we present Sulong, a system that enriches

the JVM with a variety of new languages by executing

LLVM IR on the JVM. Sulong includes a new LLVM IR in-

terpreter, which allows it to execute all languages that have

an LLVM IR front end, including C/C++, Fortran, Ada, and

Haskell. Developers can use the interpreter as a Java library

to execute these languages on the JVM. We implemented

the LLVM IR interpreter in Java on top of the Truffle frame-

work (Würthinger et al. 2013), so that Sulong does not only

interface with Java but also provides seamless interoperabil-

ity with other Truffle language implementations (Grimmer

et al. 2015b) such as R (Stadler et al. 2016), Ruby (Seaton

2015), and JavaScript (Würthinger et al. 2013). This in-

1 Stepanian et al. (Stepanian et al. 2005) show that inlining native C code

into Java is important and improves performance significantly. However,

they convert the native code to the same intermediate language as the JIT

compiler uses while we want to directly run low-level code on the JVM.
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Figure 1. System overview.

teroperability mechanism allows optimizations across lan-

guage boundaries such as cross-language function inlin-

ing. Furthermore, by having Truffle as a common base,

other language implementations can use Sulong to imple-

ment their Native Function Interfaces (NFIs). For example,

JRuby+Truffle (a Truffle implementation of Ruby, Seaton

2015) already uses Sulong to implement C extension sup-

port and FastR (a Truffle implementation of R, Stadler et al.

2016) experiments implementing support for native exten-

sions with it.

Efficiency is very important to make Sulong an alterna-

tive to NFIs for both Java developers and Truffle language

implementers. To achieve the necessary performance, Su-

long combines LLVM’s static optimizations at compile-time

with a dynamic compiler at run-time. We use the Graal dy-

namic compiler (Duboscq et al. 2013; Stadler et al. 2014) to

compile frequently executed LLVM IR functions to native

code. This allows Sulong to reach peak performance that

is near to the performance of code produced by industrial-

strength compilers such as Clang.

In summary, this paper contributes the following:

• We describe how we bring a variety of languages to the

JVM by using LLVM front ends and implementing a self-

optimizing LLVM IR interpreter.

• We present a novel compilation approach to dynamically

compile LLVM IR.

• We describe how we use static optimizations in combina-

tion with dynamic compilation to generate efficient ma-

chine code and demonstrate its peak performance on a

range of C and Fortran benchmarks.

2. System Overview

Sulong is a modularized system that uses parts of LLVM and

the JVM (see Figure 1). In this section we describe LLVM

and Truffle + Graal, which are the basis of Sulong.

void processRequests () {
int i = 0;
do {

processPacket ();
i++;

} while (i < 10000);
}

Figure 2. A small C program containing a loop.

2.1 LLVM

LLVM (Lattner and Adve 2004) is a modular static compi-

lation framework that consists of a standardized IR (called

LLVM IR or bitcode) and a set of libraries. LLVM front

ends translate a source program to an LLVM IR program.

LLVM’s official front-end is Clang which can compile C,

C++, Objective C, and Objective C++. To enable GCC to

compile its supported languages including Ada, Fortran, and

Go to LLVM IR, one can use the DragonEgg plugin.2 After

compilation, a user can decide to further process the LLVM

IR file, e.g., by using the LLVM static optimization tool

opt to optimize the program. To get an executable from the

LLVM IR file one can use the LLVM linker and assembler

to link the LLVM IR files and to compile them to machine

code. Sulong consists of a Truffle interpreter that we use to

execute this IR on the JVM (see Section 3).

Figure 2 shows a C program, and Figure 3 the correspond-

ing LLVM IR program in textual form. In LLVM IR, as in

most IRs, a function comprises basic blocks that consist of

sequential instructions and end with a terminator instruction

that transfers control to the next basic block. For example,

br label %1 is an unconditional branch to the basic block

labeled %1, br i1 %3, label %1, label %4 is a condi-

tional branch (depending on the boolean value %3) to the ba-

sic blocks labelled %1 or %4, and ret void is a return from

the function. These branches transfer control between basic

blocks, similar as in non-structured programming languages

that use goto. The biggest challenge for Sulong’s LLVM IR

interpreter is to efficiently interpret and dynamically compile

the dispatch between basic blocks.

LLVM IR is in Static Single Assignment form (SSA,

Cytron et al. 1991), i.e., each variable is only assigned once.

