
Is Multiple Inheritance Essential to OOP? 
(PANEL) 

Yen-Ping Shan, IBM, PRGS Cm-y, (moderator) 

Tom Cargill, Independent Consultant 
Brad Cox, George Mason University 

William Cook, Apple computer 
Mary Loomis, Versant Object Technology 

Alan Snyder, SunSoft, Inc. 

1 Background 

Multiple inheritance has been adopted by many 
00 programming languages (such as C++, CLOS, 
and Eiffel). On the other hand, there are 
languages (such as Smalltalk, Objective C, and 
Object Pascal) that do not offer multiple 
inheritance. Despite missing the feature, these 
languages seem to be as effective as those that 
offer it. It is then natural to ask how essential 
multiple inheritance is to object-oriented 
programming. 

This panel will discuss this question from a 
variety of perspectives, including but not limited 
to: 

l Programming languages 
What’s the definition of multiple inheritance 
in a specific language, why is it necessary, 
and how is it used? 

l Modeling and 00 Design 
How is multiple inheritance used in 
modeling and design? Does it help in 
managing the complexity and delivering 
better design? 

l Object users and provideIs 
Strong separation between the interface 
and implementation has become the trend 
of many new languages (such as 00 
COBOL) and systems (OMG’s CORBA). 
What effect does this have on the 
importance of multiple inheritance? 

As part of their positions, the panelists are asked to 
address specific questions related to multiple 
inheritance. Examples of such questions are: 

l Does an object that fulfills multiple roles 
make sense? If so, how does one describe 
such an object and how does one implement 
it? Is multiple inheritance essential to both 
description and implementation? 

0 What’s the future of multiple inheritance? 

l How should the audience confront multiple 
inheritance in their everyday practice? 

l Does it make sense to rate and compare 
products based on whether they support 
multiple inheritance? 

The panelists will discuss conceptual and practical 
aspects of the issues drawing from their personal 
experience. 

2 Tom Cargill 

The question as stated is very broad: the semantics 
of multiple inheritance (MI) and the interaction 
between MI and other language features vary 
considerably from one programming language to 
another. Rather than tackle the general question, I 
will make some observations about whether MI is 
essential to object-oriented programming in C++. I 
choose this restriction because most of the MI code 
that I have studied has been written in C++, and I 
believe I can make a more detailed statement in this 
limited context. 

360 



The reaction of most C++ programmers to MI is that 
it must be for expressing relationships among 
classes that belong to rich classification hierarchies. 
That is, programmers look for classes corresponding 
to abstractions that exhibit more than one 
specialization (is-a-kind-of) relationship. The two 
situations that superficially look most promising are 
“multiple classification” and “dynamic 
classification.” 

Multiple classification arises when an abstraction, 
throughout its lifetime, is a specialization of more 
than one other abstraction. Should a multiple 
specialization relationship be represented by 
multiple inheritance? Unfortunately, multiple 
inheritance turns out to be an unwieldy way to 
model multiple classification. On the other hand, 
multiple classification is simplified by viewing the 
various attributes of the class independently, and 
composing those attributes to form an object. 
Programming with a composition of attributes is 
generally simpler, more flexible and more 
expressive than attempting to model multiple 
classification with multiple inheritance. 

Dynamic classification arises when an abstraction 
participates in different specialization relationships 
at different phases of its lifetime. For example, at 
some times a seaplane is a specialization of a boat; 
at other times a seaplane is a specialization of a 
plane. Dynamic classification is not supported by 
any of the inheritance mechanisms of C++, because 
every object is of precisely one type, determined at 
the time of the object creation. No metamorphosis is 
permitted; an object cannot modify its type 
dynamically. Dynamic classification can be 
expressed in C++ by the use of delegation, instead 
of inheritance. Delegation is relatively simple: one 
object receives messages and propagates them to 
another object, which then performs the delegated 
work. Using delegation, a SeaPlane object may 
behave like by a boat by delegating incoming calls 
to a Boat object. 

Multiple classification and dynamic classification 
arise when modeling “natural” classes -- those that 
correspond to abstractions from the problem 
domain. Object-oriented systems also need 

“synthetic” classes -- those that do not correspond to 
abstractions found in the problem domain. Synthetic 
classes emerge during design and coding of a 
system, in response to internal, synthetic needs of 
the software. 

The contexts is which I have seen and found MI to 
be useful in C++ programs have all involved 
synthetic class relationships. For example, coding 
callbacks from a server, such as graphics widget, to 
an arbitrary client is simplified by the use of an 
abstract class that defines the callback protocol. The 
static type system of C++ demands that a server 
performing the callback know the type of its client. 
If the client class inherits from the abstract protocol 
must receive multiple callback protocols, it must 
inherit from multiple abstract protocol classes. This 
is multiple inheritance that arises independent of any 
consideration of classification relationships. Indeed, 
this application of inheritance would be alien to a 
programmer familiar with only dynamically typed 
languages. 

On the basis of the code that I have encountered to 
date, I conclude that where multiple inheritance is 
useful in C++ programming it is not for modeling 
natural class relationships, but as an implementation 
technique used in conjunction with synthetic classes. 
That is, I see multiple inheritance as an 
implementation convenience, not an essential 
modeling tool. 

3 Brad Cox 

Is multiple inheritance essential to object-oriented 
programming? 

No, on the grounds that users of languages 
(Smalltalk, Objective-C) that don’t support MI are 
indisputably engaged in object-oriented 
programming. 

Is inheritance an essential feature of programming 
languages? 

