Pan€l
Designing the Next Educational Programming Language

Andrew Black Kim. B. Bruce James Noble
Portland State University Pomona College, CA Victoria University of Wellington
black@cs.pdx.edu kim@cs.pomona.edu kjx@ecs.vuw.ac.nz
Abstract With the wide acceptance of object-orientation, the choice

Object-oriented programming is widely taught in introduc- ©f introductory language became much less clear. Smalitalk
tory computer science courses, however no existing object-the obvious c_home, was at first far too resource-intensive
oriented programming language is “the obvious choice” for for an ed“ucetyonal enwron_ment. Edu_cators had to choose
a teaching language. This makes it harder to transfer skills Peétween “toy” languages (like Buddlsttle Smalitalk[2])
techniques, and teaching materials between courses and be2nd Proprietary extensions like Object Pascal and Objectiv
tween institutions, and leaves employers uncertain wiegt th C- Just when Smalltalk became a feasible choice, Java and
should expect new graduates to know. We believe that the ©++ appeared on the scene, further fragmenting the educa-
object-oriented programming languages community should _tlo_nal community. Java remains the most p_opular choice, but
take this opportunity to work together to select, shape, or it IS Now a large and complex language with many features
design the next educational programming language, and pro{0" Supporting professional software engineering, and-bea
pose a set of principles that the language should follow. The N9 the scars of 15 years’ evolution. New languages such
purpose of this panel is to start a dialog with the educationa @5 & and Scala have benefited from what we have learned

community to refine these principles and to consider next from Java, but they too are large Iangugges, a_llso_de3|gned to
steps support professional practice, and retain duplicativéuies

for backwards compatibility with €+ or Java. Some in-
Categories and Subject DescriptorsD.3.0 [Programming stitutions are adopting Python as a first language; however,
Languagef General others are wary of an introductory language that lacks dec-
General Terms Languages larations for data fields and a static type system. Scheme,

Haskell, ML, GBeta, Smalltalk, and-&+ —to name but a
Keywords object-oriented, introductory programming lan- few — have been or are being used as introductory languages

guage, design, teaching in particular contexts, but none has gained the widespread
) acceptance of Pascal or Java.
1. Introduction The programming languages community has success-

In the 19805, Computer science and software engineeringfully addressed this prOblem in the past. In the 19503, there
programs worldwide benefited from a surprising unanim- Were a large number of attempts to produce an “algorith-
ity in their choice of programming language: Pascal. This Mic language™ these attempts were unified and gave rise to
unanimity benefited students and teachers, who were able teALGOL-60 [14, 15]. In the 1980s, functional programming
transfer their skills and techniques between institutiamgl ~ languages were similarly diverse: these differences weere r
to use textbooks from a wide variety of sources. It was also solved by designing Haskell [9]. In the 1990s there was
of benefit to employers, who were able to rely on graduates at least one attempt to produce an object-oriented teaching
having a shared basis in programming, and researchers, whdanguage, Blue [11, 12], but it did not succeed, partly be-
had alingua francafor presenting programs and their de- cause many faculty wanted to use an “industrial-strength”
signs, analysis, and execution. language in their courses, and at that time Java seemed like
a viable alternative. Given the last 20 years experienceusi
C++, Java, and other “real” languages for teaching, per-

haps it is time to reconsider and instead create a language
Permission to make digital or hard copies of all or part of thiork for personal or designed for novices?
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.
SPLASH’10, October 17-21, 2010, Reno/Tahoe, Nevada, USA.
Copyright(© 2010 ACM 978-1-4503-0240-1/10/10. .. $10.00

201

2. Principles programmers literate in two or more current industrial lan-
Jduages should be able to guess the meaning of code in the

We have yet to begin sketching a language design. Instea
new language.

we propose the following principles to guide the selection o
design of the next educational programming language. Evidence As far as possible, the design of the language

Paradigm The language should support object-oriented should be based on evidence about features of existing lan-
programming, because object-oriented languages areywidel guages — empirical results, formal studies, and teaching ex
used in teaching, practice, and research. The languagd’€rience.

should use garbage collection, because machme—levelss;u Ease of Implementation A graduate student should be

ble to construct a simple implementation of the language
in six months. An experienced team should be able to con-
struct an optimized, robust implementation in less than a
year. Language implementations may be interpreted, com-
piled statically, or compiled dynamically.

and should not intrude on teaching introductory program-
ming [10, 12]. The language should have a purely functional
subset, because the functional style is becoming incrglgsin
important in teaching programming [6] and functions oper-
ating on immutable objects make it much simpler to support
concurrency and distribution [5, 7]. Type System The language should be strongly typed: that
d is, there should be no unchecked run-time type errors. The
language should support teaching with both static and dy-
namic type systems [3]. The execution of the language
should not depend on a program’s static types.

Simplicity The language should be simple to learn an
simple to use. The language should provide one “fairly clear
way” to do most things. Like Modula-3, the language spec-
ification should follow C.A.R. Hoare’s fifty-page rule [4].
The language should not build-in features that can be satis-Formal Semantics The language should lend itself to rea-
factorily added through libraries [1]. soning about programs, and potentially to verification, es-
is introductory teaching, covering at least the first year of Way into introductory IDEs. For these reasons, the language
study: program design, data structures, and algorithres. Id Should have a well-defined formal semantics.

ally, tr:f Iangugge Ishc.)uldﬂs\iso be ?unable forl (tjeachmg 'N" portable The language and libraries should be independent
termg late topics also: so areé cra t, persona eYe"mm of implementation technology and infrastructure. The next
practices, and software design. If the language finds morelanguage should be able to be used on Unix/Linux, Win-

advanced uses and employment outside the classroom, thaﬁows Mac OS X, and directly over the web. Most likely
will strengthen the argument to use it for teaching; however the language should run on top of common existing virtual

advanced use is notmimary design goal. machines (JVM, CLR, JavaScript).