In LLVM IR, these variables are called virtual registers and

are prefixed with %. To merge assignments to the same vari-

able after branches, LLVM IR uses phi functions. For exam-

ple, in %i.0 = phi i32 [ 0, %0 ], [ %2, %1 ], the

value assigned to %i.0 is 0 when the predecessor block is

%0 and %2 if the predecessor block is %1. Sulong’s LLVM

IR interpreter needs to implement these virtual registers of

LLVM IR as well as the native memory access that low-level

languages use.

2 http://dragonegg.llvm.org/
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define void @processRequests () #0 {
; (basic block 0)

br label %1

; <label >:1 (basic block 1)
%i.0 = phi i32 [ 0, %0 ], [ %2 , %1 ]
call void @processPacket ()
%2 = add nsw i32 %i.0, 1
%3 = icmp slt i32 %2 , 10000
br i1 %3 , label %1 , label %4

; <label >:4 (basic block 2)
ret void

}

Figure 3. LLVM IR of the C program in Figure 2.

2.2 Truffle

Truffle (Würthinger et al. 2013) is a language implementa-

tion framework to build high-performance Abstract Syntax

Tree (AST) interpreters on the JVM. Each node in a Truffle

AST has an execute method in which it executes its children

and returns its own result. Truffle AST interpreters are self-

optimizing (Würthinger et al. 2012) in the sense that AST

nodes can speculatively rewrite themselves with specialized

variants at run time, e.g., based on profile information ob-

tained during execution such as type information. For exam-

ple, our LLVM IR interpreter can optimize indirect function

calls by rewriting the indirect call node to a specialized node

that speculates on a constant call target and can thus build

polymorphic inline caches (Hölzle et al. 1991). In turn, this

optimization enables speculative function inlining of indirect

calls.

If these speculative assumptions turn out to be wrong,

the specialized tree can be reverted to a more generic ver-

sion that provides functionality for all possible cases. Truf-

fle guest languages use self-optimization via tree rewriting

as a general mechanism for dynamically optimizing code at

run-time. For example, if an indirect function call is highly

polymorphic, Truffle languages rewrite the polymorphic in-

line cache to a node that performs the lookup and calls the

function.

2.3 Graal

When the execution count of a Truffle AST reaches a pre-

defined threshold, Truffle uses the dynamic Graal com-

piler (Duboscq et al. 2013; Stadler et al. 2014) to compile the

AST to machine code. The compiler assumes that the AST

is stable and inlines node execution methods of a hot AST

into a single method (known as partial evaluation, Futamura

1999) and performs aggressive optimizations over the whole

tree. Graal inserts deoptimization points (Hölzle et al. 1992)

in the machine code where the speculative assumptions are

checked. If they turn out to be wrong, control is transferred

back from compiled code to the interpreted AST, where spe-

cialized nodes can be reverted to a more generic version.

Blockbci=0 Blockbci=1 Blockbci=2

Basic Block Dispatch Node

1 2 -11 Successor basic 
block bcis

Figure 4. Basic block dispatch node for Figure 3

2.4 Sulong

Sulong uses LLVM front ends to compile source languages

such as C/C++ or Fortran to LLVM IR and interprets it on

the JVM. To simplify and optimize an LLVM IR program

prior to interpretation, Sulong uses LLVM’s static optimiz-

ers. Sulong then executes the LLVM IR on the JVM using

a new Truffle interpreter. This Truffle language implemen-

tation brings all LLVM languages to the JVM, and makes

them accessible to other Truffle language implementations.

Sulong’s interpreter optimizes the AST based on the pro-

file feedback that it observes at run time. Eventually, Truffle

uses Graal as a dynamic compiler to compile the program to

machine code, from which execution continues with native

speeds. This architecture allows Sulong to profit from both

static optimizations by LLVM, and dynamic optimizations

by Truffle and Graal.

3. Execution of Unstructured Control Flow

The LLVM IR interpreter is different from previous lan-

guage implementations on top of Truffle since it has to deal

with unstructured control flow that cannot easily be handled

in an AST interpreter. Support for unstructured control flow

is the key for enabling the execution of LLVM IR, both in

the interpreter and in the dynamically compiled code.

3.1 Interpreter

To support unstructured control flow in the interpreter we

follow a mixed AST execution and bytecode interpretation

approach. Basic blocks only contain sequential instructions,

hence, we build ASTs for them. We do not build ASTs to im-

plement transferring control between the basic blocks, since

unstructured control flow cannot be directly modeled using

ASTs. We could convert the unstructured LLVM IR pro-

grams to structured programs (Erosa and Hendren 1994),

at the expense of making the implementation more com-

plicated and removing the direct correspondence between

LLVM IR instructions and Truffle nodes. Instead, we use

a basic block dispatch node to transfer control between the

basic blocks (and also add support for its compilation, see

Section 3.2). Each function has such a basic block dispatch

node. In the loop of the basic block dispatch node (see Fig-
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int bci = 0;
while (bci != -1)

bci = blocks[bci]. execute ();

Figure 5. Sulong’s basic block dispatch node.

ure 5), we execute a basic block in each iteration, starting

from a bitcode index of zero (bci = 0). Each node that rep-

resents a basic block contains an int[] array with the bcis

of its successor blocks, which allows the compiler to see all

possible successors of a block, i.e., the successor bcis are

compile-time constants. The compiler needs this information

to compile the basic block dispatch node (see Section 3.2).