No, on the grounds that programming languages are 
implementation tools, not specification tools. Unlike 
encapsulation, inheritance has demonstrated a mixed 
and often disappointing utility when used for 

361 



implementation instead of specification. Its most 
useful role is a specification tool; a way of 
classifying objects from their consumer’s 
perspective, which is rarely consistent with that of 
the objects’ developers. 

Is multiple inheritance an essential feature of a true 
software engineer’s toolkit? 

Yes, on the grounds that specification tools and 
implementation tools both belong in a true software 
engineer’s toolkit. By contrast, the software 
craftsmen of today get by with only implementation 
tools (object-oriented programming languages). And 
even so, those who are building reusable code have 
discovered that objects can be viewed from at least 
two and often more irreconcilable perspectives; the 
internal perspective of their developer and the 
external perspective of their users. 

4 William Cook 

In any discussion of inheritance it is essential to 
define one’s terms. This is because inheritance has 
historically been used to refer to two distinct but 
related concepts: 

1) Subtype/conformance/refinement relationships 
between types/interfaces/specifications. Illustrated 
by Cardelli’s “semantics of multiple inheritance”, 
knowledge representation hierarchies, and typing 
rules in C++/Eiffel/Emerald/etc. 

2) Derivation on new program units by specifying 
changes to existing program units. Illustrated by 
subclassing in Smalltalk, derived classes in C++, 
inheritance in Eiffel, subclassing in CLOS, prefixing 
in Beta, etc. 

I believe that one should distinguish these concepts. 
I call the first “subtyping” and the second 
“inheritance”. Given this premise, it is possible to 
discuss the role of common notions of “multiple 
inheritance” in greater detail: 

lm) Multiple subtyping. This means that one 
interface can be a subtype/refinement of several 
different simpler interfaces. This is quite desirable in 
practice and poses few conceptual difficulties. 
However, it can be somewhat expensive to 

implement. In the limit, the subtype relationship is a 
complex acyclic directed graph which can be 
extended at any node. The related classes may or 
may not inherit from each other. 

2m) Multiple Inheritance. This means that a single 
program unit is derived by combining and 
modifying several existing units. At the limit, this 
problem resembles a complex merge of several 
program parts (or versions) into a combined whole - 
- except that the merge is done with declarations 
instead of a text editor. Unfortunately, this merge 
sometimes depends upon the internal details of the 
parts, causing a breakdown in encapsulation. When 
the program units are classes, inheriting class may 
or may not be a subtype of the classes it inherits. 

From these observations I argue that subtyping (with 
multiple supertypes) is probably essential, but that 
multiple inheritance is not. However, multiple 
inheritance can be very convenient and lead to 
advantageous code sharing. For languages (like 
C++ and Eiffel) that do not separate subtyping and 
inheritance, one can use the combined mechanism 
for either purpose according to programming 
conventions, but the necessity for multiple 
subtyping drives one to require multiple inheritance 
too, with all it’s complexity and problems. 

5 Marry Loomis 

Multiple inheritance is a mixed blessing. It is a 
useful construct in object modeling, but can 
introduce challenges for implementation. 

Multiple inheritance enables the modeler to 
represent the real-world fact that objects can fulfill 
multiple roles. These roles depend on the vantage 
points of the viewers. People generally tend to 
classify real-world objects and concepts into neat 
buckets, but those classifications sometimes overlap. 
In many cases, multiple inheritance helps object 
modelers manage the complexity of representing the 
real world. 

Perhaps ironically, however, multiple inheritance 
can introduce significant complexity into application 
design and programming. The developers of the 
underlying systems software -- including both object 

362 



programming environments and object database 
management systems -- can encounter even greater 
challenges dealing with multiple inheritance. 

6 Alan Snyder 

The value of multiple inheritance in object-oriented 
programming has been a subject of much debate. 
Part of the problem has been that inheritance serves 
multiple purposes in object-oriented programming 
languages: it can be used both to define 
specializations of concepts (interfaces) and to reuse 
and customize code (implementations). 

In the world of distributed systems, there is great 
value in making a clear distinction between 
interfaces and implementations. In the OMG 
CORBA, for example, different languages are used 
to define interfaces and implementations: interfaces 
are defined using an interface definition language 
(OMG IDL), implementations are defined using 
programming languages. Once this distinction is 
made, we can analyze the value of multiple 
inheritance in these two contexts. 

In OMG IDL, interface inheritance is the technique 
used to establish type conformance relationships. 
By supporting multiple inheritance, OMG IDL 
makes it easy to define an object whose interface 
conforms to multiple, unrelated interfaces. This 
situation easily arises because interfaces can be 
defined independently by multiple developers. 
Multiple interface inheritance has no difficult 
conceptual problems, such as ordering 
dependencies. Multiple interface inheritance is very 
convenient, but not strictly essential; without it, one 
would define multiple objects supporting the 
different interfaces and provide operations to get one 
from object to another. 

Multiple implementation inheritance, on the other 
hand, is problematic. The goal is lofty: take several 
behaviors (implementations), mix them together, 
and produce a new implementation that provides the 
appropriate combined behavior. ‘The problem is that 
unless the behaviors have been designed in advance 
to be mixed together in this fashion, it probably 
doesn’t work. The imolementations tend to interact 

with each other in many ways that are difficult to 
control and understand. For example, dependence 
on incidental ordering is a common problem. It is 
easy to design a multiple implementation inheritance 
model that supports any given example; it is not 
clear how to design one that supports new examples. 
Component reuse and customization arc important 
goals. However, it is not clear that implementation 
inheritance is the best mechanism for achieving 
those goals, especially multiple implementation 
inheritance. 

363 