Language Levels The language should support progres- .
sive teaching strategies, which use language subsets and eXConcurren_cy and Paralielism The language ”.‘“St sup-
tensions that can be matched to students’ experience [6].port teaching concurrent and parallel programming, withou

For example, one course could start with top-level funtjon mandating one particular approach. Asa minimum, the lan-
adding objects, types, mutable state, failure handlind, an guage must support teaching message passing and shared
modules in separate language components. Teaching subsef§€Mory concurrency, perhaps in different extensions.

can also allow error messages to be tailored to suit differen pevelopment Environment The language must be sup-
levels of experience with the language. ported by novice-friendly development environments (such

Adaptable The language should supporta range of curricu- @S BlueJ or Racket) and good debuggers.

lum approaches, including at least objects-first, impeeati Graphics and Multimedia The language should support

flrs_t, functlons_-fl_rst, and breadth-first. Particularly bese programming with graphics and multimedia, and event-
pointers are dlfflc_ult to learn, the language must support a y.iven programming. Several teaching approaches rely on
clear model of object references. graphics and multimedia programming; they are also impor-

Best Practice The language should capture current best tant application areas in their own right.
practice in programming and program design. Where pos-
sible, common bugs (i.e., those typically illustrated in in
troductory programming classes, or detected by findbugs)
should be prevented by design.

Software Engineering The language should supportteach-
ing good software engineering practices. This means tkat th
language will need some support for software modularity,
for handling failure, and for programming to interfaceseTh
Unsurprising The features of the language should be un- language should provide explicit support for precondgion
surprising. To quote C.A.R. Hoare agadlitie job of the lan- postconditions, and invariants that would be automaticall
guage designer is consolidatiofi8]. As much as possible, checked during (or before) program execution.

202

Performance Model The language should support a sim-
ple performance model for simple programs. The language
must be able to support teaching students “how to predict,
control, and/or explain the performance of their programs”
[13].

Efficiency Efficiency is not a concern of this language
design.

3. CalltoAction

We call on the object-oriented programming language com-
munity to design a new language to meet this need.

We invite the community to bring together a relatively
small group to investigate features to be included, and to
solicit feedback on the language as the design progresses.
We believe that, to promote and maintain a coherent vision,
the core language design must remain vested in a small
group. However, the language design process should be as
open and transparent as possible, and the resulting laaguag
specification should be vested in the community.

4. Pan€

Members of the panel will lay out the need for an educa-
tional programming language designed for teaching novices
object-oriented programming, and trace the history ofearl
attempts to design educational languages. The panel will fo
cus on many of the principles that have been agreed to an
why they are important for an educational language, as well
as how the language design will proceed.

Supporters
In addition to the three authors of this document, the follow
ing people support this effort.

¢ Gilad Bracha, Ministry of Truth.

¢ John Boyland, University of Wisconsin-Milwaukee.

¢ Sophia Drossopoulou, Imperial College, London.

¢ Susan Eisenbach, Imperial College, London.

¢ Michael Kdlling, The University of Kent.

¢ Doug Lea, SUNY Oswego.

e Jan Vitek, Purdue.

203

iy

[13] D. Lea, D. F. Bacon, and D. Grove.

[15] A. J. Perlis.

References

[1] A. P. Black, E. Jul, N. Hutchinson, and H. M. Levy. The
development of the Emerald programming language. In
History of Programming Languages IIACM Press, 2007.

[2] T. Budd. A Little Smalltalk Addison-Wesley, 1987.

[3] L. Cardelli. Handbook of Computer Science and Engineering
chapter Chapter 103: Type Systems. CRC Press, 1997.

[4] L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kaiso
and G. Nelson. Modula-3 reference manual. Technical Report
Research Report 53, DEC Systems Research Center (SRC),
1995.

[5] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clustel€ommun. ACM51(1):107-113,
2008.

[6] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnanhirt
How To Design ProgramaMIT Press, 2001.

[7] B. Goetz, T. Peierls, J. Block, J. Bowbeer, D. Holmes, and

D. Lea. Java Concurrency in Practice Addison Wesley
Professional, 2006.

[8] C. Hoare. Hints on programming language design. Teehnic
Report AIM-224, Stanford Artificial Intelligence Laboraio
1973.

[9] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A hisfory o
Haskell: being lazy with class. IRistory of Programming
Languages lll pages 12—-1-12-55. ACM Press, 2007.

D. H. Ingalls. Design principles behind SmalltalBYTE
Magazine August 1981.

[11] M. Kdlling and J. Rosenberg. Blue —a language for téagh

object-oriented programming. IACM Conference on
Computer Science Education (SIGCSE96.

[12] M. Kadlling, B. Koch, and J. Rosenberg. Requirements fo

a first year object-oriented teaching language. AltM
Conference on Computer Science Education (SIGCERp.

Languages and
performance engineering: Method, instrumentation, and
pedagogy. I'8IGPLAN Workshop on Programming Language
Curriculum, 2008.

[14] P. Naur. The European side of the development of ALGOL.

In History of Programming Languagesgages 92—-139. ACM
Press, 1981.

The American side of the development of
ALGOL. In History of Programming Languages pages
75-91. ACM Press, 1981.