When executing a basic block, the basic block computes an

index into this successor array, which it uses to return the

next bci. Execution of basic blocks continues until bci = -1

which signals a return statement.

For the program in Figure 3, the basic block dispatch

node transfers execution between three basic blocks that

have consecutive indices from 0 to 2. Figure 4 shows the ba-

sic block dispatch node for this program and illustrates the

control flow between the basic blocks with red arrows. Exe-

cution starts with the first basic block blockbci=0. Blockbci=0

has only one possible successor (blockbci=1), therefore its

successor array contains only one element, namely bci =

1. The basic block dispatch node executes blockbci=0, and

reads the next bci = 1 from its successor array. Blockbci=1

has two possible successors (blockbci=1, the loop body; and

blockbci=2, the loop exit), therefore the successor array con-

tains two elements, namely bci = 1 and bci = 2. Again, the

basic block dispatch node executes blockbci=1, and returns

either bci = 1 or bci = 2 from its successor array. The suc-

cessor of blockbci=2 is bci = -1, which signals a return from

the function.

3.2 Compilation

When compiling an AST, the Graal compiler has to recur-

sively inline the execution methods of all AST nodes. While

this is trivial for a regular AST, Graal has to treat the ba-

sic block dispatch node differently. For the basic block dis-

patch node, the compiler unrolls the loop (while (bci !=

-1), see Figure 5) until all paths through the program are

expanded. With respect to the program in Figure 3, the com-

piler starts with a bci = 0 and determines all successors of

blockbci=0. The successor of blockbci=0 is blockbci=1. The

compiler can peel the first iteration, and thus moves the exe-

cution of blockbci=0 out of the loop. Figure 6 illustrates this

first step of the loop expansion in pseudo code; note that the

first loop iteration (the execution of blockbci=0) is peeled.

Next, the compiler determines the successors of blockbci=1,

which are blockbci=1 (i.e., the loop body) and blockbci=2

(i.e., the loop exit). The compiler detects when a path has

already been expanded and merges it with the existing path,

which guarantees that the loop expansion terminates. In our

blocks [0]. execute (); // bci = 1
bci = blocks [1]. execute (); // to be expanded

Figure 6. Step 1: Unrolling the loop of the basic block

dispatch node.

blocks [0]. execute (); // bci = 1
merge1:

bci = blocks [1]. execute (); // bci = 1 or 2
if (bci == 1)

goto merge1;
else

bci = blocks [2]. execute (); // to be expanded

Figure 7. Step 2: Unrolling the loop of the basic block

dispatch node.

blocks [0]. execute (); // bci = 1
merge1:

bci = blocks [1]. execute (); // bci = 1 or 2
if (bci == 1)

goto merge1;
else

blocks [2]. execute (); // bci = -1
return;

Figure 8. Final state: Unrolled loop of the basic block dis-

patch node.

example, the compiler sees that it has already expanded

blockbci=1, and inserts a backjump (blockbci=1 has itself as

a successor, so the compiler detected a loop). The second

successor of blockbci=1 is blockbci=2, which the compiler

expands. Figure 7 shows how the successors of blockbci=1

are expanded; note that the compiler inserts a jump (goto

merge1) if it detects a path that has already been expanded

(blockbci=1 has itself as a successor). Finally, the compiler

expands the successors of blockbci=2, of which there are

none (indicated by bci = -1). The bci = -1 terminates the loop

and the compiler has finished loop unrolling. Figure 8 shows

how the successors of blockbci=2 are expanded; note that the

compiler inserts code to return from the function (return)

if it detects a path that lets the basic block dispatch loop ter-

minate. The Graal compiler then further optimizes the graph

obtained by this partial evaluation.

4. Native Calls and Memory Management

One concern for Sulong is seamless and efficient interop-

erability with native shared libraries such as the C standard

library. Reusing existing code in low-level languages such as

C/C++ is commonly done by linking user programs against a

shared native library that is present as a machine code binary

but not available as source code (e.g. the C standard library).

Sulong uses the Graal Native Function Interface (Graal NFI,

Grimmer et al. 2013) to call native functions of such a li-

brary. When Graal compiles the AST to machine code, the
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compiled Java code directly (i.e., without overhead) calls the

native function.

To be interoperable with native functions, the Graal NFI

expects its caller to either pass primitive values (by value) or

unmanaged objects such as structs or arrays (by reference).

Sulong aligns LLVM IR objects (structs, arrays, and vec-

tors) using the same layout as in executables produced by

static compilers. It reads this layout information from the

bitcode file. When Sulong calls a native function, this na-

tive function can directly operate on allocations provided by

Sulong, since they match the platform’s Application Binary

Interface. Thus, Sulong does not need to marshal or convert

objects when calling shared library functions, and can call

native functions with zero overhead when compared to na-

tive to native calls in executables. Following the object lay-

out of static compilers also allows programmers to not only

rely on standard C, but even to run programs that rely on un-

defined aspects of the memory layout when accessing native

memory. This is useful in practice, since many programmers

rely on what today’s compilers do and not what ISO C spec-

ifies (Memarian et al. 2016). Sulong allocates, deallocates,

and accesses unmanaged memory using the JDK internal

sun.misc.Unsafe API.

To execute LLVM IR, Sulong has to support two types of

unmanaged memory:

Stack: LLVM IR has an alloca instruction to allocate stack

memory. To implement stack memory, Sulong allocates a

block of memory at the start of the program and assigns

its address to a stack pointer. The implementation of the

alloca instruction then increments this stack pointer to

allocate memory on the stack.

Heap: LLVM IR can allocate heap memory using external

calls to a library function such as malloc from the C

standard library. Heap memory allocation is transparent

for Sulong and is handled like any other external call to a

shared library.

5. Static and Dynamic Optimizations

By default, LLVM front ends such as Clang compile local

variables in C/C++ to LLVM IR instructions that allocate the

variables on the stack. Once a local variable is needed, it is

loaded from memory and assigned to a virtual register. Thus,

unoptimized LLVM IR programs have many stack alloca-

tions and memory accesses that could be avoided by keep-

ing variables in virtual registers as long as their addresses are

not needed and the variables have a primitive type. Storing

local variables in memory is especially a problem for Su-

long: The Graal compiler does not optimize allocations and

accesses to unmanaged memory since Java programs mostly

use managed memory. To overcome this shortfall, Sulong

uses static LLVM optimizations to reduce the number of al-

locations and accesses to unmanaged memory. LLVM offers

the mem2reg optimization which attempts to lift such stack

allocations to virtual registers or constants. Sulong applies

this optimization to reduce native memory accesses which

enables the Graal compiler to produce more efficient ma-

chine code. Sulong’s LLVM IR interpreter efficiently repre-

sents virtual registers (see Section 2.1) as Java objects that

Graal can optimize well. In compiled code, virtual registers

map to machine registers, or are allocated on the stack.

Besides mem2reg, LLVM provides other optimizations

that reduce memory accesses such as dead store elimination,

promote “by reference” arguments to scalars, and handle

loop invariant code motion.

In addition to the static optimizations by LLVM Sulong

performs several dynamic optimizations that cannot be per-

formed by classic static compilers. On the Truffle level Su-

long performs the following optimizations:

Runtime Inlining: Truffle performs profiling-based inlin-

ing during run-time. While we could use LLVM to per-

form static inlining we defer inlining to the run time since

Truffle can exploit profiling feedback such as function

call counts that can lead to better inlining decisions.

Dynamic Dead Code Elimination: We profile the prob-

ability of basic block successors in our basic block dis-

patch node. Graal will not compile a basic block that

has never been executed and instead inserts a deopti-

mization point. This effectively results in a dynamic

dead-instruction elimination (Butts and Sohi 2002), since

Graal only considers those nodes for compilation that

have been executed by the Sulong interpreter. Addition-

ally, the successor probability profiling helps Graal dur-

ing optimization and enables re-ordering of basic blocks

based on the frequency of their execution.

Value profiling: We identify run-time-invariant memory

values (Calder et al. 1997) by observing if a loaded mem-

ory value does not change, and replace such a load node

by a node that checks if the value is still the same and

returns the cached constant. When Graal compiles the

node, it can propagate the profiled constant through con-

stant folding and other optimizations. This optimization

is especially beneficial for global variables that are set at

the beginning of a program (e.g., configuration values)

and do not change afterwards.

Polymorphic inline caches: We construct polymorphic in-

line caches (Hölzle et al. 1991) for function pointer calls.

The first time we indirectly call a function the call site

caches the target function up to a certain cache size.

Subsequent calls then first check if the current function

pointer is one of the cached target functions, and if so,

perform a direct call to the function. Guarded direct call-

ing enables Truffle to inline function pointer calls which

eliminates the call overhead and enables optimizations

on a larger range of code. If the number of cached func-

tions exceeds a predefined threshold, we perform a nor-
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Figure 10. Polyhedron benchmark suite; peak performance

(lower is better, relative to GCC O3)

mal indirect call since the inlining benefits are not likely

to amortize the additional checks.

6. Evaluation

To evaluate Sulong, we choose C and Fortran as two LLVM

languages. We do not evaluate C++ since we do not yet sup-

port LLVM IR exception handling. We use LLVM’s official

front end Clang to compile C to LLVM IR. Since Clang can-

not compile Fortran, we use GCC with the DragonEgg plu-

gin to compile Fortran to LLVM IR.

6.1 Benchmarks

To evaluate Sulong, we use all single-threaded C bench-

marks from the Computer Language Benchmark game

(shootouts)3. The shootouts are small benchmarks (66-453

LOC4) designed to compare the performance of different

languages. They are useful as a base for the comparison

of language implementations, since language implementers

commonly use them as an optimization target (Barrett et al.

2016; Marr et al. 2016). We also include the whetstone5,

deltablue6, and richards7 benchmarks (239 to 839 LOC)

since they are similarly popular small benchmarks for C.

Sulong is still a prototype and in an early stage. It can-

not yet execute all SPEC CPU benchmarks. However, we

want to also present performance numbers on real world

applications. Sulong can already execute an application for

compression using bzip2 (5k LOC) and gzip (5K LOC),

and an application that converts an audio file using oggenc

(48K LOC). These benchmarks are part of the Large scale

compilation-unit C programs 8.

The same is true when executing Fortan on top of Sulong.

Sulong can run 10 benchmarks from the Polyhedron Bench-

3 http://benchmarksgame.alioth.debian.org/
4 We used cloc to get the lines of code (LOC) without blank lines and

comments.
5 http://www.netlib.org/benchmark/whetstone.c
6 https://github.com/xxgreg/deltablue/blob/master/

deltablue.c
7 http://www.cl.cam.ac.uk/~mr10/Bench.html
8 http://people.csail.mit.edu/smcc/projects/

single-file-programs/

mark Suite9, which in total consists of 17 mixed-size (161

LOC - 27K LOC) benchmarks to evaluate Fortran compiler

implementations.

The benchmarks from SPEC CPU and the Polyhedron

Benchmark Suite that are not part of our evaluation can-

not be executed by Sulong. Sulong either fails parsing their

LLVM IR, crashes because of implementation bugs, or re-

ports an unimplemented feature. We are convinced that the

implementation of missing features and resolving the known

issues is possible with reasonable effort in the future.

6.2 Experimental Setup

To account for the adaptive compilation techniques of Truf-

fle and Graal, we set up a harness that warms up the

benchmarks. After the warm-up iterations, every benchmark

reaches a steady state such that subsequent iterations are

identically and independently distributed. We execute each

C benchmark 100 times and use the last 50 iterations to

compute the runtime. Since the Fortran benchmarks warm

up faster and run longer, we execute them 20 times and use

the last 10 iterations to compute the runtime.

We measure the peak performance of C and Fortran code

on top of Sulong and then compare it with the performance

of executables generated by the static compilers Clang (for

C), and GCC (for Fortran). We focus this evaluation on

peak performance of long-running applications where the

startup performance plays a minor role. Hence, we neglect

the startup time and present performance numbers after an

initial warm-up.

We executed the benchmarks on a quad-core Intel Core

i7-6700HQ CPU at 2.60GHz on Ubuntu version 14.04

(4.3.0-040300rc3-generic) with 16 GB of memory. We use

Sulong revision ad56c6f, which is publicly available at

https://github.com/graalvm/sulong, that uses LLVM

3.3 (we currently cannot use a newer version due to parser

limitations), and the Graal version that will be contained in

the GraalVM 0.17 release. When compiling Fortran files to

LLVM IR, Sulong uses GCC 4.6, the version that is expected

to work best with the DragonEgg plugin. When compiling

C or Fortran benchmarks for Sulong we use the following

static optimization parameters to opt: -mem2reg -globalopt

-simplifycfg -constprop -instcombine -dse -loop-simplify -

reassociate -licm -gvn. We consider a systematic evaluation

of combinations of static and dynamic optimizations on Su-

long as future work.

We use Clang O3 (-O3 LLVM optimizations) for C, and

GCC O3 (-O3 GCC optimizations) for Fortran to get a static

compilation upper performance boundary. For comparabil-

ity, Clang O3 and GCC O3 use the same LLVM and GCC

versions as Sulong. We visualize the peak performance run-

time of the benchmarks using box plots. The y-axis shows

Sulong’s run-time (lower is better) relative to Clang O3’s

and GCC O3’s runtime which is normalized to 1.

9 http://www.polyhedron.com
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Figure 9. C benchmarks; peak performance (lower is better, relative to Clang O3).

6.3 Result

On the C benchmarks (see Figure 9), Sulong’s peak perfor-

mance ranges from being 0.79× faster than Clang (nbody),

and being 2.45× slower (binarytrees). On average (geomet-

ric mean (Fleming and Wallace 1986)), Sulong is 1.39×

slower than Clang. On nbody, Sulong is faster since it can

use the SSE sqrt instruction instead of a call to the stan-

dard library, and since it can unroll a loop whose num-

ber of loop iterations depends on an input parameter to

the function. On many benchmarks, Sulong achieves simi-

lar performance as Clang O3 (fannkuchredux, fasta, fastare-

dux, knucleotide, pidigits, regexdna, and whetstone). For

most of these benchmarks, Sulong produces similarly effi-

cient code as Clang. However, pidigits and regexdna spend

most work in calls to (and in) third-party libraries. Having

no overhead on these benchmarks demonstrates that Sulong

can efficiently interface with native code. On the remaining

C benchmarks (binarytrees, bzip2, deltablue, gzip, meteor,

oggenc, revcomp, richards, and spectralnorm), Sulongs per-

formance is between 1.5× and 2.45× slower than Clang O3.

On the Fortran benchmarks (see Figure 10), Sulong’s

peak performance is between 1.43× (nf) and 4.96× (doduc)

slower than the performance of GCC O3 executables. On

average, Sulong is 2.63× slower compared to GCC O3. So

far, we mainly optimized Sulong for executing C programs,

and have not yet looked into optimizing Fortran programs,

which explains the larger gap between Sulong and GCC.

Besides missing various micro optimizations, there are

three main reasons for the overheads on the C and Fortran

benchmarks:

Needless interpreter-level object allocations: Graal im-

plements a partial escape analysis with scalar replace-

ment to optimize or remove object allocations where pos-

sible (Stadler et al. 2014). It is critical for performance,

that all Java allocations that the LLVM IR interpreter uses

in its runtime (i.e., interpreter-level allocations as op-

posed to user-level allocations) are optimized or removed

in compiled code. Unfortunately, we still have situations

where this is not the case, and where we either have to

adapt data structures in the interpreter or fix problems in

Graal’s escape analysis.

Truffle’s calling convention: Truffle passes function argu-

ments in an Object array and returns the function return

value as an Object, so parameters and return values have

to be boxed and unboxed. Function inlining usually re-

moves this overhead. However, in benchmarks that stress

recursive calls (which can only be inlined up to a certain

level) such as binarytrees and richards, the overhead is

still significant.

Missing vectorization: Graal cannot produce vectorized

code for Sulong, since it does not provide sufficient anal-

yses for accesses to unmanaged memory.

7. Limitations

Sulong can currently execute most small and middle-sized

single-threaded C and Fortran programs. We did not concen-

trate on other languages so far and thus did not implement,

for example, LLVM IR exception handling, which is needed

to execute C++ programs that use exceptions. Although we

did not find any essential problems when executing LLVM

IR on the JVM, our current implementations has several lim-

itations:

Unsupported library functions: To achieve better perfor-

mance and faster startup times, we still use the native

(i.e., machine code) standard libraries instead of their bit-

code versions. When Sulong is complete and fast enough,

we will execute the LLVM IR of the standard libraries

with Sulong for which we will only have to substitute

system calls. Currently, Sulong does not support creating

new processes with fork, since a call to fork would cre-

ate a copy of the JVM. Similarly, we currently also do not

support setjmp/longjmp, signal handling, and POSIX

pthreads for multithreading.

Callbacks from native functions: In terms of native inter-

operability, our foreign function interface does not sup-

port native callbacks yet (Grimmer et al. 2013). For ex-

ample, we cannot call a native function to which we pass

a Truffle AST (e.g., qsort) that could be called from the

native side. To prevent this case for the standard libraries,

we substitute these functions with Java or bitcode equiv-
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alents (see above). For third-party libraries we compile

such functions to a shared library which we then link.

Manipulation of function return addresses: In Sulong,

the memory layout matches that of executables produced

by static compilers. One exception is the function re-

turn address that executables store in the same stack as

data passed to other functions. The Sulong interpreter

implicitly uses the Java execution stack when execut-

ing functions. This execution stack is different from our

data stack that uses unmanaged allocated memory. Thus,

we cannot provide support for reading and manipulating

function return addresses. However, this also restricts re-

turn oriented programming (a security exploit technique,

Shacham 2007) since buffer overflows cannot overwrite

the return address.

80 bit floats: Most primitive data types in LLVM IR di-

rectly map to Java data types. An exception is LLVM IR’s

80 bit float type that Clang uses for C’s long double data

type on the AMD64 architecture. We do not completely

support this data type so far due to the implementation

effort required to correctly and efficiently implement it

using Java primitives.

Inline assembler: Sulong only partially supports inline

assembler by constructing a Truffle AST from it and

representing the machine registers as Java objects. Still,

Sulong cannot execute generated code (such as produced

by JITs), for which Sulong would need to interpret the

generated machine instructions.

8. Related Work

8.1 Java’s Foreign Function Interfaces

Java’s standard NFI is JNI (Liang 1999). JNI is a platform in-

dependent interface that not only allows calling native func-

tions, but also enables programmers to interact with Java ob-

jects and the JVM. However, JNI requires the declaration

of native Java methods and the implementation of native

functions that match a generated header file, which makes

JNI complicated to use, especially when a programmer only

wants to call native functions. Due to the abstraction over-

heads, JNI is also slow (Kurzyniec and Sunderam 2001).

Previous work showed that the overheads can greatly be re-

duced by inlining native function calls and by using the same

intermediate language for Java and the target low-level lan-

guage (Stepanian et al. 2005).

An alternative to JNI is Java Native Access10 (JNA)

which is built on top of JNI and provides access to shared

native libraries that it dynamically links. Dynamic linking

frees the programmer from the burden of writing boilerplate

code, but makes calls slower. Efforts to reduce this overhead

by generating call stubs using LLVM as a JIT compiler (but

still using JNI) can improve performance by 7.84% (Tsai

10 https://github.com/java-native-access/jna

et al. 2013). Besides JNA, also the Java Native Runtime

(JNR) is built on top of JNI and provides a user-oriented

API to call native functions11. Based on the experiences with

JNR, a JDK Enhancement Proposal (JEP 191) was drafted

that tackles JNI’s drawbacks and aims at providing better

usability and optimizing calls to native functions (Nutter

and Rose 2014). Project Panama, an OpenJDK subproject,

works on improving interoperability between the JVM and

native functions based on this JEP with the eventual goal to

include the changes in the JDK12.

In our previous work, we introduced the Graal NFI (Grim-

mer et al. 2013) to call native functions that are dynamically

linked. The Graal NFI is fast, since it compiles a call stub

to the native function before invoking it the first time, and

inlines the call stub when the surrounding Java code is com-

piled. However, in contrast to JNA and JNR the programmer

is responsible for data alignment and handling of unsafe

memory, which makes it error-prone and difficult to use (it

was designed for native language implementations on top

of Truffle). Also, it is only available in the Graal compiler.

Jeannie (Hirzel and Grimm 2007) is a language design that

allows nesting Java and C code in the same file, which is

then compiled down to JNI. Through static checks on syntax

and semantics of both languages, it is easy to use and also

eliminates writing boilerplate code.

Sulong is an alternative to traditional native function in-

terfaces since it can execute low-level languages directly on

the JVM. Sulong does not require writing boilerplate code,

and programmers can use Sulong as a Java library to ex-

ecute native functions. Additionally, Sulong is fast and sup-

ports execution of all LLVM languages. However, Sulong re-

quires that the source code of the native function to be called

is available. Also, it requires the Graal compiler in order to

reach peak performance that is near to the performance of

statically compiled code, and to call native functions.

8.2 PyPy

PyPy (Rigo and Pedroni 2006) and its virtual machine con-

struction approach is an alternative to Truffle/Graal’s meta-

compilation approach (Marr and Ducasse 2015). Both ap-

proaches strive to provide a reusable base for dynamic lan-

guage implementations and also provide language interop-

erability mechanisms (Barrett et al. 2013, 2015; Grimmer

et al. 2015b). In both cases, a language implementer can use

high-level languages with automatic memory management

for implementing a language. While PyPy uses RPython (a

semantic subset of Python, Ancona et al. 2007) for the im-

plementation of its interpreters, Truffle uses Java. PyPy lan-

guage implementations can be any kind of interpreters, while

Truffle implementations are implemented as self-optimizing

AST interpreters. With Sulong, we showed how a hybrid

bytecode/AST interpreter can be implemented in Truffle.

11 https://github.com/jnr/jnr-ffi
12 http://openjdk.java.net/projects/panama/
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For an efficient implementation, PyPy uses a translation

process to transform the RPython interpreter to low-level

code for a target environment (Rigo and Pedroni 2006). This

translation process first analyzes the interpreter, annotates it

with types, and then consecutively transforms it to lower-

level operations. For optimal performance, the translation

target is a C interpreter that contains a tracing JIT com-

piler (Bolz et al. 2009). The tracing JIT is not applied to

the user program, but to the interpreter running the user pro-

gram. Similarly, Truffle compiles ASTs (and not traces) that

represent the user program to machine code by using Graal

as a dynamic compiler. With Sulong’s approach, Graal also

supports the compilation of bytecode interpreters and hybrid

AST/bytecode interpreters.

8.3 Hybrid Compilation Approaches

Dynamo (Bala et al. 2000) is a dynamic optimization sys-

tem that re-optimizes an already compiled native instruc-

tion stream to exploit dynamic optimizations. Like Sulong,

Dynamo profits from static optimizations at compile time

and profiling information at run time. In contrast to Sulong,

Dynamo supports any kind of native instruction stream and

not only those languages supported by LLVM. However,

due to the low-level information on the machine code level,

Dynamo’s approach is limited in the optimizations that it

can apply. Finally, Dynamo re-compiles traces while Sulong

uses Truffle and Graal to compile function ASTs to machine

code.

Previous work also includes a fat binary approach (Nuz-

man et al. 2013), where a program is distributed as an exe-

cutable that comprises both the native code and the IR of that

program. The program starts execution with the native code,

which incurs only low start-up and warm-up costs. A run-

time manager samples the execution count of the functions

and when exceeding a certain threshold, it adds instrumen-

tation to it. Finally, a repurposed Java compiler compiles the

IR of that function to optimized machine code, for which it

also uses the profiling feedback of the instrumented func-

tion. While Sulong has higher start-up and warm-up costs, it

does not require a modified toolchain that is needed to pro-

duce fat binaries. Sulong can execute unmodified LLVM IR

that is produced by language front ends for many languages.

8.4 Other Truffle Implementations

We previously worked on Truffle/C (Grimmer et al. 2014)

and ManagedC (Grimmer et al. 2015a) which are Truffle in-

terpreters for C. Similarly to Sulong, Truffle/C uses unman-

aged memory for its allocations. ManagedC uses Java allo-

cations instead of unmanaged memory. The C interpreters

provide the same dynamic optimizations that Sulong does.

In contrast to the C interpreters, Sulong also uses static op-

timizations by LLVM to optimize the program before exe-

cuting it with its LLVM IR interpreter. Unlike the C inter-

preters, Sulong is not restricted to C but can execute a range

of different languages by targeting LLVM IR. Also, the C

interpreters do not have to efficiently support unstructured

control flow since it is only used in exceptional situations,

e.g., in exception handling using goto. To efficiently execute

LLVM IR (which contains no high-level loop constructs), we

use a hybrid bytecode/AST interpreter approach.

9. Conclusion and Future Work

In this paper we presented Sulong, a system to execute

low-level languages such as C and Fortran on the JVM.

By providing a Truffle LLVM IR interpreter, Sulong can

execute all languages that can be translated to LLVM IR. By

combining static optimizations with dynamic compilation

Sulong can achieve peak performance that is near to the

performance of code that is produced by industrial-strength

compilers such as GCC and Clang. We demonstrated that

Sulong currently runs C code with a peak performance that

is in average 1.39× slower than code compiled by Clang O3

and Fortran code 2.63× slower compared to code compiled

by GCC O3.

Other Truffle implementations can profit by using Sulong

to implement their native function interfaces. JRuby+Truffle

(a Truffle implementation of Ruby) already uses Sulong for

its C extension support, and FastR (a Truffle implementation

of R) provides an option to use Sulong instead of JNI for

calling native routines. Due to Sulong’s low overhead and

Truffle’s language interoperability mechanism that supports

inlining across language boundaries, we expect that we can

improve the performance of these languages when calling

native code. In future work, we want to demonstrate this on

case studies, and also provide a version of Sulong that only

uses managed Java memory to guarantee memory safety for

the programs it executes (Rigger et al. 2016).
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Trufflec: Dynamic execution of c on a java virtual machine. In

Proceedings of PPPJ ’14, pages 17–26, 2014.

M. Grimmer, R. Schatz, C. Seaton, T. Würthinger, and
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